Dynamics of Water, Salt, and Nutrients Exchange at the Inlets of Three Coastal Lagoons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Equipment and Data Collection
2.3. Estimation of the Water, Salt, and Nutrient Fluxes
2.4. Residence Time Estimation
2.5. Exchange Dynamics
3. Results
3.1. Water Flow and Water Properties Variability
3.1.1. Agiasma Lagoon
3.1.2. Porto Lagos lagoon
3.1.3. Xirolimni Lagoon
3.2. Residual currents
3.3. Tidal Prisms and Residence time
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
List of Symbols | ||
Symbols | Explanation | Units |
Q | instantaneous rate of water transport per unit of width through a water column | m3/(ms) |
H | mean depth of the lagoon | m |
U | longitudinal velocity | m/s |
u | longitudinal velocity in the x direction | m/s |
v | longitudinal velocity in the y direction | m/s |
tidally averaged residual rate of water transport | m2/s | |
tidally averaged depth of the lagoon | m | |
V1 | depth-averaged Eulerian residual transport | m/s |
V2 | the mass transport Stokes drift transport | m/s |
QS | instantaneous transport rate of salt | g/(ms) |
S | water salinity | psu |
Vs,1 | depth-averaged residual flux of salt due to the residual transport of water | g/(m2s) |
Vs,2 | depth-averaged residual flux due to tidal pumping | g/(m2s) |
Vs,3 | depth-averaged residual flux of salt due to the vertical shear between the tidal and residual currents | g/(m2s) |
deviations of velocity from the depth averaged value | m/s | |
deviations of salinity from the depth averaged value | psu | |
FloodVolume | tidal prism during flood period per meter of width | m3/m |
EbbVolume | tidal prism during ebb period per meter of width | m3/m |
PrismVolume | lagoon tidal prism | m3/m |
T | tidal period | s |
VPrism | lagoon tidal prism volume | m3 |
VLagoon | volume of the lagoon | m3 |
SHW | salinity in the lagoon at high tide | psu |
SOC | salinity of the open sea adjacent to the lagoon | psu |
VR | freshwater volume entering the lagoon during a tidal cycle | m3 |
f | average fraction of fresh water by volume | |
QR | fresh water inflow to the tidal flow | m3/m |
θ | flood and ebb flow lags because of the presence of river flow | |
b | return flow factor | |
RTide | barotropic tidal exchange rate | 1/s |
μ | retention coefficient | |
VChannel, | volume of the entrance canal | m3 |
tTide | dominant tidal period | s |
RBaroclinic | baroclinic tidal exchange | 1/s |
Ac | cross-section area of the channel | m2 |
Δρ | density difference between the two ends of the entrance canal | kg/m3 |
ρ | mean water density | kg/m3 |
hChannel | average depth of the channel and | m |
g | acceleration due to gravity | m/s2 |
Rwind | wind-induced exchange | 1/s |
tWind | period of wind forcing | s |
Vwind | volume exchange produced by wind | m3 |
Δη | elevation difference between the two ends of the entrance canal | m |
β | fraction of wind stress that is balanced by pressure gradient | |
CW | wind drag coefficient | |
ρair | air density | kg/m3 |
L, | length of the lagoon basin | m |
U | longitudinal component of wind vector | m/s |
W | wind speed | m/s |
References
- Newton, A.; Brito, A.C.; Icely, J.D.; Derolez, V.; Clara, I.; Angus, S.; Schernewski, G.; Inácio, M.; Lillebø, A.I.; Sousa, A.I.; et al. Assessing, quantifying and valuing the ecosystem services of coastal lagoons. J. Nat. Conserv. 2018, 44, 50–65. [Google Scholar] [CrossRef]
- Pérez-Ruzafa, A.; Morkune, R.; Marcos, C.; Pérez-Ruzafa, I.M.; Razinkovas-Baziukas, A. Can an oligotrophic coastal lagoon support high biological productivity? Sources and pathways of primary production. Mar. Environ. Res. 2020, 153, 104824. [Google Scholar] [CrossRef]
- Busch, M.; La Notte, A.; Laporte, V.; Erhard, M. Potentials of quantitative and qualitative approaches to assessing ecosystem services. Ecol. Indic. 2012, 21, 89–103. [Google Scholar] [CrossRef]
- Enjolras, G.; Boisson, J.-M. Valuing lagoons using a meta-analytical approach: Methodological and practical issues. J. Environ. Plan. Manag. 2010, 53, 1031–1049. [Google Scholar] [CrossRef]
- Imaz-Lamadrid, M.A.; Wurl, J.; Ramos-Velázquez, E. Future of Coastal Lagoons in Arid Zones under Climate Change and Anthropogenic Pressure. A Case Study from San Jose Lagoon, Mexico. Resources 2019, 8, 57. [Google Scholar] [CrossRef] [Green Version]
- Koutrakis, E.; Sylaios, G.; Kamidis, N.; Markou, D.; Sapounidis, A. Fish fauna recovery in a newly re-flooded Mediterranean coastal lagoon. Estuar. Coast. Shelf Sci. 2009, 83, 505–515. [Google Scholar] [CrossRef]
- Gačić, M.; Kovačević, V.; Mazzoldi, A.; Paduan, J.; Arena, F.; Mosquera, I.M.; Gelsi, G.; Arcari, G. Measuring water exchange between the Venetian Lagoon and the open sea. Eos Trans. Am. Geophys. Union 2002, 83, 217–222. [Google Scholar] [CrossRef]
- de Brito, A.N., Jr.; Fragoso, C.R., Jr.; Larson, M. Tidal exchange in a choked coastal lagoon: A study of Mundaú Lagoon in northeastern Brazil. Reg. Stud. Mar. Sci. 2018, 17, 133–142. [Google Scholar] [CrossRef]
- Sylaios, G.K.; Tsihrintzis, V.A.; Akratos, C.; Haralambidou, K. Quantification of Water, Salt and Nutrient Exchange Processes at the Mouth of A mediterranean Coastal Lagoon. Environ. Monit. Assess. 2006, 119, 275–301. [Google Scholar] [CrossRef] [PubMed]
- Kjerfve, B.; Magill, K.E. Geographic and hydrodynamic characteristics of shallow coastal lagoons. Mar. Geol. 1989, 88, 187–199. [Google Scholar] [CrossRef]
- Tamborski, J.; van Beek, P.; Rodellas, V.; Monnin, C.; Bergsma, E.; Stieglitz, T.; Heilbrun, C.; Cochran, J.K.; Charbonnier, C.; Anschutz, P.; et al. Temporal variability of lagoon–sea water exchange and seawater circulation through a Mediterranean barrier beach. Limnol. Oceanogr. 2019, 64, 2059–2080. [Google Scholar] [CrossRef]
- Ferrarin, C.; Umgiesser, G.; Roland, A.; Bajo, M.; De Pascalis, F.; Ghezzo, M.; Scroccaro, I. Sediment dynamics and budget in a microtidal lagoon—A numerical investigation. Mar. Geol. 2016, 381, 163–174. [Google Scholar] [CrossRef]
- Takeoka, H. Exchange and transport time scales in the Seto Inland Sea. Cont. Shelf Res. 1984, 3, 327–341. [Google Scholar] [CrossRef]
- Cucco, A.; Umgiesser, G. Modeling the Venice Lagoon residence time. Ecol. Model. 2006, 193, 34–51. [Google Scholar] [CrossRef]
- Soria, J.; Vera-Herrera, L.; Calvo, S.; Romo, S.; Vicente, E.; Sahuquillo, M.; Sòria-Perpinyà, X. Residence Time Analysis in the Albufera of Valencia, a Mediterranean Coastal Lagoon, Spain. Hydrology 2021, 8, 37. [Google Scholar] [CrossRef]
- Sanford Lawrence, P.; Boicourt William, C.; Rives Stephen, R. Model for Estimating Tidal Flushing of Small Embayments. J. Waterw. Port Coast. Ocean. Eng. 1992, 118, 635–654. [Google Scholar] [CrossRef]
- Luketina, D. Simple Tidal Prism Models Revisited. Estuar. Coast. Shelf Sci. 1998, 46, 77–84. [Google Scholar] [CrossRef]
- Sylaios, G.K.; Tsihrintzis, V.A.; Akratos, C.; Haralambidou, K. Monitoring and Analysis of Water, Salt and Nutrient Fluxes at the Mouth of a Lagoon. Water Air Soil Pollut. Focus 2004, 4, 111–125. [Google Scholar] [CrossRef]
- Sylaios, G.; Theocharis, V. Hydrology and Nutrient Enrichment at Two Coastal Lagoon Systems in Northern Greece. Water Resour. Manag. 2002, 16, 171–196. [Google Scholar] [CrossRef]
- Tsihrintzis, V.A.; Sylaios, G.K.; Sidiropoulou, M.; Koutrakis, E.T. Hydrodynamic modeling and management alternatives in a Mediterranean, fishery exploited, coastal lagoon. Aquac. Eng. 2007, 36, 310–324. [Google Scholar] [CrossRef]
- Zoidou, M.; Sylaios, G. Ecological risk assessment of heavy metals in the sediments of a Mediterranean lagoon complex. J. Environ. Health Sci. Eng. 2021, 19, 1835–1849. [Google Scholar] [CrossRef] [PubMed]
- Apha Awwa, W. Standard methods for the examination of water and wastewater, 20th ed.; American Public Health Association; American Water Work Association; Water Environment Federation: Washington, DC, USA, 1998. [Google Scholar]
- Uncles, R.J.; Jordan, M.B. Residual fluxes of water and salt at two stations in the Severn Estuary. Estuar. Coast. Mar. Sci. 1979, 9, 287–302. [Google Scholar] [CrossRef]
- Dyer, K.R.; Lasta King, H. The Residual Water Flow through the Solent, South England. Geophys. J. Int. 1975, 42, 97–106. [Google Scholar] [CrossRef]
- Hunter, J.R. An investigation into the circulation of the Irish Sea; 72-1; University College of North Wales, Marine Science Laboratories: Menai Bridge, UK, 1972; p. 166. [Google Scholar]
- Tee, K.T. Tide-Induced Residual Current—Verification of a Numerical Model. J. Phys. Oceanogr. 1977, 7, 396–402. [Google Scholar] [CrossRef] [Green Version]
- Uncles, R.J.; Elliott, R.C.A.; Weston, S.A.; Pilgrim, D.A.; Ackroyd, D.R.; McMillan, D.J.; Lynn, N.M. Synoptic Observations of Salinity, Suspended Sediment and Vertical Current Structure in a Partly Mixed Estuary. In Physics of Shallow Estuaries and Bays; van de Kreeke, J., Ed.; American Geophysical Union: Washington, DC, USA, 1986; pp. 58–70. [Google Scholar] [CrossRef]
- Hearn, C.J.; Robson, B.J. On the effects of wind and tides on the hydrodynamics of a shallow mediterranean estuary. Cont. Shelf Res. 2002, 22, 2655–2672. [Google Scholar] [CrossRef]
- Hoque, M.A.; Ahad, B.G.; Saleh, E. Hydrodynamics and suspended sediment transport at tidal inlets of Salut Mengkabong Lagoon, Sabah, Malaysia. Int. J. Sediment Res. 2010, 25, 399–410. [Google Scholar] [CrossRef]
- Maicu, F.; Abdellaoui, B.; Bajo, M.; Chair, A.; Hilmi, K.; Umgiesser, G. Modelling the water dynamics of a tidal lagoon: The impact of human intervention in the Nador Lagoon (Morocco). Cont. Shelf Res. 2021, 228, 104535. [Google Scholar] [CrossRef]
- Aubrey, D.G.; Speer, P.E. A study of non-linear tidal propagation in shallow inlet/estuarine systems Part I: Observations. Estuar. Coast. Shelf Sci. 1985, 21, 185–205. [Google Scholar] [CrossRef]
- Ranasinghe, R.; Pattiaratchi, C. Tidal inlet velocity asymmetry in diurnal regimes. Cont. Shelf Res. 2000, 20, 2347–2366. [Google Scholar] [CrossRef]
- Fitzgerald, D.M.; Nummedal, D. Response characteristics of an ebb-dominated tidal inlet channel. J. Sediment. Res. 1983, 53, 833–845. [Google Scholar] [CrossRef]
- Smith, N.P. Chapter 4 Water, Salt and Heat Balance of Coastal Lagoons. In Elsevier Oceanography Series; Kjerfve, B., Ed.; Elsevier: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Mendes, J.; Ruela, R.; Picado, A.; Pinheiro, J.P.; Ribeiro, A.S.; Pereira, H.; Dias, J.M. Modeling Dynamic Processes of Mondego Estuary and Óbidos Lagoon Using Delft3D. J. Mar. Sci. Eng. 2021, 9, 91. [Google Scholar] [CrossRef]
Agiasma | Porto Lagos | Xirolimni | |
---|---|---|---|
Main Basin | |||
Geographic coordinates | 24.612° E, 40.853° N: 24.625° E,40.913° N | 25.133° E, 40.979° N: 25.168° E, 41.011° N | 25.138° E, 40.951° N: 25.158° E, 40.968° N |
Mean depth (m) | 0.50 | 0.52 | 0.52 |
Effective mean depth (m) | 0.59 | 0.68 | 1.13 |
Perimeter (km) | 24.3 | 20.7 | 6.4 |
Area (km2) | 3.33 | 3.75 | 1.76 |
Volume (km3) | 1.66 × 10−3 | 1.37 × 10−3 | 9.00 × 10−4 |
Minimum depth (m) | 0.10 | 0.10 | 0.10 |
Maximum depth (m) | 4.45 | 4.33 | 4.00 |
Inlet A | |||
Length (m) | 182.0 | 1100.0 | 318.5 |
Mean width (m) | 19.5 | 13.2 | 16.1 |
Mean depth (m) | 0.50 | 0.78 | 0.26 |
Inlet B | |||
Length (m) | 418.6 | 37.0 | - |
Mean width (m) | 25.7 | 8.70 | - |
Mean depth (m) | 0.54 | 0.26 | - |
Parameters | Methods |
---|---|
Nitrates | Cadmium reduction method (4500-NO3- E) [22] |
Nitrites | Colorimetric method (4500-NO2- B) [22] |
Total phosphorus (TP) | Ascorbic acid method (4500-P B and E) [22] |
O-phosphates | Ascorbic acid method (4500-P E) [22] |
Chlorophyll-a (Chl-a) | Spectrophotometric determination (10200 H) [22] |
Tidal Parameter | 1 | 2 | 3 |
---|---|---|---|
Mean wind speed (m/s) | 1.00 | 1.12 | 1.26 |
Wind direction | N | S-SW | N-NE |
Precipitation (mm) | 0.00 | 0.00 | 0.00 |
Average depth (m) | 0.63 | 0.62 | 0.59 |
Tidal phase | S | S | S |
Tidal range (m) | 0.11 | 0.06 | 0.11 |
Tidal duration (min) | 790 | 635 | 820 |
Ebb duration (min) | 450 | 350 | 480 |
Time to max ebb (min) | 270 | 110 | 295 |
Max ebb (m/s) | 0.20 | 0.18 | 0.20 |
Mean ebb (m/s) | 0.14 | 0.15 | 0.13 |
Flood duration (min) | 340 | 285 | 340 |
Time to max flood (min) | 80 | 50 | 135 |
Max flood (m/s) | 0.05 | 0.04 | 0.03 |
Mean flood (m/s) | 0.02 | 0.01 | 0.01 |
Tidal mean (m/s) | −0.067 | −0.079 | −0.073 |
Tidal Cycle | Tidal Phase | Parameter | ||||
---|---|---|---|---|---|---|
DIN (μg/L) | Total Phosphorus (μg/L) | Phosphates (μg/L) | Chlorophyll-a (μg/L) | |||
Agiasma | ||||||
29 September 2016 | S | Ebb | 107.22 | 66.40 | 8.10 | 2.39 |
Flood | 95.94 | 78.26 | 3.54 | 2.00 | ||
30 September 2016 | S | Ebb | 83.27 | 39.49 | 4.81 | 2.49 |
Flood | 63.81 | 42.67 | 5.80 | 3.07 | ||
Porto Lagos | ||||||
26 June 2018 | S | Ebb | 259.97 | 61.76 | 0.00 | 4.17 |
Flood | 202.50 | 41.57 | 0.00 | 1.36 | ||
06 July 2018 | N | Ebb | 162.29 | 72.57 | 0.00 | 7.58 |
Flood | 205.86 | 95.65 | 0.00 | 20.40 | ||
10 July 2018 | N | Ebb | 104.91 | 96.37 | 0.00 | 36.28 |
Flood | 128.55 | 178.56 | 1.35 | 28.57 | ||
Xirolimni | ||||||
19 July 2016 | S | Ebb | 107.41 | 82.92 | 53.26 | 0.88 |
Flood | 92.67 | 49.66 | 0.99 | 0.65 | ||
26 July 2016 | N | Ebb | 190.75 | 42.03 | 28.04 | 1.39 |
Flood | 123.52 | 21.06 | 14.46 | 2.45 | ||
30 April 2018 | S | Ebb | 82.73 | 21.38 | 0.00 | 0.05 |
Flood | 79.40 | 13.58 | 2.94 | 0.15 | ||
01 May 2018 | S | Ebb | 139.55 | 55.27 | 0.00 | 0.14 |
Flood | 281.79 | 64.64 | 9.74 | 0.66 | ||
01 May 2018 | S | Ebb | 247.56 | 190.10 | 5.13 | 0.24 |
Flood | 292.12 | 101.41 | 27.04 | 0.14 |
Tidal parameter | 1 | 2 | 3 |
---|---|---|---|
Mean wind speed (m/s) | 5.40 | 1.84 | 1.80 |
Wind direction | NE | N | N-NE |
Precipitation (mm) | 0.01 | 0.00 | 0.00 |
Average depth (m) | 0.49 | 0.20 | 0.29 |
Tidal phase | S | N | N |
Tidal range (m) | 0.11 | 0.11 | 0.07 |
850 | 710 | 620 | |
480 | 295 | 215 | |
175 | 135 | 145 | |
0.27 | 0.11 | 0.08 | |
Mean ebb (m/s) | 0.10 | 0.06 | 0.04 |
370 | 415 | 405 | |
185 | 255 | 245 | |
0.14 | 0.08 | 0.06 | |
Mean flood (m/s) | 0.10 | 0.05 | 0.03 |
Tidal mean (m/s) | –0.016 | 0.003 | 0.007 |
Tidal Parameter | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean wind speed (m/s) | 3.91 | 4.07 | 3.45 | 4.38 | 5.68 | 3.18 | 4.03 | 4.70 | 5.44 | 4.73 | 3.33 | 2.43 | 1.46 | 2.70 | 2.29 |
Wind direction | N-NE | NE | NE | NE | NE | N-NE | N-NE | NE-E | NE | NE-E | NE | S-SW | E | SW | NE-E |
Precipitation (mm) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Average depth (m) | 0.53 | 0.55 | 0.56 | 0.52 | 0.58 | 0.56 | 0.41 | 0.42 | 0.41 | 0.41 | 0.42 | 0.41 | 0.42 | 0.42 | 0.43 |
Tidal phase | S | S | S | N | N | N | S | S | S | S | S | S | S | S | S |
Tidal range (m) | 0.10 | 0.09 | 0.09 | 0.05 | 0.10 | 0.05 | 0.09 | 0.10 | 0.05 | 0.09 | 0.05 | 0.05 | 0.07 | 0.06 | 0.07 |
835 | 705 | 770 | 765 | 710 | 730 | 715 | 775 | 745 | 780 | 755 | 670 | 730 | 700 | 755 | |
435 | 485 | 405 | 325 | 290 | 315 | 265 | 355 | 345 | 505 | 480 | 475 | 410 | 415 | 345 | |
125 | 200 | 280 | 85 | 110 | 30 | 115 | 85 | 165 | 105 | 230 | 240 | 250 | 55 | 70 | |
0.25 | 0.31 | 0.22 | 0.23 | 0.20 | 0.20 | 0.22 | 0.22 | 0.21 | 0.24 | 0.43 | 0.24 | 0.33 | 0.17 | 0.22 | |
Mean ebb (m/s) | 0.17 | 0.21 | 0.14 | 0.16 | 0.12 | 0.05 | 0.15 | 0.06 | 0.11 | 0.06 | 0.15 | 0.09 | 0.23 | 0.01 | 0.12 |
400 | 220 | 365 | 440 | 420 | 415 | 450 | 420 | 400 | 275 | 275 | 195 | 320 | 285 | 410 | |
100 | 95 | 170 | 130 | 155 | 105 | 205 | 145 | 165 | 125 | 115 | 90 | 90 | 125 | 200 | |
0.11 | 0.07 | 0.10 | 0.13 | 0.13 | 0.13 | 0.14 | 0.14 | 0.14 | 0.11 | 0.10 | 0.10 | 0.12 | 0.10 | 0.14 | |
Mean flood (m/s) | 0.08 | 0.03 | 0.07 | 0.09 | 0.07 | 0.09 | 0.09 | 0.10 | 0.08 | 0.07 | 0.07 | 0.05 | 0.08 | 0.07 | 0.09 |
Tidal mean | −0.053 | −0.132 | −0.040 | −0.014 | −0.007 | 0.031 | 0.000 | 0.026 | −0.012 | −0.016 | −0.073 | −0.046 | −0.094 | −0.022 | −0.002 |
Date | Tidal Phase | Water Residual Fluxes | Salt Residual Fluxes | ||||
---|---|---|---|---|---|---|---|
V1 (m/s) | V2 (m/s) | <Q> (m3(s m)) | Vs,1 (g/(m2 s)) | Vs,2 (g/(m2 s)) | <Qs> (g/(m2 s)) | ||
Agiasma | |||||||
29 September 2016 | S | −0.067 | 0.005 | −0.040 | −1.976 | 0.234 | −1.105 |
30 September 2016 | S | −0.079 | 0.002 | −0.048 | −2.410 | 0.167 | −1.402 |
30 September 2016 | S | −0.073 | 0.004 | −0.040 | −2.212 | 0.195 | −1.187 |
mean | 0.073 | 0.004 | 0.043 | 2.199 | 0.199 | 1.231 | |
Porto Lagos | |||||||
26 June 2018 | S | −0.016 | −0.002 | −0.009 | −0.678 | 0.099 | −0.284 |
06 July 2018 | N | 0.003 | 0.005 | 0.002 | 0.273 | 0.022 | 0.059 |
10 July 2018 | N | 0.008 | 0.0005 | 0.002 | 0.274 | 0.0001 | 0.079 |
mean | 0.009 | 0.003 | 0.004 | 0.408 | 0.040 | 0.141 | |
Xirolimni | |||||||
19 July 2016 | S | −0.053 | 0.001 | −0.028 | −1.921 | 0.314 | −0.855 |
20 July 2016 | S | −0.132 | −0.007 | −0.076 | −4.937 | 0.081 | −2.658 |
20 July 2016 | S | −0.040 | 0.0001 | −0.022 | −1.523 | 0.310 | −0.677 |
26 July 2016 | N | −0.014 | −0.003 | −0.009 | −0.664 | 0.359 | −0.159 |
27 July 2016 | N | −0.007 | −0.002 | −0.005 | −0.331 | 0.281 | −0.029 |
27 July 2016 | N | 0.031 | −0.001 | 0.017 | 1.148 | 0.202 | 0.753 |
27 April 2018 | S | 0.0003 | −0.006 | −0.002 | −0.212 | 0.030 | −0.074 |
28 April 2018 | S | 0.026 | 0.005 | 0.013 | 1.042 | 0.024 | 0.446 |
28 April 2018 | S | −0.012 | −0.002 | −0.005 | −0.435 | 0.013 | −0.171 |
29 April 2018 | S | −0.016 | 0.003 | −0.005 | −0.424 | 0.023 | −0.163 |
29 April 2018 | S | −0.072 | −0.001 | −0.031 | −2.298 | −0.012 | −0.962 |
30 April 2018 | S | −0.046 | 0.002 | −0.018 | −1.369 | 0.004 | −0.554 |
30 April 2018 | S | −0.094 | −0.003 | −0.041 | −2.991 | 0.030 | −1.245 |
01 May 2018 | S | 0.022 | 0.001 | 0.010 | 0.705 | 0.003 | 0.294 |
01 May 2018 | S | −0.002 | −0.004 | −0.003 | −0.183 | 0.011 | −0.073 |
mean | 0.038 | 0.003 | 0.019 | 1.346 | 0.113 | 0.608 |
Date | Tidal Phase | Nitrogen Residual Fluxes | Total Phosphorus Residual Fluxes | Chlorophyll-a Residual Fluxes | ||||||
---|---|---|---|---|---|---|---|---|---|---|
VN,1 | VN,2 | <QN> | VTP,1 | VTP,2 | <QTP> | VChl-a,1 | VChla-a,2 | <QChla-a> | ||
Agiasma | ||||||||||
29 September 2016 | S | −6.42 | 0.02 | −10.09 | −4.45 | 0.09 | −6.87 | −0.14 | 0.01 | −0.21 |
30 September 2016 | S | −5.93 | −0.72 | −10.64 | −3.13 | 0.08 | −4.88 | −0.21 | 0.02 | −0.30 |
mean | −6.18 | −0.35 | −10.37 | −3.79 | 0.09 | −5.88 | −0.18 | 0.02 | −0.26 | |
Porto Lagos | ||||||||||
26 June 2018 | S | −4.41 | 5.41 | 2.04 | −1.00 | 0.19 | −1.66 | −0.06 | −0.04 | −0.19 |
06 July 2018 | N | 1.53 | 1.34 | 14.41 | 0.70 | 0.66 | 6.82 | 0.12 | 0.32 | 2.19 |
10 July 2018 | N | 0.94 | 0.27 | 4.19 | 1.11 | 0.93 | 7.05 | 0.26 | −0.09 | 0.61 |
mean | −0.65 | 2.34 | 6.88 | 0.27 | 0.59 | 4.07 | 0.11 | 0.06 | 0.87 | |
Xirolimni | ||||||||||
19 July 2016 | S | −5.26 | −0.69 | −11.18 | −3.60 | −2.04 | −10.61 | −0.04 | −0.01 | −0.10 |
26 July 2016 | N | −2.56 | −3.38 | −11.41 | −0.50 | −0.99 | −2.87 | −0.03 | 0.07 | 0.07 |
30 April 2018 | S | −7.87 | 1.43 | −15.33 | −1.70 | −0.38 | −4.94 | −0.01 | 0.01 | 0.001 |
01 May 2018 | S | 4.88 | 5.00 | 23.77 | 1.39 | 0.74 | 5.12 | 0.01 | 0.01 | 0.04 |
01 May 2018 | S | −1.62 | 2.64 | 2.38 | −0.87 | −3.71 | −10.70 | 0.001 | −0.01 | −0.02 |
mean | −2.49 | 1.00 | −2.35 | −1.06 | −1.28 | −4.80 | −0.01 | 0.01 | −0.002 |
Date | Tidal Phase | VFlood (×103 m3/m) | VEbb (×103 m3m) | VPrism (×106 m3) | VR (×106 m3) | QR (m3/s) | Return Flow Factor b | Flushing Time (d) |
---|---|---|---|---|---|---|---|---|
Agiasma | ||||||||
29 September 2016 | S | 20.38 | 197.60 | 2.13 | 0.28 | 5.92 | 0.071 | 0.98 |
30 September 2016 | S | 2.06 | 132.36 | 1.31 | 0.37 | 9.78 | 0.166 | 1.00 |
30 September 2016 | S | 7.85 | 202.08 | 2.05 | 0.61 | 12.38 | 0.175 | 1.03 |
mean | 10.10 | 177.35 | 1.83 | 0.42 | 9.36 | 0.137 | 1.00 | |
Porto Lagos | ||||||||
26 June 2018 | S | 75.26 | 141.73 | 1.43 | 0.02 | 0.47 | 0.008 | 1.15 |
06 July 2018 | N | 21.03 | 10.77 | 0.21 | 0.02 | 0.43 | 0.046 | 3.71 |
10 July 2018 | N | 17.80 | 5.69 | 0.19 | 0.01 | 0.24 | 0.024 | 4.23 |
mean | 38.03 | 52.73 | 0.61 | 0.02 | 0.38 | 0.026 | 3.03 | |
Xirolimni | ||||||||
19 July 2016 | S | 81.75 | 209.89 | 2.35 | 0.07 | 1.41 | 0.015 | 0.80 |
20 July 2016 | S | 8.80 | 333.06 | 2.75 | 0.07 | 1.56 | 0.012 | 0.65 |
20 July 2016 | S | 64.08 | 155.85 | 1.77 | 0.04 | 0.92 | 0.012 | 0.81 |
26 July 2016 | N | 110.95 | 108.57 | 1.77 | 0.04 | 0.80 | 0.011 | 0.80 |
27 July 2016 | N | 91.05 | 75.22 | 1.34 | 0.04 | 0.82 | 0.013 | 0.82 |
27 July 2016 | N | 106.42 | 34.87 | 1.14 | 0.02 | 0.52 | 0.010 | 0.91 |
27 April 2018 | S | 86.23 | 56.50 | 1.15 | 0.07 | 1.62 | 0.031 | 0.89 |
28 April 2018 | S | 91.12 | 33.91 | 1.01 | 0.06 | 1.37 | 0.033 | 1.02 |
28 April 2018 | S | 59.20 | 67.78 | 1.02 | 0.06 | 1.35 | 0.030 | 0.97 |
29 April 2018 | S | 27.86 | 77.02 | 0.84 | 0.05 | 1.09 | 0.031 | 1.12 |
29 April 2018 | S | 24.64 | 177.18 | 1.62 | 0.10 | 2.13 | 0.031 | 0.81 |
30 April 2018 | S | 10.83 | 94.90 | 0.85 | 0.05 | 1.25 | 0.030 | 0.96 |
30 April 2018 | S | 38.72 | 197.63 | 1.90 | 0.11 | 2.62 | 0.031 | 0.75 |
01 May 2018 | S | 29.79 | 9.52 | 0.32 | 0.02 | 0.45 | 0.031 | 1.87 |
01 May 2018 | S | 78.90 | 75.26 | 1.24 | 0.07 | 1.65 | 0.031 | 0.90 |
mean | 60.69 | 113.81 | 1.40 | 0.06 | 1.30 | 0.023 | 0.94 |
Lagoon | RTide (1/day) | RBaroclinic (1/day) | RWind (1/day) |
---|---|---|---|
Agiasma | 2.09 | ~0 | 0.010 |
Porto Lagos | 0.78 | ~0 | 0.040 |
Xirolimni | 3.01 | ~0 | 0.009 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zoidou, M.; Kokkos, N.; Sylaios, G. Dynamics of Water, Salt, and Nutrients Exchange at the Inlets of Three Coastal Lagoons. J. Mar. Sci. Eng. 2022, 10, 205. https://doi.org/10.3390/jmse10020205
Zoidou M, Kokkos N, Sylaios G. Dynamics of Water, Salt, and Nutrients Exchange at the Inlets of Three Coastal Lagoons. Journal of Marine Science and Engineering. 2022; 10(2):205. https://doi.org/10.3390/jmse10020205
Chicago/Turabian StyleZoidou, Maria, Nikolaos Kokkos, and Georgios Sylaios. 2022. "Dynamics of Water, Salt, and Nutrients Exchange at the Inlets of Three Coastal Lagoons" Journal of Marine Science and Engineering 10, no. 2: 205. https://doi.org/10.3390/jmse10020205
APA StyleZoidou, M., Kokkos, N., & Sylaios, G. (2022). Dynamics of Water, Salt, and Nutrients Exchange at the Inlets of Three Coastal Lagoons. Journal of Marine Science and Engineering, 10(2), 205. https://doi.org/10.3390/jmse10020205