# Evaluation of the Corrosion Depth of Double Bottom Longitudinal Girder on Aging Bulk Carriers

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Corrosion Models

## 3. Design Corrosion Addition

## 4. Materials and Methods

#### 4.1. A Brief Description of the Input Database

#### 4.2. The Proposed Problem and Corresponding Methodology

## 5. Results

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- INTERCARGO. Casualty Report 2010; International Association of Dry Cargo Shipowners: London, UK, 2010. [Google Scholar]
- Roberts, S.E.; Marlow, P.B. Casualties in dry bulk shipping (1963–1996). Mar. Policy
**2002**, 26, 437–450. [Google Scholar] [CrossRef] - IMO. MSC 83/INF.6, Bulk Carrier Casualty Report; IMO: London, UK, 2007. [Google Scholar]
- IACS. UR Z10.2F Unified Requirement: Hull Surveys of Bulk Carriers; International Association of Classification Societies: London, UK, 1992. [Google Scholar]
- Solas, I.M.O. International Convention for the Safety of Life at Sea (SOLAS); (IMO–158E); International Maritime Organization: London, UK, 1999. [Google Scholar]
- IACS. Common Structural Rules for Bulk Carriers and Oil Tankers; International Association of Classification Societies: London, UK, 2021. [Google Scholar]
- Lloyd’s Register of Shipping. Bulk Carriers—The Safety Issues; Lloyd’s Register of Shipping: London, UK, 1991. [Google Scholar]
- Nippon Kaiji Kyokai. Study Report on Bulk Carrier Losses; Nippon Kaiji Kyokai: Tokyo, Japan, 1992. [Google Scholar]
- Paik, J.K.; Kim, S.K.; Lee, S.K. A probabilistic corrosion rate estimation model for longitudinal strength members of bulk carriers. Ocean Eng.
**1998**, 25, 837–860. [Google Scholar] [CrossRef] - Paik, J.K.; Thayamballi, A.K. Ultimate strength of aging ships. J. Eng. Marit. Environ.
**2002**, 1, 57–77. [Google Scholar] - Woloszyk, K.; Gabrbatov, Y. Advances in Modelling and Analysis of Strength of Corroded Ship Structures. J. Mar. Sci. Eng.
**2022**, 10, 807. [Google Scholar] [CrossRef] - Pereira, T.; Garbatov, Y. Multi-Attribute Decision-Making Ship Structural Design. J. Mar. Sci. Eng.
**2022**, 10, 1046. [Google Scholar] [CrossRef] - Vukelić, G.; Vizentin, G.; Brnić, J.; Brčić, M.; Sedmak, F. Long-Term Marine Environment Exposure Effect on Butt-Welded Shipbuilding Steel. J. Mar. Sci. Eng.
**2021**, 9, 491. [Google Scholar] [CrossRef] - Daille, L.K.; Aguirre, J.; Fischer, D.; Galarce, C.; Armijo, F.; Pizarro, G.E.; Walczak, M.; De la Iglesia, R.; Vargas, I.T. Effect of Tidal Cycles on Bacterial Biofilm Formation and Biocorrosion of Stainless Steel AISI 316L. J. Mar. Sci. Eng.
**2020**, 8, 124. [Google Scholar] [CrossRef] [Green Version] - Ivošević, Š.; Meštrović, R.; Kovač, N. An Approach to the Probabilistic Corrosion Rate Estimation Model for Inner Bottom Plates of Bulk Carrier, Shipbuilding: Theory and Practice of Naval Architecture. Brodogradnja
**2017**, 68, 57–70. [Google Scholar] [CrossRef] [Green Version] - Chaturvedi, T.P. An overview of the corrosion aspect of dental implants (titanium and its alloys). Indian J. Dent. Res.
**2009**, 20, 91–98. [Google Scholar] [CrossRef] - Gardiner, C.P.; Melchers, R.E. Bulk Carrier Corrosion Modelling. In Proceedings of the Eleventh International Offshore and Polar Engineering Conference Stavanger, Stavanger, Norway, 17–22 June 2001. [Google Scholar]
- Gardiner, C.P.; Melchers, R.E. Corrosion analysis of bulk carriers, Part I: Operational parameters influencing corrosion rates. Mar. Struct.
**2003**, 16, 547–566. [Google Scholar] [CrossRef] - Gudze, M.T.; Melchers, R.E. Operational based corrosion analysis in naval ships. Corros. Sci.
**2008**, 50, 3296–3307. [Google Scholar] [CrossRef] - Kolovelonis, D.T.; Rodopoulos, D.C.; Gortsas, T.V.; Polyzos, D.; Tsinopoulos, S.V. Cathodic Protection of A Container Ship Using A Detailed BEM Model. J. Mar. Sci. Eng.
**2020**, 8, 359. [Google Scholar] [CrossRef] - Ivošević, Š.; Meštrović, R.; Kovač, N. Probabilistic estimates of corrosion rate of fuel tank structures of aging bulk carriers. Int. J. Naval Arch. Ocean Eng.
**2019**, 11, 165–177. [Google Scholar] [CrossRef] - Ivošević, Š.; Meštrović, R.; Kovač, N. A Probabilistic Method for Estimating the Percentage of Corrosion Depth on the Inner Bottom Plates of Aging Bulk Carriers. J. Mar. Sci. Eng.
**2020**, 8, 442. [Google Scholar] [CrossRef] - Ivošević, Š.; Kovač, N.; Momčilović, N.; Vukelić, G. Analysis of corrosion depth percentage on the inner bottom plates of aging bulk carriers with an aim to optimize corrosion margin. Shipbuild. Theory Pract. Nav. Archit.
**2021**, 72, 81–95. [Google Scholar] [CrossRef] - Southwell, C.R.; Bultman, J.D.; Hummer, C.W. Estimating of service life of steel in seawater. Seawater Corros. Handb.
**1979**, 87, 374. [Google Scholar] - Soares, C.G.; Garbatov, Y. Reliability of maintained, corrosion protected plates subjected to non–linear corrosion and compressive loads. Mar. Struct.
**1999**, 12, 425–445. [Google Scholar] [CrossRef] - Yamamoto, N.; Kumano, A.; Matoba, M. Effect of corrosion and its protection on hull strength (2nd report). J. Soc. Nav. Archit. Jpn.
**1994**, 176, 281–289. [Google Scholar] [CrossRef] - Paik, J.K.; Lee, J.M.; Park, Y.I.; Hwang, J.S.; Kim, C.W. Time-variant ultimate longitudinal strength of corroded bulk carriers. Mar. Struct.
**2003**, 16, 567–600. [Google Scholar] [CrossRef] - Paik, J.K.; Thayamballi, A.K.; Park, Y.I.; Hwang, J.S. A time-dependent corrosion wastage model for bulk carrier structures. Int. J. Mar. Eng.
**2003**, 145, 61–87. [Google Scholar] - Paik, J.K.; Wang, G.; Thayamballi, A.K.; Lee, J.M.; Park, Y.I. Time-dependent risk assessment of aging ships accounting for general/pit corrosion, fatigue cracking and local denting damage. Trans. SNAME
**2003**, 111, 159–197. [Google Scholar] - Melchers, R.E. Corrosion uncertainty modelling for steel structures. J. Constr. Steel Res.
**1999**, 52, 3–19. [Google Scholar] [CrossRef] - Melchers, R.E. Probabilistic Model for Marine Corrosion of Steel for Structural Reliability Assessment. J. Struct. Eng.
**2003**, 129, 1484–1493. [Google Scholar] [CrossRef] - Melchers, R.E. Advances in Mathematical-Probabilistic Modelling of the Atmospheric Corrosion of Structural Steels in Ocean Environments. In Proceedings of the 3rd International ASRANet Colloquium, Glasgow, UK, 10–12 July 2006. [Google Scholar]
- Kim, H.B.; Zhang, X.; Li, C.G.; Paik, J.K. Ultimate strength performance of tankers associated with industry corrosion addition practices. Int. J. Nav. Archit. Ocean Eng.
**2014**, 6, 507–528. [Google Scholar] [CrossRef] - Qin, S.; Cui, W. Effect of corrosion models on the time-dependent reliability of steel plated elements. Mar. Struct.
**2003**, 16, 15–34. [Google Scholar] [CrossRef]

**Figure 1.**Gross thickness and corrosion addition percentage plotted against the corrosion wear percentage of gross thickness with corresponding criteria for the LG of bulk carriers.

**Figure 3.**Linear models for the minimum (

**a**), mean (

**b**), and maximum (

**c**) corrosion wear percentage of the LG ship structures.

**Figure 5.**Corrosion depth percentage plotted against the operating time and built-in thicknesses of the LG of the bulk carriers examined.

**Figure 6.**Corrosion depth percentage plotted against the thicknesses of LG: measured data vs. CSR corrosion addition limit.

**Table 1.**Corrosion additions for the LG plating of bulk carriers according to IACS [6].

Corrosion Addition—FOT Side (mm) | Corrosion Addition—WBT Side (mm) | Reserve Thickness (mm) | Total Corrosion Addition (mm) |
---|---|---|---|

0.7 | 2 | 0.5 | 3.5 |

**Table 2.**Corrosion addition percentage and gross thickness for the LG of bulk carriers calculated according to IACS [6].

(Assumed) Net Thickness of LG (mm) | Total Corrosion Addition, Table 1 (mm) | Gross Thickness (mm) | Corrosion Addition as a Percentage of Gross Thickness (mm) |
---|---|---|---|

8 | 3.5 | 11.5 | 30.4% |

10 | 3.5 | 13.5 | 25.9% |

12 | 3.5 | 15.5 | 22.6% |

14 | 3.5 | 17.5 | 20.0% |

16 | 3.5 | 19.5 | 17.9% |

18 | 3.5 | 21.5 | 16.3% |

**Table 3.**The basic information on the database and the original thickness of the longitudinal girder plate.

The Age of Ships (Years) | The Number of Ship Surveys | The Number of Tanks | The Number of Sections | The Available Built-in Thickness of Plates (mm) |
---|---|---|---|---|

0–5 | 4 | 9 | 45 | 11–14, 16–17, 18–19 |

5–10 | 4 | 10 | 50 | 11–16 |

10–15 | 7 | 19 | 100 | 11–16 |

15–20 | 12 | 39 | 200 | 11–16 |

20–25 | 5 | 17 | 90 | 11–14, 16–18 |

Total: | 31 | 95 | 490 |

$11\le {\mathit{d}}_{0}<13$ | $13\le {\mathit{d}}_{0}<15$ | $15\le {\mathit{d}}_{0}\le 18$ | |||
---|---|---|---|---|---|

Statistics | Value | Statistics | Value | Statistics | Value |

Sample Size | 1160 | Sample Size | 606 | Sample Size | 152 |

Mean (M) | 4.73422 | Mean (M) | 11.3899 | Mean (M) | 7.72303 |

Min | 0 | Min | 0 | Min | 0 |

Max | 44 | Max | 55.6 | Max | 55.6 |

Std. Deviation | 8.4675 | Std. Deviation | 13.5874 | Std. Deviation | 14.4824 |

25% (Q1) | 0.8 | 25% (Q1) | 1.4 | 25% (Q1) | 0.6 |

75% (Q3) | 3.4 | 75% (Q3) | 26.7 | 75% (Q3) | 4.85 |

Intervals of the Original Thickness | $\mathbf{p}\left(\mathbf{t}\right)=10\mathbf{\%}$ | $\mathbf{p}\left(\mathbf{t}\right)=15\mathbf{\%}$ | $\mathbf{p}\left(\mathbf{t}\right)=20\mathbf{\%}$ | $\mathbf{p}\left(\mathbf{t}\right)=25\mathbf{\%}$ | |
---|---|---|---|---|---|

${p}_{1}^{{Q}_{3}}\left(t\right)$ | [11,13) | $\mathrm{t}=13.3$ years | $\mathrm{t}=18.0$ years | $\mathrm{t}=22.7$ years | $\mathrm{t}=27.3$ years |

${p}_{2}^{{Q}_{3}}\left(t\right)$ | [13,15) | $\mathrm{t}=10.3$ years | $\mathrm{t}=13.5$ years | $\mathrm{t}=16.6$ years | $\mathrm{t}=19.8$ years |

${p}_{3}^{{Q}_{3}}\left(t\right)$ | [15,18] | $\mathrm{t}=10.1$ years | $\mathrm{t}=13.2$ years | $\mathrm{t}=16.2$ years | $\mathrm{t}=19.3$ years |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ivošević, Š.; Kovač, N.; Momčilović, N.; Vukelić, G.
Evaluation of the Corrosion Depth of Double Bottom Longitudinal Girder on Aging Bulk Carriers. *J. Mar. Sci. Eng.* **2022**, *10*, 1425.
https://doi.org/10.3390/jmse10101425

**AMA Style**

Ivošević Š, Kovač N, Momčilović N, Vukelić G.
Evaluation of the Corrosion Depth of Double Bottom Longitudinal Girder on Aging Bulk Carriers. *Journal of Marine Science and Engineering*. 2022; 10(10):1425.
https://doi.org/10.3390/jmse10101425

**Chicago/Turabian Style**

Ivošević, Špiro, Nataša Kovač, Nikola Momčilović, and Goran Vukelić.
2022. "Evaluation of the Corrosion Depth of Double Bottom Longitudinal Girder on Aging Bulk Carriers" *Journal of Marine Science and Engineering* 10, no. 10: 1425.
https://doi.org/10.3390/jmse10101425