Screening and Optimization of Key Regulatory Factors for Juice Sac Lignification Control in Meizhou Pomelo with Complementary Metabolomic Mechanism Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Determination of Soil Organic Matter and Exchangeable Calcium Contents
2.2. Effect of Storage Temperature on Lignification of Pomelo Fruit
2.3. Effect of Tree Age on Pomelo Lignification
2.4. Effects of Plant Growth Regulators on Lignification in Pomelo Fruits
2.5. Evaluation Method for Granulation Index of Pomelo Juice Sacs
2.6. Determination of Lignin Content and Biosynthesis-Related Enzyme Activities in Juice Sacs
2.7. Metabolome Sequencing of Lignification in Pomelo Fruits
2.8. Data Analysis
3. Results and Discussion
3.1. Effects of Soil Properties on Pomelo Fruit Lignification
3.2. Influence of Postharvest Storage Temperature on Lignification of Pomelo Fruits
3.3. The Influence of Tree Age on the Lignification of Pomelo Fruits
3.4. The Influence of PGRs on the Lignification of Pomelo Fruits
3.5. The Regulatory Effect of PGRs on the Lignin Quality and Enzyme Activities of Pomelo Fruits
3.6. Analysis of Metabolites Associated with Pomelo Lignification
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Luo, W.; Cheng, L.; Wu, J.; Yu, Y.; Li, L.; Xu, Y. Influence of cultivar and turbidity on physicochemical properties, functional characteristics and volatile flavor substances of pomelo juices. Foods 2023, 12, 1028. [Google Scholar] [CrossRef]
- Guan, X.; Wan, H.; He, Z.; Liu, Z.; Jiang, R.; Ou, Y.; Chen, Y.; Gu, H.; Zhou, Z. Pomelo-Net: A lightweight semantic segmentation model for key elements segmentation in honey pomelo orchard for automated navigation. Comput. Electron. Agr. 2025, 229, 109760. [Google Scholar] [CrossRef]
- Yang, J.; Duan, M.; Zhang, B.; Shi, W.; Yan, S.; Li, X.; Long, C.; Liu, H.; Guo, L.; Zhang, H.; et al. Metabolome and transcriptome analyses reveal that pollination with ‘Guanxi’ honey pomelo pollen alleviates the postharvest fruit granulation of ‘crystal’ honey pomelo. Postharvest Biol. Technol. 2025, 230, 113831. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, X.; Chen, D.; Guo, J.; Chen, K.; Ye, C.; Liu, C. 1H NMR-Based metabolic profiling to follow changes in pomelo cultivars during postharvest senescence. Foods 2023, 12, 2001. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.; Zhou, H.; Liao, H. Nitrate modulates fruit lignification by regulating CgLAC3 expression in pomelo. Int. J. Mol. Sci. 2025, 26, 4158. [Google Scholar] [CrossRef]
- Liu, L.; Chen, Y.; Wu, W.; Chen, Q.; Tian, Z.; Huang, J.; Ren, H.; Zhang, J.; Du, X.; Zhuang, M.; et al. A multilevel investigation to reveal the regulatory mechanism of lignin accumulation in juice sac granulation of pomelo. BMC Plant Biol. 2024, 24, 390. [Google Scholar] [CrossRef]
- Zhou, X.; Xiong, X.; Lu, F.; Shi, W.; Zhou, Y.; Lai, N.; Chen, L.-S.; Huang, Z.-R. Excessive copper induces lignin biosynthesis in the leaves and roots of two citrus species: Physiological, metabolomic and anatomical aspects. Ecotox. Environ. Safe. 2025, 289, 117692. [Google Scholar] [CrossRef]
- Li, X.; Wang, N.; She, W.; Guo, Z.; Pan, H.; Yu, Y.; Ye, J.; Pan, D.; Pan, T. Identification and functional analysis of the CgNAC043 gene involved in lignin synthesis from citrusgrandis “San Hong”. Plants 2022, 11, 403. [Google Scholar] [CrossRef]
- Hou, Y.; Zhao, L.; Xie, B.; Hu, S.; Zheng, Y.; Jin, P. EjCaM7 and EjCAMTA3 synergistically alleviate chilling-induced lignification in loquat fruit by repressing the expression of lignin biosynthesis genes. Postharvest Biol. Tec. 2022, 192, 112010. [Google Scholar] [CrossRef]
- Su, D.; Jiang, Y.; Song, B.; Wu, Z.; Yan, X.; He, Z.; Ye, D.; Ou, J.; Zeng, Y.; Wu, L. Reduced fertilization and magnesium supplementation: Modulating fruit quality in honey pomelo (Citrus maxima (Burm.) Merr.). Plants 2024, 13, 2757. [Google Scholar] [CrossRef]
- Li, Q.; Yao, S.; Deng, L.; Zeng, K. Changes in biochemical properties and pectin nanostructures of juice sacs during the granulation process of pomelo fruit (Citrus grandis). Food Chem. 2022, 376, 131876. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Yang, C.; Li, H.; Jiang, C. Transcriptomic analysis reveals the impact of interstock on vesicle granulation in ‘Hainan Qingyou’ pomelo (Citrus maxima) fruit. Horticulturae 2025, 11, 1230. [Google Scholar] [CrossRef]
- Sharma, R.R.; Saxena, S.K. Rootstocks influence granulation in Kinnow mandarin (Citrusnobilis × C.deliciosa). Sci. Hortic. 2004, 101, 235–242. [Google Scholar] [CrossRef]
- Nandita, K.; Kundu, M.; Nahakpam, S.; Rakshit, R. Micronutrients spray to combat granulation and improve fruit quality of sweet orange Citrus sinensis (L.) Osbeck cv. Mosambi under nontraditional citrus growing track. J. Plant Nutr. 2023, 46, 4207–4223. [Google Scholar] [CrossRef]
- Iqbal, J.; Kiran, S.; Hussain, S.; Iqbal, R.; Ghafoor, U.; Younis, U.; Zarei, T.; Naz, M.; Germi, S.; Danish, S.; et al. Acidified biochar confers improvement in quality and yield attributes of sufaid chaunsa mango in saline soil. Horticulturae 2021, 7, 418. [Google Scholar] [CrossRef]
- Hanafi, H.; Shokouhian, A.A.; Derafshi, M.; Hemati, A.; Astatkie, T.; Asgari Lajayer, B. Evaluation of the effect of lignin, calcium nitrate and sulfate of potash on the quantitative and qualitative characteristics of apple. Appl. Fr. Sci. 2024, 66, 2113–2121. [Google Scholar] [CrossRef]
- Çoban, G.A.; Aras, S. Effects of ascorbic and oxalic acids on cucumber seedling growth and quality under mildly limey soil conditions. Gesunde Pflanz. 2023, 75, 1925–1932. [Google Scholar] [CrossRef]
- Ren, Q.-Q.; Huang, Z.-R.; Huang, W.-L.; Huang, W.-T.; Chen, H.-H.; Yang, L.-T.; Ye, X.; Chen, L.-S. Physiological and molecular adaptations of Citrus grandis roots to long-term copper excess revealed by physiology, metabolome and transcriptome. Environ. Exp. Bot. 2022, 203, 105049. [Google Scholar] [CrossRef]
- Deng, Z.; Ma, G.; Zhang, L.; Kurata, D.; Ikeya, M.; Keawmanee, N.; Nonaka, K.; Takishita, F.; Kato, M. Characterization of granulation in citrus “Harumi” fruit during postharvest storage. Postharvest Biol. Tec. 2024, 210, 112770. [Google Scholar] [CrossRef]
- Hofman, H.J.; Toegel, H.; Parfitt, S.C.; Smith, M.W. Reduced irrigation in high rainfall years and winter application of nitrogen reduce granulation in Imperial mandarin (Citrus reticulata cv. Imperial). Crop Pasture Sci. 2024, 75, CP24019. [Google Scholar] [CrossRef]
- Hong, P.; Zhang, J.; Shi, D.; Yang, C.; Zeng, M.; Li, X.; Zhou, K.; Xi, W. Postharvest application of methyl jasmonate alleviates lignin accumulation in stone cells of pear fruit during low-temperature storage. Postharvest Biol. Tec. 2024, 209, 112692. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Bao, L.; Long, J.; Cui, X.; Zheng, Z.; Zhao, X.; Huang, Y.; Jiao, F.; Su, C.; et al. Metabolomic and transcriptomic analysis of flavonoids biosynthesis mechanisms in mulberry fruit (Hongguo 2) under exogenous hormone treatments. Plant Physiol. Bioch. 2024, 212, 108773. [Google Scholar] [CrossRef] [PubMed]
- Khalid, S.; Malik, A.U.; Khan, A.S.; Khan, M.N.; Ullah, M.I.; Abbas, T.; Khalid, M.S. Tree age and fruit size in relation to postharvest respiration and quality changes in ‘Kinnow’ mandarin fruit under ambient storage. Sci. Hortic. 2017, 220, 183–192. [Google Scholar] [CrossRef]
- Meena, N.; Asrey, R. Tree age affects physicochemical, functional quality and storability of Amrapali mango (Mangifera indica L.) fruits. J. Sci. Food Agric. 2018, 98, 3255–3262. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhu, X.; Tian, C.; Shi, X.; Gong, H.; Sun, S.; Li, J.; Zhang, A. Low temperature induces lignification in sweet cherry by modulating lignin synthesis-related genes. Postharvest Biol. Tec. 2026, 231, 113944. [Google Scholar] [CrossRef]
- Yang, B.; Fang, X.; Han, Y.; Liu, R.; Chen, H.; Gao, H. Analysis of lignin metabolism in water bamboo shoots during storage. Postharvest Biol. Tec. 2022, 192, 111989. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, X.; Dai, M. Improving crop drought resistance with plant growth regulators and rhizobacteria: Mechanisms, applications, and perspectives. Plant Commun. 2022, 3, 100228. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, J.; Na, M.; Xu, S.; Li, X.; Zhou, S. Enhancement of cadmium uptake in Cinnamomum camphora seedlings through the regulation of physiological resistance by three exogenous plant growth regulators. Environ. Technol. Inno. 2025, 38, 104098. [Google Scholar] [CrossRef]
- Ranjbar, A.; Moradinezhad, F.; Panahi, B. Roles of micronutrients and plant growth regulators on abiotic stresses management of pistachio trees: A review. J. Plant Growth Regul. 2025, 44, 4931–4959. [Google Scholar] [CrossRef]
- Shafi, Z.; Shahid, M.; Ilyas, T.; Pandey, V.K.; Aijaz, S.A.; Singh, R.; Sahu, P.K. Unveiling the plant growth regulators crosstalk in agricultural crop response to salinity-stress: A concise review. Physiol. Plant. 2025, 177, e70402. [Google Scholar] [CrossRef]
- Xu, S.; Sun, M.; Yao, J.-L.; Liu, X.; Xue, Y.; Yang, G.; Zhu, R.; Jiang, W.; Wang, R.; Xue, C.; et al. Auxin inhibits lignin and cellulose biosynthesis in stone cells of pear fruit via the PbrARF13-PbrNSC-PbrMYB132 transcriptional regulatory cascade. Plant Biotechnol. J. 2023, 21, 1408–1425. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Wang, J.; Zhang, A.; Zhu, Z.; Ren, S.; Zhang, C.; Zhang, Q. Metabolomics mechanism and lignin response to laxogenin C, a natural regulator of plants growth. Int. J. Mol. Sci. 2022, 23, 2990. [Google Scholar] [CrossRef]
- Pattison, R.J.; Csukasi, F.; Catalá, C. Mechanisms regulating auxin action during fruit development. Physiol. Plant. 2014, 151, 62–72. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Zhang, F.; Han, C.; Li, W.; Ren, M.; Wang, Y.; Qi, K.; Xie, Z.; Zhang, S.; et al. PbARF19-mediated auxin signaling regulates lignification in pear fruit stone cells. Plant Sci. 2024, 344, 112103. [Google Scholar] [CrossRef]
- Zavala, M.; Menares, M.; Acevedo, O.; Melo, M.; Nuñez, C.; Arancibia, C.; Pedreschi, R.; Donoso, J.M.; Meisel, L.A.; Maldonado, J.E.; et al. PavSPL expression dynamics in fruits and seeds and in relation to endocarp lignification status during the transition from development to ripening in sweet cherry. Horticulturae 2025, 11, 706. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.; Cao, Z.; Li, G.; Yu, Q.; Li, M.; Xu, Y.; Zhang, H.; Qin, G. Pomegranate Aux/IAA9A gene offers new insights into seed development and tissue lignification. Sci. Hortic. 2025, 341, 113979. [Google Scholar] [CrossRef]
- Li, H.; Chen, L.; Liu, R.; Lu, Z. Role of endogenous hormones on seed hardness in pomegranate fruit development. Horticulturae 2025, 11, 38. [Google Scholar] [CrossRef]
- T/DBMY 002-2021; Technical Code for the Cultivation of Meizhou Pomelo. Meizhou Municipal Bureau of Agriculture and Rural Affairs: Meizhou, China, 2021.
- Li, S.; Lin, D.; Huo, L.; Wu, B.; Sun, L.; An, Y.; Xia, Y. Critical factors and cost estimation for the immobilization of cadmium-contaminated paddy fields for rice safety. J. Soils Sediments. 2025, 25, 2995–3007. [Google Scholar] [CrossRef]
- Wang, S.; Li, W.; Ding, C.; Zhang, J.; Zhang, N.; Li, Y.; Gao, B.; Wang, B.; Wang, X. Biochar-supported zero-valent iron enhanced arsenic immobilization in a paddy soil: The role of soil organic matter. Biochar 2024, 6, 26. [Google Scholar] [CrossRef]
- Chen, C.; Nie, Z.; Wan, C.; Gan, Z.; Chen, J. Suppression on postharvest juice sac granulation and cell wall modification by chitosan treatment in harvested pummelo (Citrus grandis L. Osbeck) stored at room temperature. Food Chem. 2021, 336, 127636. [Google Scholar] [CrossRef]
- Zimmermann, A.; Hahlbrock, K. Light-induced changes of enzyme activities in parsley cell suspension cultures. Arch. Biochem. Biophys. 1975, 166, 54–62. [Google Scholar] [CrossRef]
- Yun, M.; Chen, W.; Deng, F.; Yogo, Y. Differential properties of 4-coumarate: CoA ligase related to growth suppression by chalcone in maize and rice. Plant Growth Regul. 2005, 46, 169–176. [Google Scholar] [CrossRef]
- dos Santos, W.; Ferrarese, M.; Ferrarese, O. High performance liquid chromatography method for the determination of cinnamyl alcohol dehydrogenase activity in soybean roots. Plant Physiol. Biochem. 2006, 44, 511–515. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; Gao, X. A new method for accurate determination of peroxidase activity based on fluorescence decrease of guaiacol. Chin. J. Anal. Chem. 2015, 43, 1040–1046. [Google Scholar]
- Wu, L.; Qin, M.; Muneer, M.A.; Bao, J.; Chen, X.; Yang, Y.; Huang, J.; Zhang, S.; Su, D.; Yan, X. Soil pH and organic matter: Key edaphic factors in sustaining optimum yield and quality of pomelo fruit. Sci. Hortic. 2024, 337, 113524. [Google Scholar] [CrossRef]
- Yan, S.; Gao, Y.; Tian, M.; Tian, Y.; Li, J. Comprehensive evaluation of effects of various carbon-rich amendments on tomato production under continuous saline water irrigation: Overall soil quality, plant nutrient uptake, crop yields and fruit quality. Agr. Water Manag. 2021, 255, 106995. [Google Scholar] [CrossRef]
- Li, Y.; Han, M.-Q.; Lin, F.; Ten, Y.; Lin, J.; Zhu, D.-H.; Guo, P.; Weng, Y.-B.; Chen, L.-S. Soil chemical properties, ‘Guanximiyou’ pummelo leaf mineral nutrient status and fruit quality in the southern region of Fujian province, China. J. Soil Sci. Plant Nut. 2015, 15, 615–628. [Google Scholar] [CrossRef]
- Dang, L.V.; Quyen, N.K.; Ngoc, N.P.; Ly, L.M.; Thao, P.T.P.; Hung, N.N. Combining organic and foliar fertilization to enhance soil fertility and mitigate physiological disorders of durian (Durio zibethinus Murr.) fruit in the tropics. Plants 2025, 14, 1185. [Google Scholar] [CrossRef] [PubMed]
- Janke, R.R.; Menezes-Blackburn, D.; Al Hamdi, A.; Rehman, A. Organic management and intercropping of fruit perennials increase soil microbial diversity and activity in arid zone orchard cropping systems. Sustainability 2024, 16, 9391. [Google Scholar] [CrossRef]
- Wu, Y.; Si, W.; Yan, S.; Wu, L.; Zhao, W.; Zhang, J.; Zhang, F.; Fan, J. Water consumption, soil nitrate-nitrogen residue and fruit yield of drip-irrigated greenhouse tomato under various irrigation levels and fertilization practices. Agr. Water Manage. 2023, 277, 108092. [Google Scholar] [CrossRef]
- Kamble, V.; Narayana, C.K.; Karunakaran, G.; Rao, D.V.S.; Sriram, S.; Laxman, R.H. Influence of different storage temperature on physiology, quality, antioxidant activity and shelf life of avocado fruits (Persea americana Mill.). Acta Physiol. Plant. 2025, 47, 25. [Google Scholar] [CrossRef]
- Zhang, S.; Shan, Y.; Li, Y.; He, J.; Jiang, Y. Hydrogen peroxide receptors regulate chilling injury of banana fruit during low-temperature storage. Postharvest Biol. Tec. 2024, 214, 112985. [Google Scholar] [CrossRef]
- Park, H.; Eo, H.J.; Kim, C.-W.; Stewart, J.E.; Lee, U.; Lee, J. Physiological disorders in cold-stored ‘Autumn Sense’ hardy kiwifruit depend on the storage temperature and the modulation of targeted metabolites. Food Chem. 2024, 460, 140730. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Wang, Z.; Xiong, W.; Kong, W.; Huang, M.; Xi, W.; Zhou, K. The effect of postharvest storage temperatures on fruit flavor constituents in ‘Wushancuili’ plum. Horticulturae 2024, 10, 414. [Google Scholar] [CrossRef]
- Abeysuriya, H.I.; Bulugahapitiya, V.P.; Jayatissa, L.P. Variation of vitamin C content and antioxidant capacities during the post-harvest storage of fresh fruits under different temperatures. J. Stored Prod. Res. 2024, 109, 102426. [Google Scholar] [CrossRef]
- Hong, K.; Xu, H.; Wang, J.; Zhang, L.; Hu, H.; Jia, Z.; Gu, H.; He, Q.; Gong, D. Quality changes and internal browning developments of summer pineapple fruit during storage at different temperatures. Sci. Hortic. 2013, 151, 68–74. [Google Scholar] [CrossRef]
- Liu, H.; Lv, Z.; Yang, W.; Li, A.; Liu, J.; Zhang, Q.; Jiao, Z. Virtual cold chain method to evaluate the effect of rising temperature on the quality evolution of peach fruit. Foods 2023, 12, 2403. [Google Scholar] [CrossRef]
- Zhao, H.; Meng, S.; Fu, M.; Chen, Q. Near-freezing temperature storage improves peach fruit chilling tolerance by regulating the antioxidant and proline metabolism. Horticulturae 2024, 10, 337. [Google Scholar] [CrossRef]
- Li, X.; Huang, H.; Zhang, L.; Zhao, L. Effect of postharvest storage temperature and duration on tomato fruit quality. Foods 2025, 14, 1002. [Google Scholar] [CrossRef] [PubMed]
- Stanley, J. Factors affecting fruit set and fruit quality along branch units of different apricot cultivars. N. Zeal. J. Crop Hort. 2016, 44, 171–191. [Google Scholar] [CrossRef]
- Rutkowski, K.; Łysiak, G.P. Weather conditions, orchard age and nitrogen fertilization influences yield and quality of ‘Łutówka’ sour cherry fruit. Agriculture 2022, 12, 2008. [Google Scholar] [CrossRef]
- Khalid, S.; Malik, A.U.; Khan, A.S.; Shahid, M.; Shafique, M. Tree age, fruit size and storage conditions affect levels of ascorbic acid, total phenolic concentrations and total antioxidant activity of ‘Kinnow’ mandarin juice. J. Sci. Food Agr. 2016, 96, 1319–1325. [Google Scholar] [CrossRef]
- Nayak, S.L.; Sethi, S.; Paul, V.; Singh, B.; Kumar Dubey, A. Citrus granulation: An unsolved disorder with physiological intricacies. Appl. Fr. Sci. 2025, 67, 235. [Google Scholar] [CrossRef]
- Hirzel, J. Can the firmness, weight, and size of blueberry fruit be enhanced through the application of low amounts of calcium to the soil? Plants 2024, 13, 1. [Google Scholar] [CrossRef]
- Galizzi, F.A.; Felker, P.; González, C.; Gardiner, D. Correlations between soil and cladode nutrient concentrations and fruit yield and quality in cactus pears, Opuntia ficus indica in a traditional farm setting in Argentina. J. Arid Environ. 2004, 59, 115–132. [Google Scholar] [CrossRef]
- Lyu, T.; Wang, Y.; Luo, A.; Li, Y.; Peng, S.; Cai, H.; Zeng, H.; Wang, Z. Effects of climate, plant height, and evolutionary age on geographical patterns of fruit type. Front. Plant Sci. 2021, 12, 604272. [Google Scholar] [CrossRef]
- Rojas-Barros, P.; Bryla, D.R.; Orr, S.T.; Hardigan, M.; Maupin, B.; DeVetter, L.W. Fruit calcium is influenced by soil and physiological factors but not by fertilizer applications in floricane-fruiting red raspberry. HortScience 2025, 60, 1836–1841. [Google Scholar] [CrossRef]
- Liu, D.; Jiang, N.; Yuan, Y.; Liu, H.; Ju, Y.; Sun, W.; Jia, W.; Fang, Y.; Zhao, D.; Mao, J.; et al. Comprehensive analysis of transcriptomics and metabolomics provides insights into the mechanism by plant growth regulators affect the quality of jujube (Ziziphus jujuba Mill.) fruit. PLoS ONE 2024, 19, e0305185. [Google Scholar] [CrossRef] [PubMed]
- Singh, L.; Sadawarti, R.K.; Singh, S.K.; Shaifali; Mirza, A.A. Efficacy of plant growth regulators for the modulation in the productivity of strawberries (Fragaria x ananassa Duchesne). J. Plant Growth Regul. 2025, 44, 1072–1086. [Google Scholar] [CrossRef]
- Chawla, R.; Guleria, T.; Thakur, A. Role of plant growth regulators in fruit crop production: A comprehensive review. Appl. Fr. Sci. 2025, 67, 294. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, B.; Li, Y.; Wu, D.; Du, B.; Wang, H.; Yang, P.; Ren, D.; Wang, X.; Huang, J. The plant growth regulator 14-OH BR can minimize the application content of CPPU in kiwifruit (Actinidia chinensis) ‘Donghong’ and increase postharvest time without sacrificing the yield. Processes 2022, 10, 2345. [Google Scholar] [CrossRef]
- Bai, C.; Zheng, Y.; Watkins, C.B.; Fu, A.; Ma, L.; Gao, H.; Yuan, S.; Zheng, S.; Gao, L.; Wang, Q.; et al. Revealing the specific regulations of brassinolide on tomato fruit chilling injury by integrated multi-omics. Front. Nutr. 2021, 8, 769715. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhu, L.; Wang, H.; Zhou, X.; Wang, M.; Li, L.; Liu, F.; Sun, J.; Xiao, G. Peptide hormone-mediated regulation of plant development and environmental adaptability. Adv. Sci. 2025, 12, e06590. [Google Scholar] [CrossRef]
- Zhang, Y.; Berman, A.; Shani, E. Plant hormone transport and localization: Signaling molecules on the move. Annu. Rev. Plant Biol. 2023, 74, 453–479. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Xu, L.; Li, X.; Zhang, Y. Salicylic acid: The roles in plant immunity and crosstalk with other hormones. J. Integr. Plant Biol. 2025, 67, 773–785. [Google Scholar] [CrossRef]
- Ritonga, F.N.; Zhou, D.; Zhang, Y.; Song, R.; Li, C.; Li, J.; Gao, J. The roles of gibberellins in regulating leaf development. Plants 2023, 12, 1243. [Google Scholar] [CrossRef]
- Huang, M.; Lai, C.; Liang, Y.; Xiong, Q.; Chen, C.; Ju, Z.; Jiang, Y.; Zhang, J. Improving the functional components and biological activities of navel orange juice through fermentation with an autochthonous strain Lactiplantibacillus paraplantarum M23. Food Bioprod. Process. 2025, 149, 249–260. [Google Scholar] [CrossRef]
- Tan, G.-F.; Zhao, Q.; Wang, F.; Li, S.-Y.; Liu, Z.-Y.; Zhang, X.-Q.; Zhong, X.-L.; Zhu, S.-H.; Lei, X.-J.; Han, Z.-M.; et al. Mechanistic insights into nutrient profiles, cellulose, and hemicellulose dynamics in red and green Toona sinensis buds during cold storage. Front. Plant Sci. 2025, 16, 1518924. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Wu, X.; Huang, Y.; Pan, X.; Yao, K.; Liu, Z.; Wang, C.; Liao, W. The involvement of brassinolides in fruit ripening: Crosstalk with plant growth regulators and transcription factors. Food Qual. Saf. 2023, 8, fyad071. [Google Scholar] [CrossRef]
- Zhao, M.; Li, J.; Shi, X.; Sanaullah Malik, M.; Quan, Y.; Guo, D.; Wang, L.; Wang, S. Effects of exogenous plant regulators on growth and development of “Kyoho” grape under salt alkali stress. Front. Plant Sci. 2023, 14, 1274684. [Google Scholar] [CrossRef]
- He, S.; Xia, X.; Yang, J.; Xin, J.; Chen, S.; Jia, C. Overexpression of AtBES1D in tomato enhances BR response and accelerates fruit ripening. J. Plant Physiol. 2025, 312, 154563. [Google Scholar] [CrossRef]
- Hassan, A.H.; Mansour, N.; Samaan, M.S.F.; Nasser, M.A. Improving naomi mango trees capability to withstand salt stress using some plant growth regulators. J. Soil Sci. Plant Nut. 2025, 25, 7152–7169. [Google Scholar] [CrossRef]
- Zhang, C.; Whiting, M. Plant growth regulators improve sweet cherry fruit quality without reducing endocarp growth. Sci. Hortic. 2013, 150, 73–79. [Google Scholar] [CrossRef]
- Domingues Neto, F.J.; Pimentel Junior, A.; Putti, F.F.; Rodrigues, J.D.; Ono, E.O.; Tecchio, M.A.; Leonel, S.; Silva, M.d.S. Effect of plant growth regulators on germination and deedling growth of Passiflora alata and Passiflora edulis. Horticulturae 2024, 10, 1087. [Google Scholar] [CrossRef]
- Bons, H.K.; Kaur, M. Role of plant growth regulators in improving fruit set, quality and yield of fruit crops: A review. J. Hortic. Sci. Biotech. 2020, 95, 137–146. [Google Scholar] [CrossRef]
- Nasiri, S.; Rezaei, M.; Mojerlou, S. Impacts of preharvest treatment with salicylic acid and melatonin in suppressing gray mold (Botrytis cinerea Pers.) in Bell Pepper. J. Crop Health 2024, 76, 981–994. [Google Scholar] [CrossRef]
- Kim, D.S.; Hwang, B.K. An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. J. Exp. Bot. 2014, 65, 2295–2306. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Chen, Y.; Zhang, L.; Cai, Y. Two monolignoid biosynthetic genes 4-coumarate:coenzyme A ligase (4CL) and p-coumaric acid 3-hdroxylase (C3H) involved in lignin accumulation in pear fruits. Physiol. Mol. Biol. Plants 2023, 29, 791–798. [Google Scholar] [CrossRef]
- Wang, J.; Cai, J.; Zhao, J.; Guo, Z.; Pan, T.; Yu, Y.; She, W. Enzyme activities in the lignin metabolism of Chinese olive (Canarium album) with different flesh characteristics. Horticulturae 2022, 8, 408. [Google Scholar] [CrossRef]
- Yang, S.; Qin, Y.; Gao, J.; Zhang, G.; Peng, L.; Li, Y.; Zhang, X.; Zhang, M.; Chen, Y. Lignin: The primary component responsible for endocarp sclerosis in the development of Cornus officinalis fruit. BMC Plant Biol. 2025, 25, 1375. [Google Scholar] [CrossRef]
- Cheng, X.; Li, M.; Li, D.; Zhang, J.; Jin, Q.; Sheng, L.; Cai, Y.; Lin, Y. Characterization and analysis of CCR and CAD gene families at the whole-genome level for lignin synthesis of stone cells in pear (Pyrus bretschneideri) fruit. Biol. Open 2017, 6, 1602–1613. [Google Scholar] [CrossRef]
- Shan, L.L.; Li, X.; Wang, P.; Cai, C.; Zhang, B.; Sun, C.D.; Zhang, W.S.; Xu, C.J.; Ferguson, I.; Chen, K.S. Characterization of cDNAs associated with lignification and their expression profiles in loquat fruit with different lignin accumulation. Planta 2008, 227, 1243–1254. [Google Scholar] [CrossRef]
- Shen, X.; Liu, Y.; Zeng, Y.; Zhao, Y.; Bao, Y.; Shao, X.; Wu, Z.; Zheng, Y.; Jin, P. Hydrogen sulfide attenuates chilling injury in loquat fruit by alleviating oxidative stress and maintaining cell membrane integrity. Food Chem. 2025, 463, 141094. [Google Scholar] [CrossRef]
- Li, Z.; Huang, J.; Wang, L.; Li, D.; Chen, Y.; Xu, Y.; Li, L.; Xiao, H.; Luo, Z. Novel insight into the role of sulfur dioxide in fruits and vegetables: Chemical interactions, biological activity, metabolism, applications, and safety. Crit. Rev. Food Sci. Nutr. 2024, 64, 8741–8765. [Google Scholar] [CrossRef]
- Wang, B.; Li, Z.; Han, Z.; Xue, S.; Bi, Y.; Prusky, D. Effects of nitric oxide treatment on lignin biosynthesis and texture properties at wound sites of muskmelons. Food Chem. 2021, 362, 130193. [Google Scholar] [CrossRef]
- Li, Z.; Xu, X.; Xue, S.; Gong, D.; Wang, B.; Zheng, X.; Xie, P.; Bi, Y.; Prusky, D. Preharvest multiple sprays with chitosan promotes the synthesis and deposition of lignin at wounds of harvested muskmelons. Int. J. Biol. Macromol. 2022, 206, 167–174. [Google Scholar] [CrossRef]
- Chen, O.; Deng, L.; Ruan, C.; Yi, L.; Zeng, K. Pichia galeiformis induces resistance in postharvest citrus by activating the phenylpropanoid biosynthesis pathway. J. Agric. Food. Chem. 2021, 69, 2619–2631. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ge, Y.; Bi, Y.; Li, C.; Deng, H.; Dong, B. Effect of postharvest acibenzolar-S-methyl dipping on phenylpropanoid pathway metabolism in muskmelon (Cucumis melo L.) fruits. Sci. Hortic. 2014, 168, 113–119. [Google Scholar] [CrossRef]
- An, Y.-M.; Zhu, Q.; Lv, H.-Q.; Zhang, X.-N.; Huang, F.; Guo, Y.-K.; Cao, C.-J.; Liu, H.; Li, Y.; Xu, L.-Z. Genomic basis of metabolome-mediated cultivar-specific flavor formation in juice sacs of the pomelo (Citrus grandis (L.) Osbeck) cultivars Shatian and Guanxi honey. LWT 2024, 191, 115606. [Google Scholar] [CrossRef]
- Li, X.; Huang, H.; Rizwan, H.M.; Wang, N.; Jiang, J.; She, W.; Zheng, G.; Pan, H.; Guo, Z.; Pan, D.; et al. Transcriptome analysis reveals candidate lignin-related genes and transcription factors during fruit development in pomelo (Citrus maxima). Genes 2022, 13, 845. [Google Scholar] [CrossRef] [PubMed]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Luo, R.; Huang, W.; Zhou, W.; Li, Z.; Lu, K.; Ding, B.; Zhou, S. Screening and Optimization of Key Regulatory Factors for Juice Sac Lignification Control in Meizhou Pomelo with Complementary Metabolomic Mechanism Analysis. Agriculture 2026, 16, 320. https://doi.org/10.3390/agriculture16030320
Luo R, Huang W, Zhou W, Li Z, Lu K, Ding B, Zhou S. Screening and Optimization of Key Regulatory Factors for Juice Sac Lignification Control in Meizhou Pomelo with Complementary Metabolomic Mechanism Analysis. Agriculture. 2026; 16(3):320. https://doi.org/10.3390/agriculture16030320
Chicago/Turabian StyleLuo, Ruijin, Wenjie Huang, Weixiong Zhou, Zhong Li, Kaiyin Lu, Bao Ding, and Sheng Zhou. 2026. "Screening and Optimization of Key Regulatory Factors for Juice Sac Lignification Control in Meizhou Pomelo with Complementary Metabolomic Mechanism Analysis" Agriculture 16, no. 3: 320. https://doi.org/10.3390/agriculture16030320
APA StyleLuo, R., Huang, W., Zhou, W., Li, Z., Lu, K., Ding, B., & Zhou, S. (2026). Screening and Optimization of Key Regulatory Factors for Juice Sac Lignification Control in Meizhou Pomelo with Complementary Metabolomic Mechanism Analysis. Agriculture, 16(3), 320. https://doi.org/10.3390/agriculture16030320
