Shifting from Seed Maize to Grain Maize Changes Carbon Budget Under Mulched Irrigation Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Experimental Measurements and Basic Data
2.2.1. Measurement of Carbon Flux and Environmental Factors
2.2.2. Measurement of Biological Factors
2.2.3. Estimation of Carbon Balance Parameters
2.3. Statistical Analysis
3. Results
3.1. Seasonal and Inter-Annual Variations in Carbon Flux
3.2. Impact of Environmental and Biological Factors on Carbon Flux
3.3. Estimation of Carbon Budget
4. Discussion
4.1. The Carbon Flux in Maize Fields Exhibits a Strong Dependence on Ts and LAI
4.2. Differences in Carbon Balance Components Under Changing Irrigation Methods and Different Maize Varieties
4.3. Limitations and Implications
5. Conclusions
- (1)
- The DM system enhanced photosynthetic assimilation, ecosystem respiration, and net carbon sequestration compared to BM. Over the entire growth period, ΣGPP, ΣNEP, and ΣER under DM were 8.89%, 8.05%, and 9.51% higher than under BM, respectively.
- (2)
- Shifting from seed maize to grain maize had a substantially greater impact on carbon fluxes than changing the irrigation method. The increases in ΣGPP, ΣNEP, and ΣER due to maize variety change were 7.64, 13.34, and 4.20 times larger, respectively, than those induced by switching from BM to DM.
- (3)
- Straw return is a decisive practice for securing a positive carbon balance. With mechanical harvesting alone, seed maize fields acted as net carbon sources, while grain maize fields were weak sinks. However, when straw was returned to the field, both systems became significant carbon sinks, with grain maize exhibiting stronger sequestration capacity.
- (4)
- The dominant controlling factors of carbon flux differed between maize types. Ts was the key regulator for seed maize, whereas LAI was the primary driver for grain maize.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wieckowski, A.; Vestin, P.; Ardö, J.; Roupsard, O.; Ndiaye, O.; Ba, S.; Delon, C.; Serça, D.; Tagesson, T. Contrasting roles of ground, trees, ponds and grazing in carbon dioxide, methane and nitrous oxide fluxes of an African semi-arid savanna. Agric. Ecosyst. Environ. 2026, 399, 110199. [Google Scholar] [CrossRef]
- Gui, L.; Jian, S.; Gao, J.; Zhang, Y.; Zhang, X. Factors affecting carbon fluxes in a winter wheat-summer maize rotation farmland ecosystem and their response to short-cycle weather perturbations. J. Environ. Manag. 2026, 398, 128476. [Google Scholar] [CrossRef]
- Tao, F.; Li, Y.; Chen, Y.; Yin, L.; Zhang, S. Daily, seasonal and inter-annual variations in CO2 fluxes and carbon budget in a winter-wheat and summer-maize rotation system in the North China Plain. Agric. For. Meteorol. 2022, 324, 109098. [Google Scholar] [CrossRef]
- Wang, T.; Fu, Z.; Makowski, D.; Liang, G.; Jin, H.; Zhang, F. Seasonal divergence in the sensitivity of carbon and water fluxes to climate variability in terrestrial ecosystems. Agric. For. Meteorol. 2026, 376, 110916. [Google Scholar] [CrossRef]
- Prăvălie, R. Drylands extent and environmental issues. A global approach. Earth-Sci. Rev. 2016, 161, 259–278. [Google Scholar] [CrossRef]
- Ahlström, A.; Raupach, M.R.; Schurgers, G.; Smith, B.; Arneth, A.; Jung, M.; Reichstein, M.; Canadell, J.G.; Friedlingstein, P.; Jain, A.K.; et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 2015, 348, 895–899. [Google Scholar] [CrossRef]
- Li, M.; Peng, J.; Lu, Z.; Zhu, P. Research progress on carbon sources and sinks of farmland ecosystems. Resour. Environ. Sustain. 2023, 11, 100099. [Google Scholar] [CrossRef]
- Yue, Z.; Li, Z.; Yu, G.; Chen, Z.; Shi, P.; Qiao, Y.; Du, K.; Tian, C.; Zhao, F.; Leng, P.; et al. Seasonal variations and driving mechanisms of CO2 fluxes over a winter-wheat and summer-maize rotation cropland in the North China plain. Agric. For. Meteorol. 2023, 342, 109699. [Google Scholar] [CrossRef]
- Peng, X.; Wang, Y.; Ma, J.; Liu, X.; Gu, X.; Cai, H. Seasonal variation and controlling factors of carbon balance over dry semi-humid cropland in Guanzhong Plain. Eur. J. Agron. 2023, 149, 126912. [Google Scholar] [CrossRef]
- Ono, K.; Ikawa, H.; Miyata, A. Multi-year water and carbon flux contrasts between high-yielding and conventional rice cultivars. Agric. For. Meteorol. 2026, 378, 110983. [Google Scholar] [CrossRef]
- Blaise, D.; Desouza, N.D.; Singh, A. Satellite-based measurements of temporal and spatial variations in C fluxes of irrigated and rainfed cotton grown in India. Remote Sens. Appl. Soc. Environ. 2024, 36, 101365. [Google Scholar] [CrossRef]
- Wagle, P.; Zhou, Y.; Northup, B.K.; Moffet, C.; Gunter, S.A. Carbon dioxide fluxes over irrigated and rainfed alfalfa in the Southern Great Plains, USA. Eur. J. Agron. 2024, 159, 127265. [Google Scholar] [CrossRef]
- Yang, K.; Wang, F.; Zhao, J.; Shock, C.C.; Zhang, Y.; Feng, S.; Hou, X.; Han, J.; Wu, X. Soil temperature and aeration modification using black plastic mulch to improve potato yield and water use efficiency. Field Crops Res. 2026, 338, 110317. [Google Scholar] [CrossRef]
- Liu, X.; Wang, D.; Bazhabaike, M.; Zhou, M.; Yin, T. Biodegradable Film Mulching Increases Soil Respiration: A Two-Year Field Comparison with Polyethylene Film Mulching in a Semi-Arid Region of Northern China. Agronomy 2025, 15, 2631. [Google Scholar] [CrossRef]
- Guo, H.; Wang, X.; Wang, Y.; Li, S. Effect of mulched drip irrigation on crop biomass and carbon fluxes in maize field. Agric. Water Manag. 2024, 303, 109016. [Google Scholar] [CrossRef]
- Wang, C.; Li, S.; Wu, M.; Zhang, W.; Guo, Z.; Huang, S.; Yang, D. Co-regulation of temperature and moisture in the irrigated agricultural ecosystem productivity. Agric. Water Manag. 2023, 275, 108016. [Google Scholar] [CrossRef]
- Wang, C.; Li, S.; Wu, M.; Wang, X.; Wang, S.; Guo, Z.; Huang, S.; Yang, H.; Gao, L. High efficiency and low greenhouse gas emissions intensity of maize in drip irrigation under mulch system. Agric. Ecosyst. Environ. 2023, 346, 108344. [Google Scholar] [CrossRef]
- Liu, S.; Feng, Z.; Fang, S.; Liu, G.; Yuan, X.; Shang, B.; Xu, Y.; Fu, H.; Jin, Z.; Chen, Z.; et al. Assessing the Accuracy of Eddy-Covariance Measurement at Different Source Emission Scenarios. J. Geophys. Res. Atmos. 2024, 129, e2023JD040701. [Google Scholar] [CrossRef]
- Virkkala, A.M.; Natali, S.M.; Rogers, B.M.; Watts, J.D.; Savage, K.; Connon, S.J.; Mauritz, M.; Schuur, E.A.G.; Peter, D.; Minions, C.; et al. The ABCflux database: Arctic–boreal CO2 flux observations and ancillary information aggregated to monthly time steps across terrestrial ecosystems. Earth Syst. Sci. Data 2022, 14, 179–208. [Google Scholar] [CrossRef]
- Wang, C.; Li, S.; Wu, M.; Jansson, P.-E.; Zhang, W.; He, H.; Xing, X.; Yang, D.; Huang, S.; Kang, D.; et al. Modelling water and energy fluxes with an explicit representation of irrigation under mulch in a maize field. Agric. For. Meteorol. 2022, 326, 109145. [Google Scholar] [CrossRef]
- Wang, C.; Li, S.; Wu, M.; Zhang, W.; He, H.; Yang, D.; Huang, S.; Guo, Z.; Xing, X. Water use efficiency control for a maize field under mulched drip irrigation. Sci. Total Environ. 2023, 857, 159457. [Google Scholar] [CrossRef] [PubMed]
- Collatz, G.J.; Ball, J.T.; Grivet, C.; Berry, J.A. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agric. For. Meteorol. 1991, 54, 107–136. [Google Scholar] [CrossRef]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Change Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- McKee, G.W. A Coefficient for Computing Leaf Area in Hybrid Corn. Agron. J. 1964, 56, 240–241. [Google Scholar] [CrossRef]
- Running, S.W. A Measurable Planetary Boundary for the Biosphere. Science 2012, 337, 1458–1459. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, B.; Li, Z.; Huang, F.; Zhao, C.; Zhang, P.; Jia, Z. Plastic film mulch combined with adding biochar improved soil carbon budget, carbon footprint, and maize yield in a rainfed region. Field Crops Res. 2022, 284, 108574. [Google Scholar] [CrossRef]
- Jans, W.W.P.; Jacobs, C.M.J.; Kruijt, B.; Elbers, J.A.; Barendse, S.; Moors, E.J. Carbon exchange of a maize (Zea mays L.) crop: Influence of phenology. Agric. Ecosyst. Environ. 2010, 139, 316–324. [Google Scholar] [CrossRef]
- Yang, B.; Xiong, Z.; Wang, J.; Xu, X.; Huang, Q.; Shen, Q. Mitigating net global warming potential and greenhouse gas intensities by substituting chemical nitrogen fertilizers with organic fertilization strategies in rice–wheat annual rotation systems in China: A 3-year field experiment. Ecol. Eng. 2015, 81, 289–297. [Google Scholar] [CrossRef]
- Gao, X.; Gu, F.; Hao, W.; Mei, X.; Li, H.; Gong, D.; Mao, L.; Zhang, Z. Carbon budget of a rainfed spring maize cropland with straw returning on the Loess Plateau, China. Sci. Total Environ. 2017, 586, 1193–1203. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, Z.; Mao, X.; Li, S.; Qi, X.; Che, J. Influence of film color, mulching ratio and soil–mulch contact degree on heat transfer in Northwest China. Agric. For. Meteorol. 2024, 357, 110208. [Google Scholar] [CrossRef]
- Yan, Y.; Zhou, L.; Zhou, G.; Wang, Y.; Song, J.; Zhang, S.; Zhou, M. Extreme temperature events reduced carbon uptake of a boreal forest ecosystem in Northeast China: Evidence from an 11-year eddy covariance observation. Front. Plant Sci. 2023, 14, 1119670. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, P.; Zhang, D.; Sun, H.; Li, S. Convergent control of soil temperature on seasonal carbon flux in Tibetan alpine meadows: An in-situ monitoring study. Ecol. Indic. 2023, 156, 111116. [Google Scholar] [CrossRef]
- Czubaszek, R.; Wysocka-Czubaszek, A. Temporal Dynamics of CO2 Fluxes Measured with Eddy Covariance System in Maize, Winter Oilseed Rape and Winter Wheat Fields. Atmosphere 2023, 14, 372. [Google Scholar] [CrossRef]
- Peng, X.; Ma, J.; Cai, H.; Wang, Y. Carbon balance and controlling factors in a summer maize agroecosystem in the Guanzhong Plain, China. J. Sci. Food Agric. 2023, 103, 1761–1774. [Google Scholar] [CrossRef]
- Wang, W.; Rong, Y.; Zhang, C.; Wang, C.; Huo, Z. Data assimilation of soil moisture and leaf area index effectively improves the simulation accuracy of water and carbon fluxes in coupled farmland hydrological model. Agric. Water Manag. 2024, 291, 108646. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Chen, Y.; Fan, M.; Chen, Y.; Gang, C.; You, Y.; Wang, Z. Dynamics of global dryland vegetation were more sensitive to soil moisture: Evidence from multiple vegetation indices. Agric. For. Meteorol. 2023, 331, 109327. [Google Scholar] [CrossRef]
- Wang, C.; Li, S.; Kang, S.; Du, T.; Huang, S.; Yang, H.; Wang, X.; Cui, Y.; Wu, M. Evapotranspiration and potential water saving effect evaluation of mulched maize fields in China. J. Hydrol. 2024, 630, 130658. [Google Scholar] [CrossRef]
- Ispas, G.-M.; Coca, O.; Stefan, G. Agricultural Policies, Crop Type, Tillage Systems and Fertilization as Drivers of Soil Carbon Sequestration in Romania. Agriculture 2026, 16, 12. [Google Scholar] [CrossRef]
- Palmero, F.; Fernandez, J.A.; Habben, J.E.; Schussler, J.R.; Weers, B.; Bing, J.; Hefley, T.; Prasad, P.V.V.; Ciampitti, I.A. DP202216 maize hybrids shift upper limit of C and N partitioning to grain. Front. Plant Sci. 2025, 16, 1459126. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.; das Graças Dias, K.O.; Zhu, J.; Bu, J.; Wei, J.; Liu, P.; Yang, H.; Jiang, X. Deciphering the role of genotype-by-environment interaction in summer maize hybrids based on multiple traits using envirotyping techniques and genotype by yield × trait approaches. Field Crops Res. 2025, 326, 109875. [Google Scholar] [CrossRef]
- Li, C.; Han, W.; Peng, M. Effects of drip and flood irrigation on carbon dioxide exchange and crop growth in the maize ecosystem in the Hetao Irrigation District, China. J. Arid Land 2024, 16, 282–297. [Google Scholar] [CrossRef]
- Wei, C.; Ren, S.; Yang, P.; Wang, Y.; He, X.; Xu, Z.; Wei, R.; Wang, S.; Chi, Y.; Zhang, M. Effects of irrigation methods and salinity on CO2 emissions from farmland soil during growth and fallow periods. Sci. Total Environ. 2021, 752, 141639. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Wang, J.; Chen, X.; Luo, G.; Shi, H.; Li, L.; Li, J. Seasonal and inter-annual variations in carbon fluxes and evapotranspiration over cotton field under drip irrigation with plastic mulch in an arid region of Northwest China. J. Arid Land 2015, 7, 272–284. [Google Scholar] [CrossRef]
- Mo, F.; Yu, K.-L.; Crowther, T.W.; Wang, J.-Y.; Zhao, H.; Xiong, Y.-C.; Liao, Y.-C. How plastic mulching affects net primary productivity, soil C fluxes and organic carbon balance in dry agroecosystems in China. J. Clean. Prod. 2020, 263, 121470. [Google Scholar] [CrossRef]
- Ming, G.; Hu, H.; Tian, F.; Khan, M.Y.A.; Zhang, Q. Carbon budget for a plastic-film mulched and drip-irrigated cotton field in an oasis of Northwest China. Agric. For. Meteorol. 2021, 306, 108447. [Google Scholar] [CrossRef]
- Meng, X.; Meng, F.; Chen, P.; Hou, D.; Zheng, E.; Xu, T. A meta-analysis of conservation tillage management effects on soil organic carbon sequestration and soil greenhouse gas flux. Sci. Total Environ. 2024, 954, 176315. [Google Scholar] [CrossRef]
- Francaviglia, R.; Almagro, M.; Vicente-Vicente, J.L. Conservation Agriculture and Soil Organic Carbon: Principles, Processes, Practices and Policy Options. Soil Syst. 2023, 7, 17. [Google Scholar] [CrossRef]
- Liu, C.; Lu, M.; Cui, J.; Li, B.; Fang, C. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Glob. Change Biol. 2014, 20, 1366–1381. [Google Scholar] [CrossRef]
- Berhane, M.; Xu, M.; Liang, Z.; Shi, J.; Wei, G.; Tian, X. Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: A meta-analysis. Glob. Change Biol. 2020, 26, 2686–2701. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, X. Impact of Agricultural Activities on Climate Change: A Review of Greenhouse Gas Emission Patterns in Field Crop Systems. Plants 2024, 13, 2285. [Google Scholar] [CrossRef]
- Liu, Z.; Cao, S.; Sun, Z.; Wang, H.; Qu, S.; Lei, N.; He, J.; Dong, Q. Tillage effects on soil properties and crop yield after land reclamation. Sci. Rep. 2021, 11, 4611. [Google Scholar] [CrossRef] [PubMed]
- Young, M.D.; Ros, G.H.; de Vries, W. Impacts of agronomic measures on crop, soil, and environmental indicators: A review and synthesis of meta-analysis. Agric. Ecosyst. Environ. 2021, 319, 107551. [Google Scholar] [CrossRef]
- Yan, S.; Liu, G. Effect of increasing soil carbon content on tobacco aroma and soil microorganisms. Phytochem. Lett. 2020, 36, 42–48. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S.; Zhuang, Q.; Jin, X.; Bian, Z.; Zhou, M.; Meng, Z.; Han, C.; Guo, X.; Jin, W.; et al. A Review on Carbon Source and Sink in Arable Land Ecosystems. Land 2022, 11, 580. [Google Scholar] [CrossRef]
- Qin, J.; Duan, W.; Zou, S.; Chen, Y.; Huang, W.; Rosa, L. Global energy use and carbon emissions from irrigated agriculture. Nat. Commun. 2024, 15, 3084. [Google Scholar] [CrossRef] [PubMed]
- Alhashim, R.; Deepa, R.; Anandhi, A. Environmental Impact Assessment of Agricultural Production Using LCA: A Review. Climate 2021, 9, 164. [Google Scholar] [CrossRef]
- Song, J.; Liu, Y.; Zhuang, M.; Gu, W.; Cui, Z.; Pang, M.; Yang, Y. Estimating crop carbon footprint and associated uncertainty at prefecture-level city scale in China. Resour. Conserv. Recycl. 2023, 199, 107263. [Google Scholar] [CrossRef]
- Soong, J.L.; Castanha, C.; Hicks Pries, C.E.; Ofiti, N.; Porras, R.C.; Riley, W.J.; Schmidt, M.W.I.; Torn, M.S. Five years of whole-soil warming led to loss of subsoil carbon stocks and increased CO2 efflux. Sci. Adv. 2021, 7, eabd1343. [Google Scholar] [CrossRef]
- Ni, H.; Hu, H.; Zohner, C.M.; Huang, W.; Chen, J.; Sun, Y.; Ding, J.; Zhou, J.; Yan, X.; Zhang, J.; et al. Effects of winter soil warming on crop biomass carbon loss from organic matter degradation. Nat. Commun. 2024, 15, 8847. [Google Scholar] [CrossRef]
- Feng, C.; Wang, Z.; Ma, Y.; Fu, S.; Chen, H.Y.H. Increased litterfall contributes to carbon and nitrogen accumulation following cessation of anthropogenic disturbances in degraded forests. For. Ecol. Manag. 2019, 432, 832–839. [Google Scholar] [CrossRef]





| Number | Observation Variables | Instruments | Manufacturers |
|---|---|---|---|
| 1 | Three-dimensional wind speed | 3D ultrasonic anemometer (CSAT3) | Campbell Scientific, Inc., Logan, UT, USA |
| 2 | Water and carbon density | Open-path infrared gas analyzer (EC150) | Campbell Scientific, Inc., Logan, UT, USA |
| 3 | Vapor pressure deficit | Air temperature and humidity sensor (HMP155A) | Vaisala, Vantaa, Uusimaa, Finland |
| 4 | Surface canopy temperature | Infrared temperature sensor (SI-111) | Campbell Scientific, Inc., Logan, UT, USA |
| 5 | Radiation | Radiation sensor (CNR4) | Kipp & Zonen, Delft, South Holland, The Netherlands |
| 6 | Soil temperature | Soil temperature sensor (109L) | Campbell Scientific, Inc., Logan, Utah, USA |
| 7 | Soil heat flux | Soil heat flux sensor (HFP01) | Hukseflux, Delft, South Holland, The Netherlands |
| 8 | Soil water content | Soil water sensor (CS616) | Campbell Scientific, Inc., Logan, UT, USA |
| Factors | Unit | DM_I | BM_I | DM_II | BM_II | ||||
|---|---|---|---|---|---|---|---|---|---|
| Mean | STDEV | Mean | STDEV | Mean | STDEV | Mean | STDEV | ||
| Rn | W m−2 | 134.01 a | 54.84 | 127.52 a | 53.05 | 141.92 a | 51.12 | 133.33 b | 49.73 |
| Albedo | — | 0.19 a | 0.03 | 0.18 a | 0.04 | 0.20 a | 0.03 | 0.20 a | 0.04 |
| Ws | m s−1 | 1.71 a | 0.80 | 1.59 a | 0.80 | 1.53 a | 0.84 | 1.70 b | 1.05 |
| Ta | °C | 19.93 a | 3.93 | 19.68 a | 3.66 | 19.11 a | 3.61 | 18.51 b | 3.91 |
| RH | % | 46.86 a | 18.62 | 37.45 b | 16.67 | 42.81 a | 17.12 | 35.36 b | 16.74 |
| VPD | kpa | 1.32 a | 0.56 | 1.54 b | 0.51 | 1.41 a | 0.49 | 1.50 b | 0.49 |
| SWC | cm3 cm−3 | 0.30 a | 0.01 | 0.27 b | 0.03 | 0.34 a | 0.02 | 0.25 b | 0.03 |
| Ts | °C | 19.74 a | 2.61 | 18.82 b | 3.03 | 18.15 a | 2.28 | 19.08 b | 2.85 |
| LAI | — | 3.26 a | 2.68 | 2.55 b | 2.20 | 3.30 a | 2.47 | 2.96 b | 2.41 |
| Hc | m | 1.13 a | 0.79 | 1.10 b | 0.78 | 1.93 a | 1.34 | 1.76 b | 1.29 |
| gc | mm s−1 | 3.55 a | 1.95 | 2.56 b | 1.82 | 3.79 a | 2.16 | 2.96 b | 2.06 |
| Tc | °C | 19.97 a | 3.59 | 19.23 b | 3.65 | 18.78 a | 3.05 | 18.44 a | 3.26 |
| Group | Irrigation Methods | NPP | Machine Harvesting | Straw Return to the Field | ||
|---|---|---|---|---|---|---|
| Ce | Cr | Ce | Cr | |||
| g C m−2 | g C m−2 | g C m−2 | ||||
| I | DM | 948.24 a | 773.80 a | 174.45 a | 490.59 a | 457.66 a |
| BM | 901.97 b | 727.65 b | 174.32 a | 470.84 b | 431.12 a | |
| II | DM | 1282.86 a | 1092.33 a | 190.53 a | 735.89 a | 546.97 a |
| BM | 1216.54 b | 1017.07 b | 199.47 a | 651.46 b | 565.08 a | |
| Mean | DM | 1149.01 a | 961.58 a | 187.43 a | 637.56 a | 502.31 a |
| BM | 1090.71 b | 901.30 b | 189.41 a | 579.22 b | 498.10 a | |
| Group | Irrigation Methods | Ra | Rh | Ra/ER | Machine Harvesting | Straw Return to the Field |
|---|---|---|---|---|---|---|
| NBP | ||||||
| g C m−2 | % | g C m−2 | ||||
| I | DM | 391.48 a | 383.91 a | 50.49 a | −199.47 a | 83.74a |
| BM | 338.92 b | 401.38 b | 45.78 b | −214.78 b | 42.03 b | |
| II | DM | 980.15 a | 140.22 a | 87.48 a | 60.31 a | 416.75 a |
| BM | 854.59 b | 146.92 b | 85.33 b | 63.42 b | 429.03 b | |
| Mean | DM | 744.68 a | 237.70 a | 75.80 a | −40.26 a | 283.75 a |
| BM | 648.32 b | 248.71 b | 72.27 b | −47.86 b | 274.23 b | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, C.; Wang, Y.; Shi, X.; Li, D.; Wu, M.; Li, S. Shifting from Seed Maize to Grain Maize Changes Carbon Budget Under Mulched Irrigation Conditions. Agriculture 2026, 16, 313. https://doi.org/10.3390/agriculture16030313
Wang C, Wang Y, Shi X, Li D, Wu M, Li S. Shifting from Seed Maize to Grain Maize Changes Carbon Budget Under Mulched Irrigation Conditions. Agriculture. 2026; 16(3):313. https://doi.org/10.3390/agriculture16030313
Chicago/Turabian StyleWang, Chunyu, Yuexin Wang, Xinjie Shi, Donghao Li, Mousong Wu, and Sien Li. 2026. "Shifting from Seed Maize to Grain Maize Changes Carbon Budget Under Mulched Irrigation Conditions" Agriculture 16, no. 3: 313. https://doi.org/10.3390/agriculture16030313
APA StyleWang, C., Wang, Y., Shi, X., Li, D., Wu, M., & Li, S. (2026). Shifting from Seed Maize to Grain Maize Changes Carbon Budget Under Mulched Irrigation Conditions. Agriculture, 16(3), 313. https://doi.org/10.3390/agriculture16030313

