Lightweight Improvements to the Pomelo Image Segmentation Method for Yolov8n-seg
Abstract
1. Introduction
- A pomelo dataset with 5076 samples capturing diverse environmental conditions.
- Integration of RepGhost module into YOLOv8n-seg for enhanced feature reuse and reduced complexity.
- Systematic evaluation demonstrating improved efficiency without performance degradation.
- Validation of real-world applicability through deployment on embedded devices.
2. Materials and Methods
2.1. Dataset Acquisition and Preparation
2.2. Improved Method for Pomelo Image Segmentation
2.2.1. Network Architecture and Lightweight Optimization
2.2.2. YOLOv8-seg Segmentation Network
2.2.3. RepGhost Lightweight Module
3. Results
3.1. Experimental Environment and Evaluation Metrics
3.1.1. Experimental Environment Configuration and Parameter Settings
3.1.2. Evaluation Metrics
- (1)
- Fundamental Metrics
- (2)
- Object Detection Evaluation Metrics
- (3)
- Mask Segmentation Evaluation Metrics
- (4)
- Significance of the metrics in the task
3.2. Ablation Studies
3.3. Performance Comparison of Mainstream Models
3.4. Algorithm Validation
3.5. Analysis of Edge Computing Device Deployment Trials
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pan, T.; Ali, M.M.; Gong, J.; She, W.; Pan, D.; Guo, Z.; Yu, Y.; Chen, F. Fruit physiology and sugar-acid profile of 24 pomelo (Citrus grandis (L.) Osbeck) cultivars grown in subtropical region of China. Agronomy 2021, 11, 2393. [Google Scholar] [CrossRef]
- Saini, P.; Nagesh, D.S. A review of deep learning applications in weed detection: UAV and robotic approaches for precision agriculture. Eur. J. Agron. 2025, 168, 127652. [Google Scholar] [CrossRef]
- Liu, L.; Yang, F.; Liu, X.; Du, Y.; Li, X.; Li, G.; Chen, D.; Zhu, Z.; Song, Z. A review of the current status and common key technologies for agricultural field robots. Comput. Electron. Agric. 2024, 227, 109630. [Google Scholar] [CrossRef]
- Yang, Q.; Du, X.; Wang, Z.; Meng, Z.; Ma, Z.; Zhang, Q. A review of core agricultural robot technologies for crop productions. Comput. Electron. Agric. 2023, 206, 107701. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Z.; Li, Y.; Igathinathane, C.; Yu, J.; Rui, Z.; Azizi, A.; Wang, X.; Pourreza, A.; Zhang, M. Early-stage detection of maize seed germination based on RGB image and machine vision. Smart Agric. Technol. 2025, 11, 100927. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, D.; Jia, W.; Ji, W.; Sun, Y. A detection method for apple fruits based on color and shape features. IEEE Access 2019, 7, 67923–67933. [Google Scholar] [CrossRef]
- Lin, G.; Zou, X. Citrus segmentation for automatic harvester combined with adaboost classifier and Leung-Malik filter bank. IFAC-Pap. 2018, 51, 379–383. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, X.; Zhang, D.; Yang, Y.; Qiu, Y.; Pang, L.; Wang, H. TinySeg: A deep learning model for small target segmentation of grape pedicels with multi-attention and multi-scale feature fusion. Comput. Electron. Agric. 2025, 237, 110726. [Google Scholar] [CrossRef]
- Dai, G.; Fan, J.; Dewi, C. ITF-WPI: Image and text based cross-modal feature fusion model for wolfberry pest recognition. Comput. Electron. Agric. 2023, 212, 108129. [Google Scholar] [CrossRef]
- Dong, C.; Yang, T.; Liu, L.; Wei, Z.; Shi, C.; Gao, D. Early Identification of Apple Bitter Pit Using Hyperspectral Imaging Technology. Appl. Food Res. 2025, 5, 101166. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, L.; Fei, J.; Zhao, L.; Han, Z. Recognition of carrot appearance quality based on deep feature and support vector machine. Comput. Electron. Agric. 2021, 186, 106185. [Google Scholar] [CrossRef]
- Luo, L.; Tang, Y.; Lu, Q.; Chen, X.; Zhang, P.; Zou, X. A vision methodology for harvesting robot to detect cutting points on peduncles of double overlapping grape clusters in a vineyard. Comput. Ind. 2018, 99, 130–139. [Google Scholar] [CrossRef]
- Wang, C.; Tang, Y.; Zou, X.; SiTu, W.; Feng, W. A robust fruit image segmentation algorithm against varying illumination for vision system of fruit harvesting robot. Optik 2017, 131, 626–631. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, X.; Qi, Z.; Wang, D. Recognizing strawberry to detect the key points for peduncle picking using improved YOLOv8 model. Trans. Chin. Soc. Agric. Eng. 2024, 40, 167–175. [Google Scholar]
- Chen, J.; Ma, A.; Huang, L.; Li, H.; Zhang, H.; Huang, Y.; Zhu, T. Efficient and lightweight grape and picking point synchronous detection model based on key point detection. Comput. Electron. Agric. 2024, 217, 108612. [Google Scholar] [CrossRef]
- Li, C.; Lin, J.; Li, Z.; Mai, C.; Jiang, R.; Li, J. An efficient detection method for litchi fruits in a natural environment based on improved YOLOv7-Litchi. Comput. Electron. Agric. 2024, 217, 108605. [Google Scholar] [CrossRef]
- Zhu, A.; Zhang, R.; Zhang, L.; Yi, T.; Wang, L.; Zhang, D.; Chen, L. YOLOv5s-CEDB: A robust and efficiency Camellia oleifera fruit detection algorithm in complex natural scenes. Comput. Electron. Agric. 2024, 221, 108984. [Google Scholar] [CrossRef]
- Yang, Z.; Gong, W.; Li, K.; Hao, W.; He, Z.; Ding, X.T.; Cui, Y.J. Fruit recognition and stem segmentation of the elevated planting of strawberries. Trans. Chin. Soc. Agric. Eng. 2023, 39, 172–181. [Google Scholar]
- Yang, H.; Yang, L.; Wu, T.; Yuan, Y.; Li, J.; Li, P. MFD-YOLO: A fast and lightweight model for strawberry growth state detection. Comput. Electron. Agric. 2025, 234, 110177. [Google Scholar] [CrossRef]
- Jin, S.; Zhou, L.; Zhou, H. CO-YOLO: A lightweight and efficient model for Camellia oleifera fruit object detection and posture determination. Comput. Electron. Agric. 2025, 235, 110394. [Google Scholar] [CrossRef]
- Fan, X.; Sun, T.; Chai, X.; Zhou, J. YOLO-WDNet: A lightweight and accurate model for weeds detection in cotton field. Comput. Electron. Agric. 2024, 225, 109317. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Zhao, X.; Su, X.; Wu, W. Lightweight detection networks for tea bud on complex agricultural environment via improved YOLO v4. Comput. Electron. Agric. 2023, 211, 107955. [Google Scholar] [CrossRef]
- Cao, L.; Wang, Q.; Luo, Y.; Hou, Y.; Zheng, W.; Qu, H. A yolov8-based lightweight detection model for different perspectives infrared images. Opt. Commun. 2025, 582, 131612. [Google Scholar] [CrossRef]
- Yao, J.; Li, Y.; Xia, Z.; Nie, P.; Li, X.; Li, Z. WTAD-YOLO: A Lightweight Tomato Leaf Disease Detection Model Based on YOLO11. Smart Agric. Technol. 2025, 12, 101349. [Google Scholar] [CrossRef]
- Liu, C.; Zhong, L.; Wang, J.; Huang, J.; Wang, Y.; Guan, M.; Li, X.; Zheng, H.; Hu, X.; Ma, X.; et al. Grain-YOLO: An improved lightweight YOLO v8 and its Android deployment for rice grains detection. Comput. Electron. Agric. 2025, 237, 110757. [Google Scholar] [CrossRef]
- Shen, W.; Dong, M.; Zhang, Z.; Hao, X.; Su, Y.; Xue, Z. ESLC-YOLOv8: Advancing Real-Time Pineapple Recognition with Lightweight Deep Learning. Smart Agric. Technol. 2025, 12, 101139. [Google Scholar] [CrossRef]
- Liu, Z.; Abeyrathna, R.M.R.D.; Sampurno, R.M.; Nakaguchi, V.M.; Ahamed, T. Faster-YOLO-AP: A lightweight apple detection algorithm based on improved YOLOv8 with a new efficient PDWConv in orchard. Comput. Electron. Agric. 2024, 223, 109118. [Google Scholar] [CrossRef]
- Li, J.; Karkee, M.; Zhang, Q.; Xiao, K.; Feng, T. Characterizing apple picking patterns for robotic harvesting. Comput. Electron. Agric. 2016, 127, 633–640. [Google Scholar] [CrossRef]
- Noroozi, M.; Favaro, P. Unsupervised learning of visual representations by solving jigsaw puzzles. In European Conference on Computer Vision; Springer International Publishing: Cham, Switzerland, 2016; pp. 69–84. [Google Scholar]
- Yue, X.; Qi, K.; Na, X.; Zhang, Y.; Liu, Y.; Liu, C. Improved YOLOv8-Seg network for instance segmentation of healthy and diseased tomato plants in the growth stage. Agriculture 2023, 13, 1643. [Google Scholar] [CrossRef]
- Li, H.; Huang, J.; Gu, Z.; He, D.; Huang, J.; Wang, C. Positioning of mango picking point using an improved YOLOv8 architecture with object detection and instance segmentation. Biosyst. Eng. 2024, 247, 202–220. [Google Scholar] [CrossRef]
- Chen, C.; Guo, Z.; Zeng, H.; Xiong, P.; Dong, J. Repghost: A hardware-efficient ghost module via re-parameterization. arXiv 2022, arXiv:2211.06088. [Google Scholar]
- Wang, J.; Ma, S.; Wang, Z.; Ma, X.; Yang, C.; Chen, G.; Wang, Y. Improved Lightweight YOLOv8 Model for Rice Disease Detection in Multi-Scale Scenarios. Agronomy 2025, 15, 445. [Google Scholar] [CrossRef]












| Parameter | Value |
|---|---|
| Batch size | 16 |
| Epochs | 250 |
| Learn rate | 0.01 |
| Momentum | 0.937 |
| Weight decay times | 0.0005 |
| Input image resolution | 1280 × 800 |
| Optimizer | AdamW |
| Model | Number of Layers | Parameters | Computational Complexity |
|---|---|---|---|
| YOLOv8n-seg | 261 layers | 3.4 million | 12.8 GFLOPs |
| YOLOv8n-seg-RepGhost | 388 layers | 2.84 million | 10.9 GFLOPs |
| Task | Model | Precision (Mean ± Std) | Recall (Mean ± Std) | mAP50 (Mean ± Std) | mAP50–95 (Mean ± Std) |
|---|---|---|---|---|---|
| Box | Mask R-CNN | 80.5 ± 0.06% | 75.6 ± 0.2% | 80.5 ± 0.01% | 63.6 ± 0.03% |
| YOLOv5n-seg | 97.9 ± 0.8% | 95.58 ± 0.06% | 97.4 ± 0.01% | 91.98 ± 0.01% | |
| YOLOv8n-seg | 98.06 ± 0.36% | 93.29 ± 0.79% | 96.42 ± 0.60% | 91.80 ± 1.63% | |
| YOLOv8n-seg-RepGhost | 97.41 ± 1.15% | 92.91 ± 0.88% | 96.26 ± 0.80% | 90.56 ± 1.79% | |
| Mask | Mask R-CNN | 80.4 ± 0.06% | 71.9 ± 0.2% | 80.4 ± 0.02% | 68.2 ± 0.01% |
| YOLOv5n-seg | 97.84 ± 0.02% | 95.56 ± 0.06% | 97.4 ± 0.01% | 91.66 ± 0.02% | |
| YOLOv8n-seg | 98.02 ± 0.38% | 93.44 ± 0.79% | 96.54 ± 0.46% | 89.58 ± 1.27% | |
| YOLOv8n-seg-RepGhost | 97.38 ± 1.10% | 93.08 ± 0.83% | 96.47 ± 0.67% | 88.63 ± 1.41% |
| Device | Memory/GB | Precision Mode | Batch Size | FPS/(Frames) | Detection Success Rate | ||
|---|---|---|---|---|---|---|---|
| YOLOv8n-Seg | YOLOv8n-Seg-RepGhost | YOLOv8n-Seg | YOLOv8n-Seg-RepGhost | ||||
| Jetson Orin Nano | 4 | FP16 | 1 | 18.8 | 22.1 | 95% | 96.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Li, Z.; Cao, B.; Yu, Z.; Jin, Q.; Lyu, S.; Chen, X.; Mao, D. Lightweight Improvements to the Pomelo Image Segmentation Method for Yolov8n-seg. Agriculture 2026, 16, 186. https://doi.org/10.3390/agriculture16020186
Li Z, Cao B, Yu Z, Jin Q, Lyu S, Chen X, Mao D. Lightweight Improvements to the Pomelo Image Segmentation Method for Yolov8n-seg. Agriculture. 2026; 16(2):186. https://doi.org/10.3390/agriculture16020186
Chicago/Turabian StyleLi, Zhen, Baiwei Cao, Zhengwei Yu, Qingting Jin, Shilei Lyu, Xiaoyi Chen, and Danting Mao. 2026. "Lightweight Improvements to the Pomelo Image Segmentation Method for Yolov8n-seg" Agriculture 16, no. 2: 186. https://doi.org/10.3390/agriculture16020186
APA StyleLi, Z., Cao, B., Yu, Z., Jin, Q., Lyu, S., Chen, X., & Mao, D. (2026). Lightweight Improvements to the Pomelo Image Segmentation Method for Yolov8n-seg. Agriculture, 16(2), 186. https://doi.org/10.3390/agriculture16020186
