Effects of Soil pH and Fertilizers on Haskap (Lonicera caerulea L.) Vegetative Growth
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vasantha Rupasinghe, H.; Yu, L.; Bhullar, K.; Bors, B. Haskap (Lonicera caerulea): A new berry crop with high antioxidant capacity. Can. J. Plant Sci. 2012, 92, 1311–1317. [Google Scholar] [CrossRef]
- Takahashi, A.; Okazaki, Y.; Nakamoto, A.; Watanabe, S.; Sakaguchi, H.; Tagashira, Y.; Kagii, A.; Nakagawara, S.; Higuchi, O.; Suzuki, T.; et al. Dietary Anthocyanin-rich Haskap Phytochemicals Inhibit Postprandial Hyperlipidemia and Hyperglycemia in Rats. J. Oleo Sci. 2014, 63, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Hummer, K.E. Blue honeysuckle: A new berry crop for North America. J. Am. Pomol. Soc. 2006, 60, 3–8. [Google Scholar]
- Lamoureux, D.; Sorokin, A.; Lefèvre, I.; Alexanian, S.; Eyzaguirre, P.; Hausman, J.F. Investigation of genetic diversity in Russian collections of raspberry and blue honeysuckle. Plant Genet. Resour. Charact. Util. 2011, 9, 202–205. [Google Scholar] [CrossRef]
- Thompson, M.M.; Barney, D.L. Evaluation and breeding of haskap in North America. J. Am. Pomol. Soc. 2007, 61, 25–33. [Google Scholar]
- Auzanneau, N.; Weber, P.; Kosińska-Cagnazzo, A.; Andlauer, W. Bioactive compounds and antioxidant capacity of Lonicera caerulea berries: Comparison of seven cultivars over three harvesting years. J. Food Compos. Anal. 2018, 66, 81–89. [Google Scholar] [CrossRef]
- Martel, P.-O. Faits saillants sur la camerise, Rencontre des intervenants des petits fruits émergents; Ministère de l’Agriculture, des Pêcheries et de l’Alimentation du Québec (MAPAQ): Québec, QC, Canada, 2018.
- Gerbrandt, E. Propagation, management and adaptation of the blue honeysuckle. In Proceedings of the 2014 Annual Meeting of the International Plant Propagators Society, Bellefonte, PA, USA, 27 October 2014; Heuser, C.W., Ed.; International Society for Horticultural Science: Leuven, Belgium, 2015; Volume 1085, pp. 289–292. [Google Scholar]
- Gagnon, A. La Camerise: Guide de Production; Publication 15-0031; Ministère de l’Agriculture, des Pêcheries et de l’Alimentation du Québec (MAPAQ): Québec, QC, Canada, 2015.
- Gerbrandt, E.M.; Bors, R.H.; Chibbar, R.N.; Baumann, T.E. Blue honeysuckle (Lonicera caerulea L.) vegetative growth cessation and leaf drop phenological adaptation to a temperate climate. Genet. Resour. Crop Evol. 2018, 65, 1471–1484. [Google Scholar] [CrossRef]
- Gerbrandt, E.M.; Bors, R.H.; Chibbar, R.N.; Baumann, T.E. Spring phenological adaptation of improved blue honeysuckle (Lonicera caerulea L.) germplasm to a temperate climate. Euphytica 2017, 213, 172. [Google Scholar] [CrossRef]
- Schimel, J.P.; Bennett, J. Nitrogen mineralization: Challenges of a changing paradigm. Ecology 2004, 85, 591–602. [Google Scholar] [CrossRef]
- Raymond, R.; Mailloux, A.; Dubé, A. Pédologie de la région du Lac-Saint-Jean; Bulletin technique no 11; Ministère de l’Agriculture et de la Colonisation du Québec: Québec, QC, Canada, 1965; p. 159. [Google Scholar]
- Cheng, Y.; Wang, J.; Mary, B.; Zhang, J.-b.; Cai, Z.-C.; Chang, S.X. Soil pH has contrasting effects on gross and net nitrogen mineralizations in adjacent forest and grassland soils in central Alberta, Canada. Soil Biol. Biochem. 2013, 57, 848–857. [Google Scholar] [CrossRef]
- Hendershot, W.H.; Lalande, H.; Duquette, M. Soil reaction and exchangeable acidity. In Soil Sampling and Methods of Analysis; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 173–178. [Google Scholar]
- Brennan, R.F.; Bolland, M.D.A. Relationship between pH measured in water and calcium chloride for soils of Southwestern Australia. Commun. Soil Sci. Plan. 1998, 29, 2683–2689. [Google Scholar] [CrossRef]
- Van Lierop, W. Conversion of organic soil pH values measured in water, 0.01M CaCl2 or 1N KCl. Can. J. Soil Sci. 1981, 61, 577–579. [Google Scholar] [CrossRef]
- Vanasse, A.; Hébert, M.; Khiari, L.; Marchand, S.; Badra, A.; Moore, H. La gestion du pH du sol. In Guide de référence en fertilisation, 2nd ed.; Parent, L.-E., Gagné, G., Eds.; Commission Chimie et Fertilité des sols, Centre de Référence en Agriculture et Agroalimentaire du Québec (CRAAQ): Québec, QC, Canada, 2010; pp. 71–100. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 2nd ed.; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2011. [Google Scholar]
- Islam, A.K.M.S.; Edwards, D.G.; Asher, C.J. pH optima for crop growth. Plant Soil 1980, 54, 339–357. [Google Scholar] [CrossRef]
- Walter, A.; Silk, W.K.; Schurr, U. Effect of soil pH on growth and cation deposition in the root tip of Zea mays L. J. Plant Growth Regul. 2000, 19, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Brunner, I.; Brodbeck, S.; Walthert, L. Fine root chemistry, starch concentration, and ‘vitality’ of subalpine conifer forests in relation to soil pH. Forest Ecol. Manag. 2002, 165, 75–84. [Google Scholar] [CrossRef]
- Hamid, F.S.; Ahmad, T.; Khan, B.M.; Waheed, A.; Ahmed, N. Effect of soil pH in rooting and growth of tea cuttings (Camellia sinensis L.) at nursery level. Pak. J. Bot. 2006, 38, 293–300. [Google Scholar]
- Abdulaha-Al Baquy, M.; Li, J.Y.; Xu, C.Y.; Mehmood, K.; Xu, R.K. Determination of critical pH and Al concentration of acidic Ultisols for wheat and canola crops. Solid Earth 2017, 8, 149–159. [Google Scholar] [CrossRef]
- Ruan, J.Y.; Gerendas, J.; Hardter, R.; Sattelmacher, B. Effect of nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants. Ann. Bot. 2007, 99, 301–310. [Google Scholar] [CrossRef]
- Kerley, S.J. The effect of soil liming on shoot development, root growth, and cluster root activity of white lupin. Biol. Fertil. Soils 2000, 32, 94–101. [Google Scholar] [CrossRef]
- Bernstein, L. Effects of salinity and sodicity on plant growth. Annu. Rev. Phytopathol. 1975, 13, 295–312. [Google Scholar] [CrossRef]
- Poorter, H.; Niklas, K.J.; Reich, P.B.; Oleksyn, J.; Poot, P.; Mommer, L. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytol. 2012, 193, 30–50. [Google Scholar] [CrossRef] [PubMed]
- Jan, A.; Osman, M.B.; Amanullah. Response of chickpea to nitrogen sources under salinity stress. J. Plant Nutr. 2013, 36, 1373–1382. [Google Scholar] [CrossRef]
- Farooq, N.; Kanwal, S.; Ditta, A.; Hussain, A.; Naveed, M.; Jamshaid, M.U.; Iqbal, M. Comparative efficacy of KCl blended composts and sole application of KCl or K2SO4 in improving K nutrition, photosynthetic capacity and growth of maize. Soil Environ. 2018, 37, 68–74. [Google Scholar] [CrossRef]
- Zhang, H.; Rong, H.; Pilbeam, D. Signalling mechanisms underlying the morphological responses of the root system to nitrogen in Arabidopsis thaliana. J. Exp. Bot. 2007, 58, 2329–2338. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D. The responses of plants to nonuniform supplies of nutrients. New Phytol. 1994, 127, 635–674. [Google Scholar] [CrossRef]
Soil Properties | Method | Value |
---|---|---|
Soil pH | In water (1:1) | 6.4 |
Soil organic matter (%) | Combustion | 5.4 |
Total nitrogen (g·kg−1) | Kjeldahl | 1.4 |
P (mg·kg−1) | Mehlich 3-Extractable | 5.4 |
K (mg·kg−1) | Mehlich 3-Extractable | 53.1 |
Mg (mg·kg−1) | Mehlich 3-Extractable | 17.3 |
Ca (mg·kg−1) | Mehlich 3-Extractable | 1284 |
Al (mg·kg−1) | Mehlich 3-Extractable | 2097 |
Fe (mg·kg−1) | Mehlich 3-Extractable | 67.8 |
Factor | pH Category | Soil pH Class 1 | pHCaCl2 | pHwater 1 | |
---|---|---|---|---|---|
Primary factor | pH1 | Strongly acidic | 4.3–4.6 | 4.7–5.0 | |
pH2 | Moderately acidic | 5.1–5.4 | 5.5–5.8 | ||
pH3 | Slightly acidic | 5.5–6 | 5.9–6.5 | ||
pH4 | Neutral | 6.3–7 | 6.8–7.5 | ||
Fertilizer type | N–P–K 2 | N | P | K | |
g plant−1 | Source | ||||
Secondary factor | C | 0–0–0 | --- | --- | --- |
T | 0–2.9–1.7 | --- | Ca(H2PO4)2 | KCl | |
M1 | 4–2.9–1.7 | (NH4)2SO4 | Ca(H2PO4)2 | KCl | |
M2 | 4–2.9–1.7 | Ca(NO3)2 | Ca(H2PO4)2 | KCl | |
O | 4–2.9–1.7 | Granulated poultry manure |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tremblay, C.; Deslauriers, A.; Lafond, J.; Lajeunesse, J.; Paré, M.C. Effects of Soil pH and Fertilizers on Haskap (Lonicera caerulea L.) Vegetative Growth. Agriculture 2019, 9, 56. https://doi.org/10.3390/agriculture9030056
Tremblay C, Deslauriers A, Lafond J, Lajeunesse J, Paré MC. Effects of Soil pH and Fertilizers on Haskap (Lonicera caerulea L.) Vegetative Growth. Agriculture. 2019; 9(3):56. https://doi.org/10.3390/agriculture9030056
Chicago/Turabian StyleTremblay, Catherine, Annie Deslauriers, Jean Lafond, Julie Lajeunesse, and Maxime C. Paré. 2019. "Effects of Soil pH and Fertilizers on Haskap (Lonicera caerulea L.) Vegetative Growth" Agriculture 9, no. 3: 56. https://doi.org/10.3390/agriculture9030056
APA StyleTremblay, C., Deslauriers, A., Lafond, J., Lajeunesse, J., & Paré, M. C. (2019). Effects of Soil pH and Fertilizers on Haskap (Lonicera caerulea L.) Vegetative Growth. Agriculture, 9(3), 56. https://doi.org/10.3390/agriculture9030056