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Abstract: A traditional shore-based discrete point chart datum (CD) that represents the lowest
astronomical tide (LAT) in Saudi Arabia using tide gauge data is utilized to reduce the observed depth
collected from hydrographic surveying test to CD-referenced depth for producing navigation charts
for maritime navigation applications. A need for developing CD in a continuous form is essential
to replace the traditional discrete CD using tide gauge data. The importance of the development of
CD-to-ellipsoid (WGS84) separation model is that it can be utilized by the hydrographers to develop
an accurate vertical control for hydrographic surveys applications and can be utilized by the mariners
to produce accurate dynamic electronic navigation charts (ENCs). In this paper, a continuous CD
to WGS84 ellipsoid separation model for the Sharm Obhur area is developed using a multibeam
hydrographic surveying test. It is shown that the continuous chart datum ranges from −4.920 m to
−4.766 m and can be achieved with standard deviation ranges from 0.1 cm to 2.3 cm. To validate the
separation model, a comparison was made with the gravimetric/oceanographic method based on the
separation height developed from geoid height, the sea surface topography and LAT value (chart
datum to mean sea level) at the tide gauge located in the study area. The comparison showed that the
average value of the developed continuous CD to WGS84 separation model heights using multibeam
hydrographic surveying agrees with the separation height estimated from gravimetric/oceanographic
method.

Keywords: LAT; chart datum; separation model; hydrographic surveying; Sharm Obhur

1. Introduction

A local tide-based CD is essential in marine engineering applications, and it is pro-
duced for the safety of maritime navigation [1]. Traditionally, tide gauge and sounding
datasets are used to produce the CD through hydrographic surveying [1,2]. The height
separation between tidal datums and datum references, through period observed sound-
ings, are used in hydrographic surveying to determine the vertical control, which is used
to reduce seafloor depth to estimate the CD [3]. Although the accuracy of hydrographic
surveying in CD estimation is high, this processing makes it difficult to estimate the CD
in real time, and the bathymetric surfacing algorithm have difficulty dealing with period
sound observations [1,4].

Furthermore, today, Global Navigation Satellite System (GNSS) is commonly used in geoid
modeling, ocean tide modeling, hydraulic datums and many maritime applications [3–5]. Thus,
the integration of tidal and GNSS measurements is the most appropriate solution for a
continuous and accurate hydrographic datum [3,4,6]. The requirements for generating
continuous hydrographic datum through CD transformation are proposed in Iliffe et al. [7]
and Eldiasty et al. [3] to conduct efficient hydrographic surveys by transforming the
GNSS ellipsoid and to CD in real-time mode without observing tidal data. Therefore,
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a three-stage process is required [7]: In the first, it is essential to find the position of
the mean sea surface (MSS) with respect to the ellipsoid. In this, level of a tidal surface
can be found below or above the equilibrium tide. These, then, are used to estimate the
position of the tidal surface with respect to the ellipsoid. Finally, the interpolation with
respect to the appropriate tidal level is applied to generate the CD. It should be noted
that the development of accurate CD is required for precision hydrographic surveying
applications in real-time mode where CD accuracy contributes to a significant portion of
the International Hydrographic Organization (IHO) total vertical uncertainty for special
order (shallow water) surveys, which is about 25 cm at 95% confidence level [8]. Therefore,
the target for developing continuous chart datum is to achieve accuracy within a decimeter
level (±10 cm) to fulfill the IHO requirements.

Meanwhile, the theory of the CD-to-ellipsoid concept is presented in Abd-Rahman
and Din [4]. A continuous CD is a relative two-dimensional reference to vertical reference
datum, such as LAT in Saudi Arabia or the reference ellipsoid, WGS84. The estimation
continuous hydrographic datum is proposed in different areas. For instance, the Saudi
continuous chart datum in the Arabian Gulf area was developed by Eldiasty et al. [3].
The accuracy of the developed Saudi continuous chart datum ranges from 11 cm to 16
cm (1σ). A datum for Canadian waters (inland, coastal and offshore areas), so called
Canadian Hydrographic Service (CHS’s CCVD datum), was developed by Jeffries et al. [9]
and Robin et al. [10–12]. The accuracy of the CCVD datum is about ±10 cm (1σ). The
United Kingdom Hydrographic Office (UKHO) Vertical Offshore Reference Frames (VORF)
datum was provided for coastal and offshore areas by Iliffe et al. [7]. The accuracy of the
VORF datum is about±10 cm inshore and±15 cm offshore (both 1σ). The National Oceanic
and Atmospheric Administration (NOAA) Vertical Datum (VDatum) was demonstrated
by Gesch and Wilson [13]. The accuracy of the VDatum datum ranges between ±4 cm
and ±12 cm (1σ). The Service Hydrographique et Oceanographique de la Marine (SHOM)
BATHYELLI datum was estimated by Pineau-Guillou and Dorst [14]. The accuracy of the
BATHYELLI datum is about ±10 cm (1σ). The Australian Hydrographic Service (AHS)
AusCoastVDT datum was illustrated by Keysers et al. [15]. The accuracy of the final
adjusted AusCoastVDT datum is about ±3 cm (1σ). The Dutch and Belgium vertical
reference datum (NEVREF) was investigated by Slobbe et al. [16]. The accuracy of the
NEVREF datum is about ±10 cm (1σ).

However, all these abovementioned national chart datum separation models were
developed using the hydrodynamic ocean model. This research aims to generate a new and
accurate continuous hydrographic datum for the Sharm Obhur area through the CD-to-
ellipsoid separation model estimation with a few centimeters’ accuracy. In addition, a CD
separation model is developed using multibeam hydrographic surveying test in the study
area that fits the area where the hydrodynamic ocean models are not usually available
for these inland water areas. In summary, the accuracy for the majority of the developed
continuous chart datums ranges between ±3 cm and ±15 cm (1σ).

The objective of this paper is to develop a continuous chart datum-to-ellipsoid (WGS84)
separation model for the Sharm Obhur study area using a multibeam hydrographic sur-
veying test. To meet the paper objective, the multibeam hydrographic surveying test from
EM712 multibeam system along with GNSS and Inertial Navigation System (INS) inte-
grated navigation solution (GNSS/INS) from POS–MV system and tide gauge data are
processed in CARIS HIPS and SIPS software to provide CD to WGS84 separation model and
associated accuracy represented by associated standard deviation values. To validate the
separation model, a comparison was made with the gravimetric/oceanographic method
based on the height developed from geoid height, the sea surface topography and chart
datum to mean sea level value that represents the LAT in Saudi Arabia at the tide gauge
located in the study area.

This research paper’s organizational structure is divided into six main sections. The
first section (this section) provides the literature reviews and the objective of this re-
search. The second section explains the separation model development using the pro-
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posed multibeam hydrographic surveying approach and the validation using the gravi-
metric/oceanographic method. Section 3 presents the methodology for developing the
separation model under investigation. The fourth section describes the study area and all
collected data using multibeam surveying system along with all required ancillary data for
hydrographic data postprocessing. Section 5 shows, analyses and discusses the developed
separation model and accuracy. Finally, Section 6 concludes the findings and importance of
developing a separation model using the multibeam hydrographic surveying method.

2. Chart Datum-to-Ellipsoid Separation Model Development

In this paper, the separation model is developed using the multibeam hydrographic
surveying method and is validated using gravimetric/oceanographic method. The fol-
lowing subsections describe the multibeam hydrographic surveying and the gravimet-
ric/oceanographic methods.

2.1. Separation Model Development Using Multibeam Hydrographic Surveying

The CD-to-ellipsoid separation height model can be estimated using a multibeam
hydrographic surveying vessel equipped with a GNSS/INS-integrated system. The high-
accuracy GNSS/INS-integrated system is required to develop an accurate CD-to-ellipsoid
separation model with few centimeters’ level of accuracy that is essential to reduce the
ellipsoidally referenced observed depth to chart datum referenced depth using the accu-
rate separation model that fulfills the IHO standards’ requirements. Figure 1 shows the
schematic plot representing how the separation model can be estimated from ellipsoid
height using the chart datum to mean sea level height (from tide gauge), heave, dynamic
draft and waterline height [1,17]. The septation model height, SEPCD−WGS84, at multibeam
nodes, can be estimated as follows:

SEPCD−WGS84 = hGNSS/INS
ellipsoid(WGS84) − htide − heave + DD−WL (1)

where SEPCD−WGS84 is the separation model height from CD-to-ellipsoid (WGS84),
hGNSS/INS

ellipsoid(WGS84) is the ellipsoidal height estimated from GNSS/INS integrated navigation
system transformed to the reference point (RP) of the survey vessel, htide is the tide height
records referenced to CD, heave is the heave value estimated from the INS system, DD
is the dynamic draft value of the vessel that is dependent on the vessel speed and WL is
waterline height from the reference point to the water surface.
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In this paper, the CD to WGS84 ellipsoid separation model height along with the
associated standard deviation are estimated at all multibeam nodes using CARIS HIPS
and SIPS from the multibeam hydrographic surveying test associated with the tide gauge
data collected in the Sharm Obour study area. Then, the comparison is made between the
developed model using the hydrographic surveying test and the independent separation
height estimated in the study area using the gravimetric/oceanographic method [18–20].

2.2. Separation Model Development Using Gravimetric/Oceanographic Method

The estimated separation model from the hydrographic surveying test can be validated
with the gravimetric/oceanographic method, as shown in Figure 2. The following equation
can be used to estimate the separation value at specific point SEPi, as shown in Figure 2,
with known geoid value and oceanographic values as follows [1,2]:

SEPi = Ni + SSTi − LATi (2)

where Ni is the geoid height (undulation), SSTi is the sea surface topography and LATi
is the LAT value at the tide gauge. The sea surface topography value SSTi between two
equipotential levels at a point i can be calculated as [21]:

SSTi =
Ci

gi + 0.0424Hi
≈ Ci

9.80
(3)

where Ci is the geopotential number, gi is the gravity value at the point and Hi is the
observed (leveled) height of the point i. The geopotential number Ci between two equipo-
tential levels at a point can be calculated as:

Ci = −(WLMSL −WGeoid) (4)

where WLMSL is the geopotential value of equipotential level at local mean sea level (LMSL)
and WGeoid is the geopotential value of equipotential level at the Kingdom of Saudi Arabia
(KSA) geoid level.
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Figure 2. Schematic plot for the separation height estimation using the gravimetric/oceanographic
method.

3. Methodology

The methodology is shown in Figure 3. To develop the separation model for Sharm Ob-
hur, multibeam data were collected using EM712 at (40–100) kHz. The hydrographic survey-
ing data along with tide data and GNSS tide data were georeferenced using Post-Processed
Kinematic (PPK) GNSS/INS-integrated navigation solution. Then, the georeferenced hy-
drographic surveying with tide data and GNSS-tide based on real-time heave solution and
delayed heave solution were employed to develop two chart datum-to-ellipsoid separation
models and associated standard deviation values that identify the quality of the developed
separation models implemented in this paper. To validate the separation model, a compari-
son was made with the gravimetric/oceanographic method based on the height developed
from geoid height, the sea surface topography and LAT value at the tide gauge located in
the study area.
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4. Study Area and Data Acquisition

To develop separation model, the navigation measurements were collected from POS–
MV system, and the multibeam data measurements were collected from EM712 Multibeam
Echosounder System (MBES) on March 4th, 2018, in Sharm Creek, Jeddah, in Saudi Arabia
on board a hydrographic surveying vessel called “KAU Hydrography 1” owned by the
Department of Hydrographic Surveying, Faculty of Maritime Studies of King Abdulaziz
University. Figure 4 shows the test survey track lines in the Sharm Obhur. The tide gauge
data were extracted from the Aramco tide data table for the Jeddah tide gauge stations. The
real-time heave and true (delayed) heave were obtained from the POS–MV system. The
PPK GNSS/INS integration navigation data were obtained from POSPac software. The list
of collected data are provided in Appendix A.

1 

 

 

Figure 4. Test survey track lines (red lines) in the Sharm Obhur study area.

5. Results and Discussion

To develop an accurate separation mode, an accurate GNSS/INS-integrated navigation
solution with centimeters accuracy is required. To obtain accurate navigation solution, the
PPK GNSS/INS-integrated navigation solution used POS-MV data along with the GNSS
base station (MK99) obtained from the KSACORS network collected by GCS that is about
5 km from the test area. The POS–MV data and the GNSS base station data were processed
using POSPac software to provide the PPK GNSS/INS integrated navigation solution.
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Figure 5 shows the PPK GNSS/INS-integrated navigation solution for latitude, lon-
gitude and ellipsoidal height referenced to the WGS84 ellipsoid, and Figure 6 shows the
associated PPK navigation solution accuracy of latitude, longitude and ellipsoidal height
implemented in the POSPac software. The ellipsoidal height accuracy ranges from 4 to
5 cm, which can be used to develop the separation model with a few centimeters’ accuracy
and fulfill the IHO requirements for hydrographic surveying applications. Figure 7 shows
the tide data of Jeddah station from Aramco tide tables of the Red Sea referenced to chart
datum (LAT). The CARIS HIPS and SIPS software was employed to georeference the data
from POSPac postprocessed navigation solution and apply tide data. The separation model
was developed using the ellipsoidal height solution from the POSPac software and tide
data. The separation model height represents the vertical distance between the chart datum
and the reference ellipsoid (WGS84), namely (SEPCD-WGS84). The computed separation
model is dependent on the draft and heave during the test survey. Figures 8 and 9 show
the true (delayed) heave and the real-time heave solution from POS-MV and associated
errors, respectively. The heave is the vertical displacement of the survey vessel, and the
value depends on the ocean basin [22]. The heave estimator is a technique that performs a
combined double integration of the estimated vertical acceleration of the INS system in the
navigation frame followed by high-pass filtering. If the filtering process is carried out in
the real-time mode, the estimated heave is called real-time heave. However, if the filtering
process is conducted in offline mode, the heave is called true (delayed) heave [22].
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Two separation models were developed using CARIS HIPS and SIPS software based on
real-time heave and delayed heave, respectively. Figure 10 shows the developed separation
model using the real-time heave solution. Figure 10a shows the separation height between
the chart datum and WGS84 at model grid nodes that range between−4.932 m to−4.729 m.
Figure 10b shows the density of the number of points employed to estimate the separation
heights at the grid nodes that range between 219 points and 8627 points. Figure 10c shows
the standard deviations associated with the estimated separation heights at the grid nodes
that range between 0.001 m and 0.035 m.
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Figure 10. Separation height with real-time heave along with the associated density and standard
deviation; where (a) Shows separation height with real time heave; (b) Shows density of separation
height estimation with real time heave; (c) Shows Standard deviations of separation height estimation
with real time heave.

Figure 11 shows the developed separation model using the delayed heave solution.
Figure 11a shows the separation height between the chart datum and WGS84 at model grid
nodes that range between -4.920 m to -4.766 m. Figure 11b shows the density of the number
of points employed to estimate the separation heights at the grid nodes that range between
219 points and 8627 points. Figure 11c shows the standard deviations associated with the
estimated separation heights at the grid nodes that range between 0.001 m and 0.023 m.
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Figure 11. Separation height with delayed heave along with the associated density and standard devi-
ation; where (a) shows separation height with delayed heave, (b) shows density of separation height
estimation with delayed heave and (c) shows Standard deviations of separation height estimation
with delayed heave.

Table 1 shows the summary of statistical results for the developed separation model,
density and standard deviation using the real-time and delayed heave solutions. It is
shown in Table 1 that the accuracy of the SEP model developed from delayed heave
solution outperforms the SEP model developed from real-time heave solution with mean
separation height value of −4.84 m and standard deviation value of 0.023 m.
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Table 1. Summary of statistical results of the SEP models using real-time and delayed heave solutions.

Parameter\Solution SEP with Real-Time Heave SEP with Delayed Heave

Maximum SEP −4.729 m −4.766 m

Minimum SEP −4.932 m −4.920 m

Mean SEP −4.841 m −4.841 m

Maximum density 8627 points 8627 points

Minimum density 219 points 219 points

Mean density 4055 points 4055 points

Maximum standard deviation 0.035 m 0.023 m

Minimum standard deviation 0.001 m 0.001 m

Mean standard deviation 0.007 m 0.005 m

The estimated separation model from hydrographic surveying test can be validated
with gravimetric/oceanographic method, as shown numerically in Figure 12. The separa-
tion height model at the marine science tide gauge in the Sharm Obhur is estimated based
on Equation (2) in Section 2.2 with known lowest astronomical tide value (LAT = 0.23 m
is estimated from tidal constituents derived in by Shamji and Vineesh [23]), known gravi-
metric geoid height (N = 4.89 m value is obtained from Al-Kherayef [24]) and sea surface
topography (SST = 0.16 m, estimated from equipotential values given in Al-Kherayef [24]);
then the SEP equals:

SEPSharmObhur = 4.89 + 0.16− 0.23 = 4.82 m (5)

A comparison is made between the estimated SEP mean value from the hydrographic
surveying method and the gravimetric/oceanographic method. The estimated SEP mean
value from the hydrographic surveying method is 4.84 m, and the estimated value from
gravimetric/oceanographic method is 4.82. The difference between two SEP values from
hydrographic surveying test and gravimetric/oceanographic method is about 2 cm, which
is within the range the standard deviation values of the estimated SEP from the hydro-
graphic surveying test (0.01 cm to 2.3 cm). Therefore, the SEP estimated hydrographic
surveying test agrees with the SEP estimated from gravimetric/oceanographic method.
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6. Conclusions

The objective of this paper is to develop a continuous chart datum-to-ellipsoid (WGS84)
separation model for the Sharm Obhur study area using multibeam hydrographic survey-
ing test. The research developed a separation model for the Sharm Obhur study using
multibeam hydrographic surveying, the PPK navigation solution and delayed heave. The
results provided continuous surface separation height, which ranges between −4.920 m
to −4.766 m, with associated standard deviations ranges between 0.001 m and 0.023 m.
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Furthermore, a comparison was made between the estimated separation model value devel-
oped from the hydrographic surveying test and the estimated value developed from gravi-
metric/oceanographic method. The results demonstrated that average value of the sepa-
ration model heights agrees with the height estimated by the gravimetric/oceanographic
method. It should be noted that the developed separation model achieved a few centime-
ters’ accuracy and consequently fulfills the IHO requirements for hydrographic surveys
for special order (shallow water) applications. The advantage of developing a separation
model consists of the possibility to transform bathymetric data from ellipsoid to CD in real
time without using a tide gauge. In such a way, it optimizes the hydrographic surveying
workflow through the increased speed of data processing. For the future similar studies, it
is strongly recommended to employ the continuous separation model when multibeam
hydrographic surveying data are collected with high accuracy, inertially aided Real-Time
Kinematic (RTK) or PPK navigation solutions to produce an accurate navigation chart for
the safety of maritime navigation.
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Appendix A

This following table lists the collected measurements/data:

Equipment Data

Kongsberg EM712 multibeam echo sounder Bathymetric measurements

POS–MV System GNSS and inertial unit measurements

Valeport’s sound velocity profiler Sound velocity measurements

KSA-CORS GNSS base station MK99 GNSS measurements

Jeddah tide gauge station ARAMCO tide table data
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