Variation in Vortex-Induced Vibration Phenomenon Due to Surface Roughness on Low- and High-Mass-Ratio Circular Cylinders: A Numerical Study
Abstract
:1. Introduction
2. Domain Specifications
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramzi, N.A.; Quen, L.K.; Abu, A.; Siang, K.H.; Othman, N.A.; Ken, T.L.; Loon, S.C. Experimental analysis on vortex-induced vibration of a rigid cylinder with different surface roughness. IOP Conf. Ser. Mater. Sci. Eng. 2019, 469, 012003. [Google Scholar] [CrossRef]
- Ghazali, M.K.; Shaharuddin, N.M.; Ali, A.; Siang, K.H.; Nasir, M.N.; Talib, M.H. Surface roughness effect on vortex-induced vibration phenomenon in cross-flow direction of a bluff body. J. Adv. Res. Fluid Mech. Therm. Sci. 2019, 64, 253–263. [Google Scholar]
- Gao, Y.; Zhang, Z.; Zou, L.; Liu, L.; Yang, B. Effect of surface roughness and initial gap on the vortex-induced vibrations of a freely vibrating cylinder in the vicinity of a plane wall. Mar. Struct. 2020, 69, 102663. [Google Scholar] [CrossRef]
- Okajima, A.; Nagamori, T.; Matsunaga, F.E.; Kiwata, T. Some experiments on flow-induced vibration of a circular cylinder with surface roughness. J. Fluids Struct. 1999, 13, 853–864. [Google Scholar] [CrossRef]
- Allen, D.; Henning, D. Surface roughness effects on vortex-induced vibration of cylindrical structures at critical and supercritical Reynolds numbers. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 30 April–3 May 2001. [Google Scholar]
- Bernitsas, M.M.; Raghavan, K.; Duchene, G. Induced separation and vorticity using roughness in VIV of circular cylinders at 8 × 103 < Re < 2.0 × 105. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Estoril, Portugal, 15–20 June 2008. [Google Scholar]
- Kiu, K.Y.; Stappenbelt, B.; Thiagarajan, K.P. Effects of uniform surface roughness on vortex-induced vibration of towed vertical cylinders. J. Sound Vib. 2011, 330, 4753–4763. [Google Scholar] [CrossRef]
- Gao, Y.; Fu, S.; Wang, J.; Song, L.; Chen, Y. Experimental study of the effects of surface roughness on the vortex-induced vibration response of a flexible cylinder. Ocean. Eng. 2015, 103, 40–54. [Google Scholar] [CrossRef]
- Armin, M.; Day, S.; Karimirad, M.; Khorasanchi, M. On the development of a nonlinear time-domain numerical method for describing vortex-induced vibration and wake interference of two cylinders using experimental results. Nonlinear Dyn. 2021, 104, 3517–3531. [Google Scholar] [CrossRef]
- Song, L.; Ji, C.; Zhang, X. Vortex-induced vibration and wake tracing mechanism of harbor seal whisker: A direct numerical simulation. Chin. J. Theor. Appl. Mech. 2021, 53, 395–412. [Google Scholar]
- Wang, C.; Wang, Y.; Liu, Y.; Li, P.; Zhang, X.; Wang, F. Experimental and numerical simulation investigation on vortex-induced vibration test system based on bare fiber Bragg grating sensor technology for vertical riser. Int. J. Nav. Archit. Ocean Eng. 2021, 13, 223–235. [Google Scholar] [CrossRef]
- Badhurshah, R.; Bhardwaj, R.; Bhattacharyab, A. Numerical simulation of Vortex-Induced Vibration with bistable springs: Consistency with the Equilibrium Constraint. J. Fluids Struct. 2021, 103, 103280. [Google Scholar] [CrossRef]
- Lin, K.; Jiasong, W.; Dixia, F.; Triantafyllou, M.S. Flow-induced cross-flow vibrations of long flexible cylinder with an upstream wake interference. Phys. Fluids 2021, 33, 065104. [Google Scholar] [CrossRef]
- Tofa, M.M.; Maimun, A.; Ahmed, Y.M.; Jamei, S.; Kader, S.; Abyn, H. Vortex Induced Vibration on Two Equal Diameter Cylinders with low mass ratio in tandem. J. Appl. Sci. 2014, 14, 3578–3584. [Google Scholar]
- Zhao, M.; Cheng, L. Vortex-induced vibration of a circular cylinder of finite length. Phys. Fluids 2014, 26, 015111. [Google Scholar] [CrossRef]
- Zhao, M.; Kaja, K.; Xiang, Y.; Cheng, L. Vortex-induced vibration of four cylinders in an in-line square configuration. Phys. Fluids 2016, 28, 023602. [Google Scholar] [CrossRef] [Green Version]
- Soti, A.K.; De, A. Vortex-induced vibrations of a confined circular cylinder for efficient flow power extraction. Phys. Fluids 2020, 32, 033603. [Google Scholar] [CrossRef]
- Xiangxi, H.; Tang, Y.; Meng, Z.; Fu, F.; Qiu, A.; Gu, J.; Jiaming, W. Surface roughness effect on cylinder vortex-induced vibration at moderate Re regimes. Ocean Eng. 2021, 224, 108690. [Google Scholar]
- Chen, W.; Chunning, J.; Dong, X.; Zhimeng, Z. Three-dimensional direct numerical simulations of vortex-induced vibrations of a circular cylinder in proximity to a stationary wall. Phys. Rev. Fluids 2022, 7, 044607. [Google Scholar] [CrossRef]
- Liu, M.; Jin, R.; Wang, H. Numerical investigation of vortex induced vibration of a circular cylinder for mass ratio less than 1.0. Ocean Eng. 2022, 251, 111130. [Google Scholar] [CrossRef]
- Hover, F.S.; Miller, S.N.; Triantafyllou, M.S. Vortex-induced vibration of marine cables: Experiments using force feedback. J. Fluids Struct. 1997, 11, 307–326. [Google Scholar] [CrossRef]
- Zdravkovich, M.M. Conceptual overview of laminar and turbulent flows past smooth and rough circular cylinders. J. Wind Eng. Ind. Aerodyn. 1990, 33, 53–62. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, L.; An, H.; Lu, L. Three-dimensional numerical simulation of vortex-induced vibration of an elastically mounted rigid circular cylinder in steady current. J. Fluids Struct. 2014, 50, 292–311. [Google Scholar] [CrossRef]
- Nguyen, V.-T.; Nguyen, H.H. Detached eddy simulations of flow induced vibrations of circular cylinders at high Reynolds numbers. J. Fluids Struct. 2016, 63, 103–119. [Google Scholar] [CrossRef]
- Anwar, M.U.; Lashin, M.M.; Khan, N.B.; Munir, A.; Jameel, M.; Muhammad, R.; Guedri, K.; Galal, A.M. Effect of Variation in the Mass Ratio on Vortex-Induced Vibration of a Circular Cylinder in Crossflow Direction at Reynold Number = 104: A Numerical Study Using RANS Model. J. Mar. Sci. Eng. 2022, 10, 1126. [Google Scholar] [CrossRef]
- Gao, Y.; Zong, Z.; Zou, L.; Takagi, S.; Jiang, Z. Numerical simulation of vortex-induced vibration of a circular cylinder with different surface roughnesses. Mar. Struct. 2018, 57, 165–179. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anwar, M.U.; Khan, N.B.; Arshad, M.; Munir, A.; Bashir, M.N.; Jameel, M.; Rehman, M.F.; Eldin, S.M. Variation in Vortex-Induced Vibration Phenomenon Due to Surface Roughness on Low- and High-Mass-Ratio Circular Cylinders: A Numerical Study. J. Mar. Sci. Eng. 2022, 10, 1465. https://doi.org/10.3390/jmse10101465
Anwar MU, Khan NB, Arshad M, Munir A, Bashir MN, Jameel M, Rehman MF, Eldin SM. Variation in Vortex-Induced Vibration Phenomenon Due to Surface Roughness on Low- and High-Mass-Ratio Circular Cylinders: A Numerical Study. Journal of Marine Science and Engineering. 2022; 10(10):1465. https://doi.org/10.3390/jmse10101465
Chicago/Turabian StyleAnwar, Muhammad Usman, Niaz Bahadur Khan, Muhammad Arshad, Adnan Munir, Muhammad Nasir Bashir, Mohammed Jameel, Muhammad Faisal Rehman, and Sayed M. Eldin. 2022. "Variation in Vortex-Induced Vibration Phenomenon Due to Surface Roughness on Low- and High-Mass-Ratio Circular Cylinders: A Numerical Study" Journal of Marine Science and Engineering 10, no. 10: 1465. https://doi.org/10.3390/jmse10101465
APA StyleAnwar, M. U., Khan, N. B., Arshad, M., Munir, A., Bashir, M. N., Jameel, M., Rehman, M. F., & Eldin, S. M. (2022). Variation in Vortex-Induced Vibration Phenomenon Due to Surface Roughness on Low- and High-Mass-Ratio Circular Cylinders: A Numerical Study. Journal of Marine Science and Engineering, 10(10), 1465. https://doi.org/10.3390/jmse10101465