Advances in Autonomous Underwater Robotics Based on Machine Learning
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Polymenis, I.; Haroutunian, M.; Norman, R.; Trodden, D. Virtual Underwater Datasets for Autonomous Inspections. J. Mar. Sci. Eng. 2022, 10, 1289. [Google Scholar] [CrossRef]
- Hu, K.; Weng, C.; Zhang, Y.; Jin, J.; Xia, Q. An Overview of Underwater Vision Enhancement: From Traditional Methods to Recent Deep Learning. J. Mar. Sci. Eng. 2022, 10, 241. [Google Scholar] [CrossRef]
- Wang, N.; Wang, Y.; Zhao, Y.; Wang, Y.; Li, Z. Sim-to-Real: Mapless Navigation for USVs Using Deep Reinforcement Learning. J. Mar. Sci. Eng. 2022, 10, 895. [Google Scholar] [CrossRef]
- Xu, P.; Ding, Y.; Luo, J. Complete Coverage Path Planning of an Unmanned Surface Vehicle Based on a Complete Coverage Neural Network Algorithm. J. Mar. Sci. Eng. 2021, 9, 1163. [Google Scholar] [CrossRef]
- Burguera, A.; Bonin-Font, F.; Font, E.; Torres, A. Combining Deep Learning and Robust Estimation for Outlier-Resilient Underwater Visual Graph SLAM. J. Mar. Sci. Eng. 2022, 10, 511. [Google Scholar] [CrossRef]
- Lei, F.; Tang, F.; Li, S. Underwater Target Detection Algorithm Based on Improved YOLOv5. J. Mar. Sci. Eng. 2022, 10, 310. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Shen, Z. YOLO-Submarine Cable: An Improved YOLO-V3 Network for Object Detection on Submarine Cable Images. J. Mar. Sci. Eng. 2022, 10, 1143. [Google Scholar] [CrossRef]
- Le, N.; Moon, J.; Lowe, C.; Kim, H.; Choi, S. An Automated Framework Based on Deep Learning for Shark Recognition. J. Mar. Sci. Eng. 2022, 10, 942. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burguera, A.; Bonin-Font, F. Advances in Autonomous Underwater Robotics Based on Machine Learning. J. Mar. Sci. Eng. 2022, 10, 1481. https://doi.org/10.3390/jmse10101481
Burguera A, Bonin-Font F. Advances in Autonomous Underwater Robotics Based on Machine Learning. Journal of Marine Science and Engineering. 2022; 10(10):1481. https://doi.org/10.3390/jmse10101481
Chicago/Turabian StyleBurguera, Antoni, and Francisco Bonin-Font. 2022. "Advances in Autonomous Underwater Robotics Based on Machine Learning" Journal of Marine Science and Engineering 10, no. 10: 1481. https://doi.org/10.3390/jmse10101481
APA StyleBurguera, A., & Bonin-Font, F. (2022). Advances in Autonomous Underwater Robotics Based on Machine Learning. Journal of Marine Science and Engineering, 10(10), 1481. https://doi.org/10.3390/jmse10101481