Harvest Time Determines Quality and Usability of Biomass from Lowland Hay Meadows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Trial Location
2.2. Design and Management
2.3. Sampling and Laboratory Analysis
2.4. Statistical Analyses
3. Results
3.1. Dry Matter Yield
3.2. Organic Components, Net Energy Content and Specific Methane Yield (SMY)
3.3. Mineral Nutrients and Ash Content
4. Discussion
4.1. Early Date of First Cut before Flowering Stage (D1)
4.2. Cut at Beginning of Grass Flowering Stage (D2)
4.3. Late First Cut at Flowering (D3) or Seed-Ripening Stage (D4)
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Huyghe, C.; De Vliegher, A.; Van Gils, B.; Peeters, A. Grasslands and Herbivore Production in Europe and Effects of Common Policies; Éditions Quae: Versailles Cedex, France, 2014; ISBN 978-2-7592-2157-8. [Google Scholar]
- European Commission, DG Environment. Interpretation Manual of European Union Habitats. Version EUR 27, Brussels, 80–81. Available online: http://ec.europa.eu/environment/nature/legislation/habitatsdirective/docs/2007_07_im.pdf (accessed on 5 July 2019).
- Tonn, B.; Elsaesser, M. Ministerium für Ländlichen Raum und Verbraucherschutz (2013). Infoblatt Natura 2000. Wie Bewirtschafte Ich Eine FFH-Mähwiese? Available online: https://www.landwirtschaft-bw.info/pb/site/pbs-bw-new/get/documents/MLR.LEL/PB5Documents/mlr/GA/GA_018_extern/Allgemein/Merkblaetter/7_2018-01-15%20Infoblatt%20Natura2018_fin.pdf (accessed on 5 July 2019).
- Elgersma, A.; Søegaard, K. Effects of species diversity on seasonal variation in herbage yield and nutritive value of seven binary grass-legume mixtures and pure grass under cutting. Eur. J. Agron. 2016, 78, 73–83. [Google Scholar] [CrossRef]
- Elsaesser, M.; Oppermann, R. 3.2 Futterwert, Schnittzeitpunkt und Düngung artenreicher Wiesen—Erfahrungen und Empfehlungen aus der Praxis. In Artenreiches Grünland Bewerten und Fördern—MEKA und ÖQV in der Praxis; Oppermann, R., Gujer, H.U., Eds.; Ulmer: Stuttgart, Germany, 2003; pp. 100–110. ISBN 978-3-8001-4261-3. [Google Scholar]
- Tallowin, J.R.B.; Jefferson, R.G. Hay production from lowland semi-natural grasslands: A review of implications for ruminant livestock systems. Grass Forage Sci. 1999, 54, 99–115. [Google Scholar] [CrossRef]
- Jilg, T. Fütterung von Hochleistungskühen mit FFH-Grünland-geht das? Landinfo 2011, 6, 2–6. [Google Scholar]
- Bassignana, M.; Clementel, F.; Kasal, A.; Peratoner, G. The forage quality of meadows under different management practices in the Italian Alps. In Proceedings of the 16th Symposium of the European Grassland Federation, Gumpenstein, Austria, 29–31 August 2011. [Google Scholar]
- Prochnow, A.; Heiermann, M.; Plochl, M.; Linke, B.; Idler, C.; Amon, T.; Hobbs, P.J. Bioenergy from permanent grassland—A review: 1. Biogas. Bioresour. Technol. 2009, 100, 4931–4944. [Google Scholar] [CrossRef] [PubMed]
- Thumm, U. Use of grassland for bioenergy and biorefining. In Improving Grassland and Pasture Management in Temperate Agriculture; Marshall, A., Collins, R., Eds.; Burleigh Dodds Science Publishing: Cambridge, UK, 2018; pp. 425–436. [Google Scholar]
- Elsaesser, M. Alternative Verwendung von in der Landschaftspflege anfallendem Grünlandmähgut: Verbrennen, vergären, kompostieren, mulchen oder extensive Weide? Nat. Landsc. 2004, 3, 110–117. [Google Scholar]
- Obernberger, I.; Brunner, T.; Bärnthaler, G. Chemical properties of solid biofuels—Significance and impact. Biomass Bioenergy 2006, 30, 973–982. [Google Scholar] [CrossRef]
- Bridgwater, A.V.; Peacocke, G.V.C. Fast pyrolysis processes for biomass. Renew. Sustain. Energy Rev. 2000, 4, 1–73. [Google Scholar] [CrossRef]
- Cherubini, F. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 2010, 51, 1412–1421. [Google Scholar] [CrossRef]
- Malcharek, A. Futterqualität von Extensivgrünlandaufwüchsen und Möglichkeiten Ihrer Verwertung im Grünlandbetrieb. Ph.D. Thesis, Landwirtschaftliche Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany, 2001. [Google Scholar]
- Elsaesser, M.; Kunz, H.G. Organische Düngung intensiv genutzten Dauergrünlandes im Vergleich mit Mineraldüngung—Ergebnisse eines 22 jährigen Versuches auf Wiese und Mähweide. Landinfo 2009, 5, 18–20. [Google Scholar]
- Fuksa, P.; Hakl, J.; Hrevušová, Z.; Šantrůček, J.; Gerndtová, I.; Habart, J. Utilization of Permanent Grassland for Biogas Production. In Modeling and Optimization of Renewable Energy Systems; Sahin, A.S., Ed.; In Tech: Rijeka, Croatia, 2012; pp. 171–176. ISBN 978-953-51-0600-5. [Google Scholar]
- Honsova, D.; Hejcman, M.; Klaudisová, M.; Pavlu, V.; Kocourková, D.; Hakl, J. Species composition of an alluvial meadow after 40 years of applying nitrogen, phosphorus and potassium fertilizer. Preslia 2007, 79, 245–258. [Google Scholar]
- Hrevusova, Z.; Hejcman, M.; Hakl, J.; Mrkvicka, J. Soil chemical properties, plant species composition, herbage quality, production and nutrient uptake of an alluvial meadow after 45 years of N, P and K application. Grass Forage Sci. 2014, 70, 205–218. [Google Scholar] [CrossRef]
- Hejcman, M.; Ceskova, M.; Schellberg, J.; Patzold, S. The Rengen Grassland Experiment: Effect of Soil Chemical Properties on Biomass Production, Plant Species Composition and Species Richness. Folia Geobot. 2010, 45, 125–142. [Google Scholar] [CrossRef]
- Kirkham, F.W.; Tallowin, J.R.B. The influence of cutting date and previous fertilizer treatment on the productivity and botanical composition of species-rich hay meadows on the Somerset Levels. Grass Forage Sci. 1995, 50, 365–377. [Google Scholar] [CrossRef]
- Smith, R.S.; Shiel, R.S.; Millward, D.; Corkhill, P. The interactive effects of management on the productivity and plant community structure of an upland meadow: An 8-year field trial. J. Appl. Ecol. 2000, 37, 1029–1043. [Google Scholar] [CrossRef]
- Boob, M.; Truckses, B.; Seither, M.; Elsaesser, M.; Thumm, U.; Lewandowski, I. Management effects on botanical composition of species-rich meadows within the Natura 2000 network. Biodivers. Conserv. 2019, 28, 729–750. [Google Scholar] [CrossRef]
- Helffrich, D.; Oechsner, H. The Hohenheim Biogas Yield Test. Landtechnik 2003, 58, 148–149. [Google Scholar]
- Seibold, R.; Barth, C.; Naumann, C.; Bassler, R. VDLUFA-Methodenbuch 3, Die Chemische Untersuchung von Futtermitteln; VDLUFA-Verlag: Darmstadt, Germany, 1975; ISBN 978-3-941273-14-6. [Google Scholar]
- Menke, K.H.; Steingass, H. Schätzung des energetischen Futterwerts aus der in vitro mit Pansensaft bestimmten Gasbildung und der chemischen Analyse. 2. Regressionsgleichungen. Übers. Tierernähr. 1987, 15, 59–94. [Google Scholar]
- Hoffmann, G.; Deller, B. VDLUFA Methodenbuch Band I Die Untersuchung von Böden; VDLUFA-Verlag: Darmstadt, Germany, 2007; ISBN 978-3-941273-13-9. [Google Scholar]
- Wolfinger, R. Covariance structure selection in general mixed models. Stat. Simul. 1993, 22, 1079–1106. [Google Scholar] [CrossRef]
- Piepho, H.P. An algorithm for a letter-based representation of all-pairwise comparisons. J. Comput. Graph. Stat. 2004, 13, 456–466. [Google Scholar] [CrossRef]
- Khalsa, J.; Fricke, T.; Weisser, W.W.; Weigelt, A.; Wachendorf, M. Effects of species richness and functional groups on chemical constituents relevant for combustion: Results from a grassland diversity experiment. Grass Forage Sci. 2012, 67, 569–588. [Google Scholar] [CrossRef]
- Herrmann, C.; Prochnow, A.; Heiermann, M.; Idler, C. Biomass from landscape management of grassland used for biogas production: Effects of harvest date and silage additives on feedstock quality and methane yield. Grass Forage Sci. 2013, 69, 549–566. [Google Scholar] [CrossRef]
- Thumm, U.; Tonn, B. Grünlandaufwüchse—Futter oder Bioenergie? In Artenreiches Grünland in der Kulturlandschaft; Schreiber, K.-F., Brauckmann, H.-J., Broll, G., Krebs, S., Poschlod, P., Eds.; Verlag Regionalkultur: Ubstadt-Weiher, Germany, 2009; pp. 305–313. [Google Scholar]
- Bodner, A.; Prüster, T.; Reiterer, R.; Peratoner, G. Hay sampling methods affect the results of forage analyses. In Proceedings of the 26th General meeting of the European Grassland Federation, Trondheim, Norway, 4–8 September 2016; pp. 179–181. [Google Scholar]
- Pavlu, V.; Schellberg, J.; Hejcman, M. Cutting frequency vs. N application: Effect of a 20-year management in Lolio-Cynosuretum grassland. Grass Forage Sci. 2011, 66, 501–516. [Google Scholar] [CrossRef]
- Weiland, P. Biomass digestion in agriculture: A successful pathway for the energy production and waste treatment in Germany. Eng. Life Sci. 2006, 6, 302–309. [Google Scholar] [CrossRef]
- Khalsa, J.; Fricke, T.; Weigelt, A.; Wachendorf, M. Effects of species richness and functional groups on chemical constituents relevant for methane yields from anaerobic digestion: Results from a grassland diversity experiment. Grass Forage Sci. 2014, 69, 49–63. [Google Scholar] [CrossRef]
- Guetzloe, A.; Thumm, U.; Lewandowski, I. Influence of climate parameters and management of permanent grassland on biogas yield and GHG emission substitution potential. Biomass Bioenergy 2014, 64, 175–189. [Google Scholar] [CrossRef]
- Amon, T.; Amon, B.; Kryvoruchko, V.; Machmüller, A.; Hopfner-Sixt, K.; Bodiroza, V.; Hrbek, R.; Friedel, J.; Pötsch, E.; Wagentristl, H.; et al. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour. Technol. 2007, 98, 3204–3212. [Google Scholar] [CrossRef]
- Koch, B.; Jäckle, S.; Jans, F. 3.1 Einbettung der artenreichen Wiesen in den Futterbaubetrieb. In Artenreiches Grünland Bewerten und Fördern; Oppermann, R., Gujer, H.U., Eds.; Ulmer: Stuttgart, Germany, 2003; pp. 95–100. ISBN 978-3-8001-4261-3. [Google Scholar]
- Melts, I.; Heinsoo, K. Seasonal dynamics of bioenergy characteristics in grassland functional groups. Grass Forage Sci. 2015, 70, 571–581. [Google Scholar] [CrossRef]
- Caloni, F.; Cortinovis, C. Plants poisonous to horses in Europe (review). Equine Vet. Educ. 2015, 27, 269–274. [Google Scholar] [CrossRef]
- Rodriguez, C.; Alaswad, A.; Benyounis, K.Y.; Olabi, A.G. Pretreatment techniques used in biogas production from grass. Renew. Sustain. Energy Rev. 2017, 68, 1193–1204. [Google Scholar] [CrossRef]
- Tonn, B.; Thumm, U.; Claupein, W. Semi-natural grassland biomass for combustion: Influence of botanical composition, harvest date and site conditions on fuel composition. Grass Forage Sci. 2010, 65, 383–397. [Google Scholar] [CrossRef]
- Obernberger, I. Decentralized biomass combustion: State of the art and future development. Biomass Bioenergy 1998, 14, 33–56. [Google Scholar] [CrossRef]
- Tonn, B.; Thumm, U.; Lewandowski, I.; Claupein, W. Leaching of biomass from semi-natural grasslands -Effects on chemical composition and ash high-temperature behaviour. Biomass Bioenergy 2012, 36, 390–403. [Google Scholar] [CrossRef]
- Tonn, B.; Thumm, U.; Claupein, W. Späte Schnittzeitpunkte von Extensivgrünland—Eine Strategie zur Erzeugung qualitativ hochwertiger Biofestbrennstoffe aus der Landschaftspflege? In Mitteilungen der Arbeitsgemeinschaft; Grünland, P., Thomet, P., Menzi, H., Isselstein, J., Eds.; Schweizerische Hochschule fuer Landwirtschaft SHL: Zollikofen, Switzerland, 2008; pp. 293–296. [Google Scholar]
- Wachendorf, M.; Richter, F.; Fricke, T.; Graß, R.; Neff, R. Utilization of semi-natural grassland through integrated generation of solid fuel and biogas from biomass. I. Effects of hydrothermal conditioning and mechanical dehydration on mass flows of organic and mineral plant compounds, and nutrient balances. Grass Forage Sci. 2009, 64, 132–143. [Google Scholar] [CrossRef]
- Blumenstein, B.; Bühle, L.; Wachendorf, M.; Möller, D. Economic assessment of the integrated generation of solid fuel and biogas from biomass (IFBB) in comparison to different energy recovery, animal-based and non-refining management systems. Bioresour. Technol. 2012, 119, 312–323. [Google Scholar] [CrossRef]
- Cruse, F.; Dietz, W.; Höller, M.; Szafera, S. Entwicklung Eines Verfahrens Zur Gewinnung von Gras als Rohstoff und Verarbeitung für die Herstellung von Papierprodukten Unter Besonderer Berücksichtigung des Aufbaus Einer Nachhaltigen Wertschöpfungskette. Available online: https://www.dbu.de/OPAC/ab/DBU-Abschlussbericht-AZ-30990.pdf (accessed on 5 July 2019).
- LTZ, Landwirtschaftliches Technologiezentrum. Augustenberg Recent and Historical Monthly Climate Station Data. Available online: http://www.wetter-bw.de (accessed on 5 July 2019).
Swabian Jura | Foothills | |
---|---|---|
Coordinates | 48°34′27.8′′ N, 9°26′29.7′′ E | 48°31′38.5′′ N, 9°31′53.9′′ E |
Mean Annual Temperature | 7.4 °C | 9.6 °C |
Mean Annual Precipitation | 1040 mm | 970 mm |
Altitude | 774 m a.s.l. | 470 m a.s.l. |
Soil N content | 0.63 ± 0.07% DM | 0.79 ± 0.05% DM |
Soil Ctotal content | 7.87 ± 1.09% DM | 8.42 ± 0.55% DM |
pH | 7.2 ± 0.1 | 7.2 ± 0.1 |
Soil K2O content | 13.38 ± 1.43 mg 100g−1 | 8.97 ± 1.42 mg 100g−1 |
Soil P2O5 content | 4.10 ± 0.71 mg 100g−1 | 2.70 ± 0.68 mg 100g−1 |
Year | 1st Cut | 2nd Cut | |||
---|---|---|---|---|---|
D1 | D2 | D3 | D4 | ||
Before Flowering | Start of Flowering | Flowering Period | Seeds Ripening | ||
2013 | May 28 and June 4 | June 14 | July 3 | July 18 | September 23 |
2014 | May 8 | May 26 | June 12 | July 1 | September 16 |
2015 | May 13 | June 2 | June 16 | June 30 | September 15 |
2016 | May 19 | June 2 | June 17 | June 29 | September 14 |
Site | Treatment | CP (Protein) | NDF (Fibre) | ADL (Lignin) | NEL | SMY | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
g kg−1 DM | MJ kg−1 | Nm3 kg−1 ODM | |||||||||
Swabian Jura | D1 | 135.2a | ±2.2 | 498.5c | ±0.8 | 58.63a | ±0.19 | 5.81a | ±0.10 | 0.320c | ±0.003 |
D2 | 104.6b | ±2.2 | 527.3b | ±0.8 | 66.00b | ±0.19 | 5.39b | ±0.10 | 0.300b | ±0.0003 | |
D3 | 90.0c | ±2.2 | 550.8a | ±0.8 | 69.71b | ±0.19 | 4.54c | ±0.10 | 0.262a | ±0.003 | |
D4 | 83.9d | ±2.2 | 537.6ab | ±0.8 | 69.81b | ±0.19 | 4.64c | ±0.10 | 0.269a | ±0.003 | |
none | 103.0 | ±1.98 | 511.9A | ±0.7 | 68.52 | ±0.17 | 5.10 | ±0.10 | 0.290 | ±0.003 | |
PK | 104.2 | ±1.98 | 515.5A | ±0.7 | 64.70 | ±0.17 | 5.12 | ±0.01 | 0.287 | ±0.003 | |
NPK | 103.2 | ±1.98 | 558.2B | ±0.7 | 64.89 | ±0.17 | 5.07 | ±0.01 | 0.283 | ±0.003 | |
Foothills | D1 | 112.5a | ±3.26 | 500.0c | ±0.8 | 53.66a | ±0.15 | 5.56a | ±0.08 | 0.312a | ±0.004 |
D2 | 86.2b | ±3.26 | 528.6b | ±0.8 | 60.46b | ±0.15 | 5.22b | ±0.08 | 0.288b | ±0.004 | |
D3 | 78.8c | ±3.26 | 557.7a | ±0.8 | 63.03bc | ±0.15 | 4.52c | ±0.08 | 0.259c | ±0.004 | |
D4 | 68.0d | ±3.26 | 572.9a | ±0.8 | 66.30c | ±0.15 | 4.46c | ±0.08 | 0.262c | ±0.004 | |
none | 81.3 | ±3.04 | 497.0C | ±0.8 | 59.65 | ±0.13 | 4.94A | ±0.07 | 0.283 | ±0.004 | |
PK | 88.1 | ±3.04 | 550.2B | ±0.8 | 61.83 | ±0.13 | 4.88B | ±0.07 | 0.280 | ±0.004 | |
NPK | 89.8 | ±3.04 | 572.2A | ±0.8 | 61.10 | ±0.13 | 5.00A | ±0.07 | 0.278 | ±0.004 |
Site | Factor | CP | NDF | ADL | NEL | SMY | |
---|---|---|---|---|---|---|---|
Swabian Jura | date of first cut | F value | 373.81 *** | 142.16 *** | 75.29 *** | 544.3 *** | 288.1 *** |
Fertilisation | F value | 0.67 | 27.37 *** | 0.94 | 1.15 | 2.34 | |
Year | F value | 1.75 | 11.70 ** | 182.6 *** | 63.1 *** | 204.27 *** | |
Significant interactions | DxY | DxY, FxY | DxY | DxY | DxY | ||
Foothills | date of first cut | F value | 478.59 *** | 117.59 *** | 82.11 *** | 652.97 *** | 269.67 *** |
Fertilisation | F value | 5.15 * | 52.97 *** | 1.60 | 4.91 ** | 1.59 | |
Year | F value | 0.79 | 54.53 ** | 70.48 *** | 11.23 ** | 32.11 *** | |
Significant interactions | DxY | DxY, FxY | DxY | DxY, FxY | DxY |
Site | Treatment | K | P | Ca | Mg | Ash Content | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
g kg−1 DM | |||||||||||
Swabian Jura | D1 | 25.9 | ±1.4 | 3.41a | ±0.31 | 10.4 | ±1.0 | 1.50b | ±0.07 | 108.8a | ±4.5 |
D2 | 23.3 | ±1.4 | 3.12b | ±0.31 | 10.2 | ±1.0 | 1.69a | ±0.07 | 103.7ab | ±4.4 | |
D3 | 19.1 | ±1.4 | 2.72c | ±0.31 | 11.1 | ±1.0 | 1.50b | ±0.07 | 105.3ab | ±4.4 | |
D4 | 19.5 | ±1.4 | 2.57c | ±0.31 | 10.7 | ±1.0 | 1.53b | ±0.07 | 93.9b | ±4.2 | |
none | 22.2 | ±1.4 | 2.90 | ±0.31 | 12.0 | ±0.9 | 1.61 | ±0.06 | 115.2A | ±4.0 | |
PK | 22.2 | ±1.4 | 2.99 | ±0.31 | 10.0 | ±0.8 | 1.53 | ±0.06 | 97.1B | ±3.7 | |
NPK | 21.5 | ±1.4 | 2.98 | ±0.31 | 9.8 | ±0.8 | 1.53 | ±0.06 | 96.8B | ±3.7 | |
Foothills | D1 | 24.9 | ±1.9 | 2.88a | ±0.35 | 10.0 | ±0.5 | 1.97a | ±0.15 | 112.5a | ±3.7 |
D2 | 20.4 | ±1.9 | 2.33b | ±0.35 | 9.8 | ±0.5 | 1.87ab | ±0.15 | 95.0b | ±3.4 | |
D3 | 16.8 | ±1.9 | 2.16c | ±0.35 | 9.7 | ±0.4 | 1.64c | ±0.15 | 89.2bc | ±3.3 | |
D4 | 16.6 | ±1.9 | 1.92d | ±0.35 | 9.5 | ±0.4 | 1.72bc | ±0.15 | 84.7c | ±3.2 | |
none | 19.0 | ±1.9 | 2.24A | ±0.35 | 9.0B | ±0.4 | 1.64B | ±0.14 | 92.0 | ±3.0 | |
PK | 20.1 | ±1.9 | 2.43B | ±0.35 | 10.0A | ±0.4 | 1.83A | ±0.14 | 97.5 | ±3.1 | |
NPK | 19.9 | ±1.9 | 2.29AB | ±0.35 | 10.4A | ±0.4 | 1.93A | ±0.14 | 95.8 | ±3.9 |
Harvest Time | Before Flowering (D1) | Main Flowering Period (D2) | End of Main Flowering Period (D3 and D4) |
---|---|---|---|
Components: | |||
Protein, energy content | High | low | low |
Fibre content | Low | low | high |
Usability for biomass | |||
Forage use | beef cattle, non-lactating sheep | suckler cows, sheep | as exclusive feed only for horses |
Biogas use | suitable | suitable | only dry fermentation |
Combustion | not suitable | not suitable | leached material suitable |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boob, M.; Elsaesser, M.; Thumm, U.; Hartung, J.; Lewandowski, I. Harvest Time Determines Quality and Usability of Biomass from Lowland Hay Meadows. Agriculture 2019, 9, 198. https://doi.org/10.3390/agriculture9090198
Boob M, Elsaesser M, Thumm U, Hartung J, Lewandowski I. Harvest Time Determines Quality and Usability of Biomass from Lowland Hay Meadows. Agriculture. 2019; 9(9):198. https://doi.org/10.3390/agriculture9090198
Chicago/Turabian StyleBoob, Meike, Martin Elsaesser, Ulrich Thumm, Jens Hartung, and Iris Lewandowski. 2019. "Harvest Time Determines Quality and Usability of Biomass from Lowland Hay Meadows" Agriculture 9, no. 9: 198. https://doi.org/10.3390/agriculture9090198
APA StyleBoob, M., Elsaesser, M., Thumm, U., Hartung, J., & Lewandowski, I. (2019). Harvest Time Determines Quality and Usability of Biomass from Lowland Hay Meadows. Agriculture, 9(9), 198. https://doi.org/10.3390/agriculture9090198