Multi-Objective Optimization of a Hydrogen Hub for the Decarbonization of a Port Industrial Area
Abstract
:1. Introduction
2. Proposed Plant Description
3. Method
3.1. Model for the Proposed Energy System
3.1.1. Photovoltaic Power Plant
3.1.2. Electric Grid
3.1.3. Energy Management System
3.1.4. Electrolyzer
3.1.5. Compression Station
3.1.6. Hydrogen Storage Systems
3.1.7. Hydrogen Refueling Station
3.2. Objective Functions
4. Results and Discussion
4.1. Parameters and Assumptions of the Optimization Model
4.2. Main Results of the D&O Optimization
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- International Energy Agency (IEA). The Future of Hydrogen; International Energy Agency: Paris, France, 2019. [Google Scholar]
- European Commission. A Hydrogen Strategy for a Climate-Neutral Europe; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Italian Ministry for Economic Development National. Strategy for Hydrogen, Preliminary Guidelines; Italian Ministry for Economic Development National: Rome, Italy, 2020. [Google Scholar]
- Gutiérrez-Martín, F.; Amodio, L.; Pagano, M. Hydrogen production by water electrolysis and off-grid solar PV. Int. J. Hydrogen Energy 2021, 46, 29038–29048. [Google Scholar] [CrossRef]
- Kotowicz, J.; Jurczyk, M.; Węcel, D. The possibilities of cooperation between a hydrogen generator and a wind farm. Int. J. Hydrogen Energy 2021, 46, 7047–7059. [Google Scholar] [CrossRef]
- Kovač, A.; Paranos, M.; Marciuš, D. Hydrogen in energy transition: A review. Int. J. Hydrogen Energy 2021, 46, 10016–10035. [Google Scholar] [CrossRef]
- Sasiain, A.; Rechberger, K.; Spanlang, A.; Kofler, I.; Wolfmeir, H.; Harris, C.; Bürgler, T. Green Hydrogen as Decarbonization Element for the Steel Industry. BHM Berg- und Hüttenmännische Monatshefte 2020, 165, 232–236. [Google Scholar] [CrossRef]
- Bhaskar, A.; Assadi, M.; Somehsaraei, H.N. Decarbonization of the Iron and Steel Industry with Direct Reduction of Iron Ore with Green Hydrogen. Energies 2020, 13, 758. [Google Scholar] [CrossRef] [Green Version]
- Calise, F.; D’Accadia, M.D.; Santarelli, M.; Lanzini, A.; Ferrero, D. Solar Hydrogen Production; Accademic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- IRENA. Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.5⁰C Climate Goal; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2020. [Google Scholar]
- Reddi, K.; Elgowainy, A.; Rustagi, N.; Gupta, E. Impact of hydrogen refueling configurations and market parameters on the refueling cost of hydrogen. Int. J. Hydrogen Energy 2017, 42, 21855–21865. [Google Scholar] [CrossRef]
- Minutillo, M.; Perna, A.; Forcina, A.; Di Micco, S.; Jannelli, E. Analyzing the levelized cost of hydrogen in refueling stations with on-site hydrogen production via water electrolysis in the Italian scenario. Int. J. Hydrogen Energy 2021, 46, 13667–13677. [Google Scholar] [CrossRef]
- Castellanos, J.G.; Walker, M.; Poggio, D.; Pourkashanian, M.; Nimmo, W. Modelling an off-grid integrated renewable energy system for rural electrification in India using photovoltaics and anaerobic digestion. Renew. Energy 2015, 74, 390–398. [Google Scholar] [CrossRef] [Green Version]
- Loong, Y.T.; Dahari, M.; Yap, H.J.; Chong, H.Y. Development of a system configuration for a solar powered hydrogen facility using fuzzy logic control. J. Zhejiang Univ. Sci. A 2013, 14, 822–834. [Google Scholar] [CrossRef] [Green Version]
- Ito, K.; Yokoyama, R.; Akagi, S.; Yamaguchi, T.; Matsumoto, Y. Optimal Operational Planning of a Gas Turbine Combined Heat and Power Plant Based on the Mixed-Integer Programming. IFAC Proc. Vol. 1988, 21, 371–377. [Google Scholar] [CrossRef]
- Rech, S. Smart Energy Systems: Guidelines for Modelling and Optimizing a Fleet of Units of Different Configurations. Energies 2019, 12, 1320. [Google Scholar] [CrossRef] [Green Version]
- Sustainable Ports in the Adriatic-Ionian Region (SUPAIR) Website. Action Plan for a Sustainable and Low carbon Port of Trieste. Available online: https://supair.adrioninterreg.eu/library/7-action-plans-for-sustainable-and-low-carbon-ports (accessed on 24 January 2022).
- van Biert, L.; Godjevac, M.; Visser, K.; Aravind, P.V. A review of fuel cell systems for maritime applications. J. Power Sources 2016, 327, 345–364. [Google Scholar] [CrossRef] [Green Version]
- Perčić, M.; Vladimir, N.; Jovanović, I.; Koričan, M. Application of fuel cells with zero-carbon fuels in short-sea shipping. Appl. Energy 2022, 309, 118463. [Google Scholar] [CrossRef]
- Alamoush, A.S.; Ballini, F.; Ölçer, A.I. Ports’ technical and operational measures to reduce greenhouse gas emission and improve energy efficiency: A review. Mar. Pollut. Bull. 2020, 160, 111508. [Google Scholar] [CrossRef] [PubMed]
- Sifakis, N.; Tsoutsos, T. Planning zero-emissions ports through the nearly zero energy port concept. J. Clean. Prod. 2021, 286, 125448. [Google Scholar] [CrossRef]
- SAE International SAE J2601: Fueling Protocols for Light Duty Gaseous Hydrogen Surface Vehicles. Available online: https://www.sae.org/standards/content/j2601_201407/ (accessed on 24 February 2021).
- UNI-10349; Italian Rules to Size Power Systems Based on Solar Energy. Ente Nazionale Italiano di Normazione: Milano, Italy, 2016.
- Bell, I.H.; Wronski, J.; Quoilin, S.; Lemort, V. Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop. Ind. Eng. Chem. Res. 2014, 53, 2498–2508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coolprop. Available online: http://www.coolprop.org/ (accessed on 26 October 2021).
- Gurobi Optimization. Available online: https://www.gurobi.com/ (accessed on 24 October 2021).
- Han, J.H.; Ryu, J.H.; Lee, I.B. Multi-objective optimization design of hydrogen infrastructures simultaneously considering economic cost, safety and CO2 emission. Chem. Eng. Res. Des. 2013, 91, 1427–1439. [Google Scholar] [CrossRef]
- European Countries with a Carbon Tax, 2021|Tax Foundation. Available online: https://taxfoundation.org/carbon-taxes-in-europe-2021/ (accessed on 24 January 2022).
- OECD website. OECD Effective Carbon Rates. Available online: https://stats.oecd.org/Index.aspx?DataSetCode=ECR (accessed on 24 January 2022).
- IRENA. Future of Solar Photovoltaic: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects (A Global Energy Transformation: Paper); Interreg North Sea Region: Vibork, Denmark, 2019; ISBN 9789292601553. [Google Scholar]
- Parks, G.; Boyd, R.; Cornish, J.; Remick, R.; Review Panel, I. Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs: Systems Integration. 2020. Available online: https://www.irena.org/publications/2019/Nov/Future-of-Solar-Photovoltaic (accessed on 24 January 2022).
- Gestore Mercati Energetici (Italian Energy Markets Manager). Available online: https://www.mercatoelettrico.org/it/ (accessed on 18 September 2021).
- International Energy Agency (IEA) Tracking Transport 2020. Available online: https://www.iea.org/reports/tracking-transport-2020 (accessed on 26 October 2021).
- Emission Standards—Europe: Cars and Light Trucks. Available online: https://dieselnet.com/standards/eu/ld.php (accessed on 26 October 2021).
- VTT Research Industrial Oxygen Demand in Finland. Available online: https://www.vttresearch.com/sites/default/files/julkaisut/muut/2017/VTT-R-06563-17.pdf (accessed on 18 February 2021).
Model Parameters | Value | Unit | Parameter Description | References |
---|---|---|---|---|
PV | ||||
24,000 | m2 | Max available surface for PV installation | Assumed | |
8 | kWP/m2 | PV power per square meter | [30] | |
0.2 | - | Average efficiency | [30] | |
0.95 | - | Inverter average efficiency | [30] | |
1000 | €/kWP | Investment cost | [30] | |
1.58 | % | Operation and maintenance cost | [30] | |
15 | years | PV lifetime | [30] | |
Electrolyzer | ||||
0.019 | kgH2/kW | Coefficient of proportionality | [1,10] | |
0.2 | - | Lower power load limit | [1,10] | |
1 | - | Upper power load limit | [1,10] | |
2000 | €/kW | Investment cost | [1,10] | |
2.00 | % | Operation and maintenance cost | [11,12] | |
15 | years | Electrolyzer lifetime | [1,10] | |
Compression station | ||||
0.2 | - | Lower load limit of LP compressor | Assumed | |
1 | - | Upper load limit of LP compressor | Assumed | |
0.2 | - | Lower load limit of HP compressor | Assumed | |
1 | - | Upper load limit of HP compressor | Assumed | |
1.4 | - | H2 specific heat ratio | Assumed | |
4.12 | H2 gas constant | Assumed | ||
25 | °C | H2 inlet temperature of LP/HP compressors | Assumed | |
300 | bar | H2 inlet pressure of LP compressor | Assumed | |
820 | bar | H2 inlet pressure of HP compressor | [11,12] | |
30 | bar | H2 outlet pressure of LP compressor | [1,10] | |
300 | bar | H2 outlet pressure of LP compressor | Assumed | |
98 | % | Mechanical efficiency | [11,12] | |
80 | % | Isentropic efficiency | [11,12] | |
96 | % | Electric efficiency of the engine | [11,12] | |
7000 | €/kW | Investment cost of LP compressor | [11,12] | |
7000 | €/kW | Investment cost of HP compressor | [11,12] | |
8.00 | % | Operation and maintenance cost of LP compressor | [11,12] | |
8.00 | % | Operation and maintenance cost of HP compressor | [11,12] | |
20 | years | LP compressor lifetime | [11,12] | |
20 | years | HP compressor lifetime | [11,12] | |
H2 storage systems | ||||
1500 | €/kgH2 | Investment cost of the low-pressure H2 storage | [1,10] | |
1500 | €/kgH2 | Investment cost of the high-pressure H2 storage | [1,10] | |
0 | % | Operation and maintenance cost of the LP H2 storage | [11,12] | |
0 | % | Operation and maintenance cost of the HP H2 storage | [11,12] | |
25 | years | LP H2 storage lifetime | [1,10] | |
25 | years | HP H2 storage lifetime | [1,10] | |
H2 refueling station | ||||
5 | kg | Total mass capacity of the onboard H2 tank | [11,12] | |
30 | km/day | Distance covered in one day per car | Assumed | |
0.01 | kgH2/km | H2 consumption per km | Assumed | |
80 | % | Max H2 consumption before refueling | Assumed | |
5 | min | Refueling time | [11,12] | |
60 | gH2/s | H2 mass flow rate | [22] | |
1 | - | Coefficient of performance | [12] | |
270,000 | €/unit | Investment cost of the dispenser | [31] | |
5374 | €/kW | Investment cost of the cooling system | [11,12] | |
3.00 | % | Operation and maintenance cost of the dispenser | [11,12] | |
3.00 | % | Operation and maintenance cost of the cooling system | [11,12] | |
10 | years | Dispenser lifetime | [11,12] | |
15 | years | Cooling system lifetime | [11,12] | |
Others | ||||
0.12 | € | Cost of the electricity purchased from the grid | [32] | |
0.05 | € | Cost of the electricity sold to the grid | [32] | |
50 | €/tCO2,eq | Carbon tax | [28,29] | |
25 | years | Plant lifetime | Assumed | |
5 | % | Nominal interest rate | Assumed |
Scenario | |||||||||
1 | 182 | 56 | 4.29 | - | 0 | - | 7.03 | 7.52 | 9.75 |
2 | 341 | 89 | 6.82 | 0.73 | 10 | 7 | 7.41 | 7.80 | 7.70 |
Scenario | |||||||||
1 | 500 | 56 | 4.29 | - | 0 | - | 7.61 | 8.04 | 8.58 |
1 | 1000 | 75 | 5.73 | - | 9 | - | 8.92 | 9.22 | 6.07 |
1 | 2000 | 89 | 6.81 | - | 23 | - | 11.55 | 11.75 | 4.04 |
1 | 3000 | 100 | 7.69 | - | 23 | - | 14.08 | 14.21 | 2.58 |
2 | 500 | 93 | 7.13 | 0.85 | 11 | 6 | 7.66 | 8.00 | 6.74 |
2 | 1000 | 103 | 7.88 | 0.85 | 16 | 6 | 8.65 | 8.90 | 5.00 |
2 | 2000 | 121 | 9.24 | 0.85 | 25 | 6 | 10.81 | 10.95 | 2.75 |
2 | 3000 | 119 | 9.18 | 0.85 | 26 | 6 | 12.94 | 13.07 | 2.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pivetta, D.; Dall’Armi, C.; Taccani, R. Multi-Objective Optimization of a Hydrogen Hub for the Decarbonization of a Port Industrial Area. J. Mar. Sci. Eng. 2022, 10, 231. https://doi.org/10.3390/jmse10020231
Pivetta D, Dall’Armi C, Taccani R. Multi-Objective Optimization of a Hydrogen Hub for the Decarbonization of a Port Industrial Area. Journal of Marine Science and Engineering. 2022; 10(2):231. https://doi.org/10.3390/jmse10020231
Chicago/Turabian StylePivetta, Davide, Chiara Dall’Armi, and Rodolfo Taccani. 2022. "Multi-Objective Optimization of a Hydrogen Hub for the Decarbonization of a Port Industrial Area" Journal of Marine Science and Engineering 10, no. 2: 231. https://doi.org/10.3390/jmse10020231
APA StylePivetta, D., Dall’Armi, C., & Taccani, R. (2022). Multi-Objective Optimization of a Hydrogen Hub for the Decarbonization of a Port Industrial Area. Journal of Marine Science and Engineering, 10(2), 231. https://doi.org/10.3390/jmse10020231