Definition of an Artificial Reef Unit through Hydrodynamic and Structural (CFD and FEM) Models—Application to the Ares-Betanzos Estuary
Abstract
:1. Introduction
2. Materials and Methods
2.1. Problem Definition
- -
- Proposal 1, with 325 kg/m3 cement content (HA-30/B/20/IIIb according to EHE-08 [37]).
- -
- Proposal 2, with 275 kg/m3 cement content (HA-25/P/20/IIa according to EHE-08 [37]).
- -
- Proposal 3, with 240 kg/m3 cement content (HM-20/P/20/I according to EHE-08 [37]).
- -
- Proposal 4, with 200 kg/m3 cement content (HM-20 according to EHE-08 [37]).
- -
- Validate the design, including the external dimensions and determining the dimensions of the nest holes.
- -
- Providing a structural analysis through a FEM model according to the loads that take place at the production and transport stages.
- -
- Proposing concrete dosages, experimentally characterizing the mechanical properties corresponding to each proposal.
- -
- According to the obtained results and loads actuating on the artificial reef, determining a constructive strategy.
2.2. Methodology Employed in the CFD Model
3. Results and Discussion
3.1. Biological Analysis
3.2. Hydrodynamic Analysis
3.3. Dossage Proposals
3.4. Structural Analysis
3.5. Mechanical Properties of the Analyzed Dosage Proposals
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Worm, B.; Lotze, H. Marine biodiversity and climate change. In Climate Change, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Pörtner, H. Ocean systems. In Climate Change. Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects; Intergovernmental Panel on Climate Change (IPCC): Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Costanza, R. The ecological, economic, and social importance of the oceans. Ecol. Econ. 1999, 31, 199–213. [Google Scholar] [CrossRef]
- Sumaila, U.R.; Bellmann, C.; Tipping, A. Fishing for the future: An overview of challenges and opportunities. Mar. Policy 2016, 69, 173–180. [Google Scholar] [CrossRef]
- Visbeck, M.; Kronfeld-Goharani, U.; Neumann, B.; Rickels, W. Securing blue wealth: The need for a special sustainable development goal for the ocean and coasts. Mar. Policy 2014, 48, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Rickels, W.; Dovern, J.; Quaas, M. Beyond fisheries: Common-pool resource problems in oceanic resources and services. Glob. Environ. Chang. 2016, 40, 37–49. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the United Nations. 2017. Available online: http://www.fao.org/fishery/statistics/tuna-catches/es (accessed on 12 January 2022).
- Lotze, H.K.; Guest, H.; O’Leary, J.; Tuda, A.; Wallace, D. Public perceptions of marine threats and protection from around the world. Ocean Coast. Manag. 2018, 152, 14–22. [Google Scholar] [CrossRef]
- FAO. El Estado Mundial de la Pesca y la Acuicultura 2006. Available online: http://www.fao.org/3/a0699s/a0699s.pdf (accessed on 12 January 2022).
- Chatterjee, R. Incentives to fish sustainably. Environ. Sci. Technol. 2009, 43, 239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. El Estado Mundial de la Pesca y la Acuicultura 2016. Contribución a la Seguridad Alimentaria y la Nutrición Para Todos. 2016. Available online: http://www.fao.org/3/i5555s/i5555s.pdf (accessed on 12 January 2022).
- Bacher, C. Modelling the effect of food depletion on scallop growth in Sungo Bay (China). Aquat. Living Resour. 2003, 16, 10–24. [Google Scholar] [CrossRef]
- Carral, L.; Alvarez-Feal, J.C.; Tarrio-Saavedra, J.; Rodriguez Guerreiro, M.J.; Fraguela, J.A. Social interest in developing a green modular artificial reef structure in concrete for the ecosystems of the Galician rías. J. Clean. Prod. 2018, 172, 1881–1898. [Google Scholar] [CrossRef]
- Kim, D.; Woo, J.; Yoon, H.S.; Na, W.B. Efficiency, tranquillity and stability indices to evaluate performance in the artificial reef wake region. Ocean Eng. 2016, 122, 253–261. [Google Scholar] [CrossRef]
- Wang, G.; Wan, R.; Wang, X.; Zhao, F.; Lan, X.; Cheng, H.; Tang, W.; Guan, Q. Study on the influence of cut-opening ratio, cut-opening shape, and cut-opening number on the flow field of a cubic artificial reef. Ocean Eng. 2018, 162, 341–352. [Google Scholar] [CrossRef]
- Baine, M. Artificial reefs: A review of their design, application, management and performance. Ocean Coast. Manag. 2001, 44, 241–259. [Google Scholar] [CrossRef]
- Bohnsack, J.; Sutherland, D. Artificial reef research: A review with recommendations for future priorities. Bull. Mar. Sci. 1985, 37, 11–39. [Google Scholar]
- Collins, K.J.; Jensen, A.C.; Lockwood, A.P.M. Fishery enhancement reef building exercise. Chem. Ecol. 1990, 4, 179–187. [Google Scholar] [CrossRef]
- Godoy, E. Fish assemblages and environmental variables on an artificial reef north of Rio de Janeiro, Brazil. ICES J. Mar. Sci. 2002, 59, S138–S143. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Woo, J.; Yoon, H.S.; Na, W.B. Wake lengths and structural responses of Korean general artificial reefs. Ocean Eng. 2014, 92, 83–91. [Google Scholar] [CrossRef]
- Carral, L.; Lamas, M.I.; Rodriguez, M.J.; Vargas, A.; Alvarez, J.C.; Lopez, I.; Carballo, R. Configuration methodology for a green variety reef system (AR group) based on hydrodynamic criteria—Application to the Ría de Ares-Betanzos. Estuar. Coast. Shelf Sci. 2021, 252, 107301. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.; Cui, Y.; Dong, G. Experimental study of the flow field around cube artificial reef. Ocean Eng. 2012, 30, 103–130. [Google Scholar]
- Liu, T.L.; Su, D.T. Numerical analysis of the influence of reef arrangements on artificial reef flow fields. Ocean Eng. 2013, 74, 81–89. [Google Scholar] [CrossRef]
- Shao, W.; Liu, C.; Nie, H.; Zheng, D. Analysis of hydrodynamic characteristics and flow field around artificial reefs. Chin. J. Hydrodyn. 2014, 29, 580–585. [Google Scholar]
- Huang, Y.; Fu, D.; He, W. Three-dimensional numerical simulation on influence of cut-opening ratio of artificial reef on flow effect. J. Water Resour. Water Eng. 2014, 25, 39–43. [Google Scholar]
- Fu, D.; Luan, S.; Zhang, R.; Chen, Y. Two-way analysis of variance of effects of cut-opening ratio and surface shape facing flowing in artificial fish reefs on the flowing field. J. Dalian Ocean Univ. 2012, 27, 274–278. [Google Scholar]
- Perkol-Finkel, S.; Zilman, G.; Sella, I.; Miloh, T.; Benayahu, Y. Floating and fixed artificial habitats: Spatial and temporal patterns of benthic communities in a coral reef environment. Estuar. Coast. Shelf Sci. 2008, 77, 491–500. [Google Scholar] [CrossRef]
- Piedracoba, S.; Álvarez-Salgado, X.A.; Labarta, U.; Fernández-Reiriz, J.M.; Gómez, B.; Balseiro, C. Water flows through mussel rafts and their relationship with wind speed in a coastal embayment (Ría de Ares-Betanzos, NW Spain). Cont. Shelf Res. 2014, 75, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.V.; Roy, K.J.; Schiesser, H.G.; Shepherd, G.L.; Chave, K.E. Flux of suspended calcium carbonate (CaCO3), Fanning Island Lagoon. Pacific Sci. 1971, 25, 206–221. [Google Scholar]
- Aller, R.; Dodge, R. Animal-sediment relations in a tropical lagoon: Discovery Bay, Jamaica. J. Marit. Res. 1974, 32, 209–232. [Google Scholar]
- Loya, Y. Community structure and species diversity of hermatypic corals at Eliat, Red Sea. Mar. Biol. 1972, 13, 100–123. [Google Scholar] [CrossRef]
- Bak, R.P.M. Lethal and sublethal effects of dredging on reef corals. Mar. Pollut. Bull. 1978, 9, 14–16. [Google Scholar] [CrossRef]
- Carral Couce, L.; Rodriguez Guerreiro, M.; Fraguela Formoso, J.; Alvarez Feal, J.; Filgueira Vizoso, A. Green artificial reef proarr: Repopulation of coastal ecosystems and waste recycler of the maritime industries. In Proceedings of the 25th Pan-American Conference of Naval Engineering—COPINAVAL, Panama City, Panama, 16–19 October 2017; pp. 363–373. [Google Scholar]
- Carral, L.; Camba Fabal, C.; Lamas Galdo, M.I.; Rodríguez-Guerreiro, M.J.; Cartelle Barros, J.J. Assessment of the materials employed in green artificial reefs for the Galician estuaries in terms of circular economy. Int. J. Environ. Res. Public Health. 2020, 17, 8850. [Google Scholar] [CrossRef]
- Carral, L.; Cartelle Barros, J.J.; Carro Fidalgo, H.; Camba Fabal, C.; Munín Doce, A. Greenhouse gas emissions and energy consumption of coastal ecosystem enhancement programme through sustainable artificial reefs in Galicia. Int. J. Environ. Res. Public Health. 2021, 18, 1909. [Google Scholar] [CrossRef]
- Carral, L.; Alvarez-Feal, C.; Jesús Rodríguez-Guerreiro, M.; Vargas, A.; Arean, N.; Carballo, R. Methodology for positioning a group of green artificial reef based on a database management system, applied in the estuary of Ares-Betanzos (NW Iberian Peninsula). J. Clean. Prod. 2019, 233, 1047–1060. [Google Scholar] [CrossRef]
- Real Decreto 1247/2008, de 18 de julio, por el que se aprueba la instrucción de hormigón estructural (EHE-08). Available online: https://www.boe.es/eli/es/rd/2008/07/18/1247 (accessed on 12 January 2022).
- Rodríguez-Guerreiro, M.J.; Álvarez-Feal, J.C.; Fraguela-Formoso, J.A.; Castro-Santos, L.; Carral-Couce, L. Application of a general pattern of colonization of a ‘verde-PROARR’ artificial reef in the Ría de Ares-Betanzos (Spain). In Proceedings of the VI International Ship Design & Naval Engineering Congress (CIDIN) and XXVI Pan-American Congress of Naval Engineering, Maritime Transportation and Port Engineering—COPINAVAL, Cartagena de Indias, Colombia, 13–15 March 2019; 2019; pp. 365–372. [Google Scholar]
- Layman, C.A.; Allgeier, J.E. An ecosystem ecology perspective on artificial reef production. J. Appl. Ecol. 2020, 57, 2139–2148. [Google Scholar] [CrossRef]
- Fossheim, M.; Tande, K.S.; Semenova, T.; Timonin, A. Capelin larvae (Mallotus villosus) and community structure of zooplankton off the coast of northern Norway. J. Plankton Res. 2006, 28, 585–595. [Google Scholar] [CrossRef] [Green Version]
- Lishchenko, F.; Perales-Raya, C.; Barrett, C.; Oesterwind, D.; Power, A.M.; Larivain, A.; Laptikhovsky, V.; Karatza, A.; Badouvas, N.; Lishchenko, A.; et al. A review of recent studies on the life history and ecology of European cephalopods with emphasis on species with the greatest commercial fishery and culture potential. Fish. Res. 2021, 236, 105847. [Google Scholar] [CrossRef]
- Herrera, R. Dinámica de las comunidades bentónicas de los arrecifes artificiales de Arguineguín (Gran Canaria) y Lanzarote. 1998. Available online: https://dialnet.unirioja.es/servlet/tesis?codigo=425 (accessed on 12 January 2022).
- Franquet, F.; Brito, A. Especies de interés pesquero de Canarias. Consejería de Pesca y Transportes del Gobierno de Canarias. St. Cruz. Tenerife 1995, 101–108. [Google Scholar]
- Spanier, E. Artificial reefs off the Mediterranean Coast of Israel. In Artificial Reefs in European Seas; Springer: Dordrecht, The Netherlands, 2000; pp. 1–19. [Google Scholar]
- Camba, C.; Mier, J.L.; Carral, L.; Lamas, M.I.; Álvarez, J.C.; Díaz, A.M.; Tarrío, J. Erosive degradation study of concrete augmented by mussel shells for marine construction. J. Mar. Sci. Eng. 2021, 9, 1087. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, C.G.; Na, W.B.; Woo, J.; Kim, J.K. Physical and chemical deterioration of reinforced concrete reefs in Tongyeong coastal waters. Mar. Technol. Soc. J. 2008, 42, 110–118. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, C.G.; Na, W.B.; Kim, J.K. Chemical degradation characteristics of reinforced concrete reefs in South Korea. Ocean Eng. 2008, 35, 738–748. [Google Scholar] [CrossRef]
Mesh | v1 (m/s) | v2 (m/s) | v3 (m/s) | v4 (m/s) | v5 (m/s) |
---|---|---|---|---|---|
Mesh 1 (1,427,621 elements) | 0.096 | 0.074 | 0.065 | 0.057 | 0.052 |
Mesh 2 (2,197,762 elements) | 0.094 | 0.072 | 0.064 | 0.056 | 0.052 |
Mesh 3 (2,942,694 elements) | 0.094 | 0.072 | 0.064 | 0.056 | 0.052 |
SPECIES | HOLE SIZE | FUNCTION | HOLLOW | TIME | SOURCE |
---|---|---|---|---|---|
Cuttlefishes (Sepia officinalis) | 30–40 cm | Reproduction | Yes | January–June | [42] |
Octopuses (Octopus vulgaris) | 30–40 cm | Reproduction | No | May–November | [43] |
Squids (Loligo vulgaris) | 30–40 cm | Reproduction | No | - | [42,43] |
Lobsters (Paliinuros elephas) | Less than 30 cm | Habitat | No | - | [44] |
Crustaceans | Less than 20 cm | Habitat | No | - | [42] |
Components | Proposal 1 HA-30/B/20/IIIb Qb | Proposal 2 HA-25/P/20/IIa | Proposal 3 HM-20/P/20/I | Proposal 4 HM-20 |
---|---|---|---|---|
10–20 mm aggregates (kg) | 503 | 503 | 503 | 503 |
4–10 mm shell aggregates (kg) | 200 | 200 | 200 | 200 |
1–4 mm shell aggregates (kg) | 246 | 246 | 246 | 246 |
4–10 mm aggregates–limestone (kg) | 384 | 384 | 384 | 384 |
1–4 mm aggregates–silica (kg) | 384 | 384 | 384 | 384 |
TOTAL AGGREGATES (kg) | 1717 | 1717 | 1717 | 1717 |
CEMENT (kg) | 325 | 275 | 240 | 200 |
WATER (kg) | 160 | 160 | 130 | 120 |
Proposal 1 HA-30/B/20/IIIb Qb | Proposal 2 HA-25/P/20/IIa | Proposal 3 HM-20/P/20/I | Proposal 4 HM-20 | |
---|---|---|---|---|
Compressive strength | ||||
1 day (kN) | 177.93 | 129.36 | 83.00 | 0.10 |
1 day (N/mm2) | 10.05 | 7.3 | 4.7 | 0.0 |
2 days (kN) | 280.55 | 203.45 | 146.16 | 76.84 |
2 days (N/mm2) | 15.85 | 11.5 | 8.3 | 4.3 |
7 days (kN) | 399.13 | 302.25 | 223.69 | 118.86 |
7 days (N/mm2) | 22.6 | 17.1 | 12.7 | 6.7 |
28 days (kN) | 480.97 | 399.15 | 246.19 | 144.79 |
28 days (N/mm2) | 27.2 | 22.6 | 13.9 | 8.2 |
Compactness (%) (3) | 0.917 | 0.9313 | 0.901 | 0.9374 |
Real density (kg/m3) | 2227 | 2209 | 2173 | 2045 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galdo, M.I.L.; Guerreiro, M.J.R.; Vigo, J.L.; Rodriguez, I.A.; Lorenzo, R.V.; Couce, J.C.C.; Couce, L.C. Definition of an Artificial Reef Unit through Hydrodynamic and Structural (CFD and FEM) Models—Application to the Ares-Betanzos Estuary. J. Mar. Sci. Eng. 2022, 10, 230. https://doi.org/10.3390/jmse10020230
Galdo MIL, Guerreiro MJR, Vigo JL, Rodriguez IA, Lorenzo RV, Couce JCC, Couce LC. Definition of an Artificial Reef Unit through Hydrodynamic and Structural (CFD and FEM) Models—Application to the Ares-Betanzos Estuary. Journal of Marine Science and Engineering. 2022; 10(2):230. https://doi.org/10.3390/jmse10020230
Chicago/Turabian StyleGaldo, María Isabel Lamas, María Jesús Rodríguez Guerreiro, Javier Lamas Vigo, Ismael Ameneiros Rodriguez, Ricardo Veira Lorenzo, Juan Carlos Carral Couce, and Luis Carral Couce. 2022. "Definition of an Artificial Reef Unit through Hydrodynamic and Structural (CFD and FEM) Models—Application to the Ares-Betanzos Estuary" Journal of Marine Science and Engineering 10, no. 2: 230. https://doi.org/10.3390/jmse10020230
APA StyleGaldo, M. I. L., Guerreiro, M. J. R., Vigo, J. L., Rodriguez, I. A., Lorenzo, R. V., Couce, J. C. C., & Couce, L. C. (2022). Definition of an Artificial Reef Unit through Hydrodynamic and Structural (CFD and FEM) Models—Application to the Ares-Betanzos Estuary. Journal of Marine Science and Engineering, 10(2), 230. https://doi.org/10.3390/jmse10020230