# Chart Datum-to-Ellipsoid Separation Model Development for Obhur Creek Using Multibeam Hydrographic Surveying

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Chart Datum-to-Ellipsoid Separation Model Development

#### 2.1. Separation Model Development Using Multibeam Hydrographic Surveying

#### 2.2. Separation Model Development Using Gravimetric/Oceanographic Method

## 3. Methodology

## 4. Study Area and Data Acquisition

## 5. Results and Discussion

_{CD}-

_{WGS84}). The computed separation model is dependent on the draft and heave during the test survey. Figure 8 and Figure 9 show the true (delayed) heave and the real-time heave solution from POS-MV and associated errors, respectively. The heave is the vertical displacement of the survey vessel, and the value depends on the ocean basin [22]. The heave estimator is a technique that performs a combined double integration of the estimated vertical acceleration of the INS system in the navigation frame followed by high-pass filtering. If the filtering process is carried out in the real-time mode, the estimated heave is called real-time heave. However, if the filtering process is conducted in offline mode, the heave is called true (delayed) heave [22].

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Appendix A

Equipment | Data |
---|---|

Kongsberg EM712 multibeam echo sounder | Bathymetric measurements |

POS–MV System | GNSS and inertial unit measurements |

Valeport’s sound velocity profiler | Sound velocity measurements |

KSA-CORS GNSS base station MK99 | GNSS measurements |

Jeddah tide gauge station | ARAMCO tide table data |

## References

- Rice, G.; Riley, J. Measuring the Water Level Datum Relative to the Ellipsoid during Hydrographic Survey; NOAA: Washington, DC, USA, 2011. Available online: https://nauticalcharts.noaa.gov/learn/docs/ellipsoidally-referenced-surveys/rice-riley-measuring-water-level-datum-relative-ers.pdf (accessed on 30 November 2021).
- Mills, J.; Dodd, D. Ellipsoidally Referenced Surveying for Hydrography; FIG: Copenhagen, Denmark, 2014; Available online: https://www.fig.net/resources/publications/figpub/pub62/Figpub62.pdf (accessed on 30 November 2021).
- El-Diasty, M.; Al-harbi, S.; Pagiatakis, S. Development of Saudi continuous chart datum: Arabian Gulf case study. Geomat. Nat. Hazards Risk
**2019**, 10, 1738–1749. [Google Scholar] [CrossRef] - Abd-Rahman, M.; Din, A. The Development of Continuous Hydrographic Datum Using Geodetic Based Approaches: A Review. IOP Conf. Ser. Earth Environ. Sci.
**2020**, 540, 012062. [Google Scholar] [CrossRef] - Kaloop, M.; Pijush, S.; Rabah, M.; Al-Ajami, H.; Hu, J.; Zaki, A. Improving accuracy of local geoid model using machine learning approaches and residuals of GPS/levelling geoid height. Surv. Rev.
**2021**, 1–14, In press. [Google Scholar] [CrossRef] - Handa, E. Tidal datums. In Encyclopedia of Coastal Science; Finkl, C., Makowski, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Iliffe, J.C.; Ziebart, M.K.; Turner, J.F.; Talbot, A.J.; Lessnoff, A.P. Accuracy of vertical datum surfaces in coastal and offshore zones. Surv. Rev.
**2013**, 45, 254–262. [Google Scholar] [CrossRef] - IHO. IHO Standards for Hydrographic Surveys. 2020. Available online: https://iho.int/uploads/user/pubs/Drafts/S-44_Edition_6.0.0-Final.pdf (accessed on 18 December 2021).
- Jeffries, M.; Nudds, S.; Robin, C.; MacAulay, P.; Godin, A.; Boom, B.; Dangerfield, N.; Bartlett, J. The Canadian Continuous Vertical Datum for both Land and Sea; CHC-NSC: Victoria, BC, USA, 2018. [Google Scholar]
- Robin, C.; Nudds, S.; MacAulay, P.; Godin, A.; de Lange, B.; Bartlett, J. Hydrographic Vertical Separation Surfaces (HyVSEPs) for the Tidal Waters of Canada. Mar. Geod.
**2016**, 39, 195–222. [Google Scholar] [CrossRef] - Robin, C.; Godin, A.; Macaulay, P.; de Lange, B.; Lefaivre, D.; Herron, T.; Sinnott, D.; Ballantyne, A.; Maltais, L.; Veronneau, M. The Canadian hydrographic continuous vertical datum: Methodology and accuracy. In Proceedings of the CHC 2012 Conference Proceedings, Niagara Falls, ON, Canada, 15–17 May 2012. [Google Scholar]
- Robin, C.; Nudds, S.; MacAulay, P.; Godin, A.; Boom, B.; Bartlett, J.; Maltais, L.; Herron, T.; Fadaie, K.; Craymer, M.; et al. The continuous vertical datum for Canadian waters project: Overview & status report. In Proceedings of the Canadian Hydrographic Conference, Toronto, ON, Canada, 14–17 April 2014. [Google Scholar]
- Gesch, D.; Wilson, R. Development of a Seamless Multisource Topographic/Bathymetric Elevation Model for Tampa Bay. Mar. Technol. Soc. J.
**2001**, 35, 58–64. [Google Scholar] [CrossRef] [Green Version] - Pineau-Guillou, L.; Dorst, L. Creation of vertical reference surfaces at sea using altimetry and GPS. Ann. Hydrogr.
**2011**, 8, 1–7. [Google Scholar] - Keysers, J.H.; Quadros, N.D.; Collier, P.A. Developing a Method to Establish a Common Vertical Datum before Integrating Land Height Data with Near-Shore Seafloor Depth Data; Report Prepared for the Commonwealth Government of Australia; Department of Climate Change and Energy Efficiency: Canberra, Australia, 2013. [Google Scholar]
- Slobbe, D.C.; Sumihar, J.; Frederikse, T.; Verlaan, M.; Klees, R.; Zijl, F.; Farahani, H.H.; Broekman, R. A Kalman Filter Approach to Realize the Lowest Astronomical Tide Surface. Mar. Geodesy
**2018**, 41, 44–67. [Google Scholar] [CrossRef] [Green Version] - CARIS. CARIS HIPS and SIPS Professional: Version 11.0; Teledyne CARIS, Inc.: Fredericton, NB, Canada, 2018. [Google Scholar]
- Adams, R. The development of a vertical reference surface and model for hydrography—A guide. In Proceedings of the XXIII International FIG Conference, Munich, Germany, 8–13 October 2006. [Google Scholar]
- De Lange, B. Vertical datum separation models for the British Columbia coast. In Proceedings of the CHC 2012 Conference, Niagara Falls, ON, Canada, 1–5 September 2012. [Google Scholar]
- Lefaivre, D.; Dodd, D.; Godin, A.; Herron, T.; MacAulay, P.; Sinnott, D. The continuous vertical datum Canadian waters project (beginnings, vision, methods and progress). In Proceedings of the CHC 2010 Conference, Quebec, QC, Canada, 10–16 February 2010. [Google Scholar]
- Torge, W.; Müller, J. Geodesy, 4th ed.; Walter de Gruyter: Berlin, Germany, 2012. [Google Scholar]
- El-Diasty, M. Development of Real-Time PPP-Based GPS/INS Integration System Using IGS Real-Time Service for Hydrographic Surveys. J. Surv. Eng.
**2015**, 142, 05015005. [Google Scholar] [CrossRef] - Shamji, V.R.; Vineesh, T.C. Shallow-water tidal analysis at Sharm Obhur Jeddah, Red Sea. Arab. J. Geosci.
**2017**, 10, 61. [Google Scholar] [CrossRef] - Al-Kherayef, O. Geodetic Earth Observations Combination for Vertical Reference System Definition—A Case Study for the Kingdom of Saudi Arabia Vertical Datum and Vertical Reference Frame. Ph.D. Thesis, University of Mining and Geology St Ivan Rilski, Sofia, Bulgaria, 2020. [Google Scholar]

**Figure 1.**Schematic plot for the separation height estimation using multibeam hydrographic surveying method.

**Figure 2.**Schematic plot for the separation height estimation using the gravimetric/oceanographic method.

**Figure 5.**PPK GNSS/INS-integrated navigation solution for latitude, longitude and ellipsoidal height from POSPac software.

**Figure 10.**Separation height with real-time heave along with the associated density and standard deviation; where (

**a**) Shows separation height with real time heave; (

**b**) Shows density of separation height estimation with real time heave; (

**c**) Shows Standard deviations of separation height estimation with real time heave.

**Figure 11.**Separation height with delayed heave along with the associated density and standard deviation; where (

**a**) shows separation height with delayed heave, (

**b**) shows density of separation height estimation with delayed heave and (

**c**) shows Standard deviations of separation height estimation with delayed heave.

**Table 1.**Summary of statistical results of the SEP models using real-time and delayed heave solutions.

Parameter\Solution | SEP with Real-Time Heave | SEP with Delayed Heave |
---|---|---|

Maximum SEP | −4.729 m | −4.766 m |

Minimum SEP | −4.932 m | −4.920 m |

Mean SEP | −4.841 m | −4.841 m |

Maximum density | 8627 points | 8627 points |

Minimum density | 219 points | 219 points |

Mean density | 4055 points | 4055 points |

Maximum standard deviation | 0.035 m | 0.023 m |

Minimum standard deviation | 0.001 m | 0.001 m |

Mean standard deviation | 0.007 m | 0.005 m |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

El-Diasty, M.; Kaloop, M.R.; Alsaaq, F.
Chart Datum-to-Ellipsoid Separation Model Development for Obhur Creek Using Multibeam Hydrographic Surveying. *J. Mar. Sci. Eng.* **2022**, *10*, 264.
https://doi.org/10.3390/jmse10020264

**AMA Style**

El-Diasty M, Kaloop MR, Alsaaq F.
Chart Datum-to-Ellipsoid Separation Model Development for Obhur Creek Using Multibeam Hydrographic Surveying. *Journal of Marine Science and Engineering*. 2022; 10(2):264.
https://doi.org/10.3390/jmse10020264

**Chicago/Turabian Style**

El-Diasty, Mohammed, Mosbeh R. Kaloop, and Faisal Alsaaq.
2022. "Chart Datum-to-Ellipsoid Separation Model Development for Obhur Creek Using Multibeam Hydrographic Surveying" *Journal of Marine Science and Engineering* 10, no. 2: 264.
https://doi.org/10.3390/jmse10020264