Evaluation of Sensor-Based Soil EC Responses to Nitrogen and Potassium Fertilization Under Laboratory and Field Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Sequential Fertilization and Soil EC Monitoring in the Laboratory
2.2. Soil EC Monitoring During Fertigation in Field
2.3. Modeling of Relationship Between Sensor-Based EC Values and Fertilization Rate
2.4. Soil Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Changes in Soil Chemical Properties According to Sequential Fertilization
3.2. Correlation of Sensor-Based EC and Soil Chemical Properties
3.3. Sensor-Based EC Response to Sequential Fertilization
- For the N treatment
- (i)
- Linear equation; y = 0.0327x − 0.0017 (R2 = 0.9939);
- (ii)
- Second-order polynomial equation; y = −0.0004x2 + 0.0437x − 0.0607 (R2 = 0.9938);
- (iii)
- Nonlinear saturation equation; y =
- For the K treatment
- (i)
- Linear equation; y = 0.0874x + 0.0973 (R2 = 0.9921);
- (ii)
- Second-order polynomial equation y = −0.0028x2 + 0.1126x + 0.0531 (R2 = 0.9971);
- (iii)
- Nonlinear saturation equation; y =
- For the NK treatment
- (i)
- Linear equation; y = 0.0359x − 0.0513 (R2 = 0.9964);
- (ii)
- Second-order polynomial equation; y = −0.0003x2 + 0.0485x − 0.1407 (R2 = 0.9948);
- (iii)
- Nonlinear saturation equation; y =
3.4. Field Validation of Sensor-Based EC Response to Fertigation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bora, K. Spatial patterns of fertilizer use and imbalances: Evidence from rice cultivation in India. Environ. Chall. 2022, 7, 100452. [Google Scholar] [CrossRef]
- Rahman, K.A.; Zhang, D. Effects of fertilizer broadcasting on the excessive use of inorganic fertilizers and environmental sustainability. Sustainability 2018, 10, 759. [Google Scholar] [CrossRef]
- Bayu, T. Review on contribution of integrated soil fertility management for climate change mitigation and agricultural sustainability. Cogent Environ. Sci. 2020, 6, 1823631. [Google Scholar] [CrossRef]
- Shah, F.; Wu, W. Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability 2019, 11, 1485. [Google Scholar] [CrossRef]
- Ameer, S.; Ibrahim, H.; Kulsoom, F.; Ameer, G.; Sher, M. Real-time detection and measurements of nitrogen, phosphorous & potassium from soil samples: A comprehensive review. J. Soils Sediments 2024, 24, 2565–2583. [Google Scholar] [CrossRef]
- Bellosta-Diest, A.; Campo-Bescós, M.Á.; Zapatería-Miranda, J.; Casalí, J.; Arregui, L.M. Evaluation of nitrate soil probes for a more sustainable agriculture. Sensors 2022, 22, 9288. [Google Scholar] [CrossRef]
- Grenzdörffer, G.J.; Wienken, J.S.; Steiger, A. Spatial and Temporal Field-Scale Accuracy Assessment of a Multi-Sensor Spade for In Situ Soil Diagnostics: Performance and Limitations of the Stenon FarmLab for Precision Agriculture. Sensors 2025, 25, 7430. [Google Scholar] [CrossRef]
- Steiger, A.; Qaswar, M.; Bill, R.; Mouazen, A.M.; Grenzdörffer, G. Comparing the handheld Stenon FarmLab soil sensor with a Vis-NIR multi-sensor soil sensing platform. Smart Agric. Technol. 2025, 10, 100717. [Google Scholar] [CrossRef]
- Xie, A.; Zhou, Q.; Fu, L.; Zhan, L.; Wu, W. From lab to field: Advancements and applications of on-the-go soil sensors for real-time monitoring. Eurasian Soil Sci. 2024, 57, 1730–1745. [Google Scholar]
- Chen, X.; Zhang, H.; Wong, C.U.I. Dynamic monitoring and precision fertilization decision system for agricultural soil nutrients using UAV remote sensing and GIS. Agriculture 2025, 15, 1627. [Google Scholar] [CrossRef]
- Reza, M.N.; Lee, K.-H.; Karim, M.R.; Haque, M.A.; Bicamumakuba, E.; Dey, P.K.; Jang, Y.Y.; Chung, S.-O. Trends of soil and solution nutrient sensing for open field and hydroponic cultivation in facilitated smart agriculture. Sensors 2025, 25, 453. [Google Scholar] [CrossRef]
- Bulan, R.; Sitorus, A. Vis-NIR spectra combined with machine learning for predicting soil nutrients in cropland from Aceh Province, Indonesia. Case Stud. Chem. Environ. Eng. 2022, 6, 100268. [Google Scholar] [CrossRef]
- Burton, L.; Jayachandran, K.; Bhansali, S. The “Real-Time” revolution for in situ soil nutrient sensing. J. Electrochem. Soc. 2020, 167, 37569. [Google Scholar] [CrossRef]
- Yuan, Q.; Sheng, W.; Zhang, Z.; Li, H.; Zhang, M. Recent advances in soil nutrient monitoring: A review. Sens. Technol. Field -House Crop Prod. Technol. Rev. Case Stud. 2023, 28, 19–38. [Google Scholar]
- Eldeeb, M.A.; Dhamu, V.N.; Paul, A.; Muthukumar, S.; Prasad, S. Electrochemical soil nitrate sensor for in situ real-time monitoring. Micromachines 2023, 14, 1314. [Google Scholar] [CrossRef]
- Shin, S.K.; Lee, S.J.; Park, J.H. Prediction of soil properties using vis-nir spectroscopy combined with machine learning: A review. Sensors 2025, 25, 5045. [Google Scholar] [CrossRef] [PubMed]
- Popoola, O.A.; Stewart, G.B.; Mead, M.I.; Jones, R.L. Development of a baseline-temperature correction methodology for electrochemical sensors and its implications for long-term stability. Atmos. Environ. 2016, 147, 330–343. [Google Scholar] [CrossRef]
- Saputra, H.A. Electrochemical sensors: Basic principles, engineering, and state of the art. Monatshefte Für Chem.-Chem. Mon. 2023, 154, 1083–1100. [Google Scholar] [CrossRef]
- Ahmad, M.N.; Anuar, M.I.; Abd Aziz, N.; Murdi, A.A. Function and application of Soil Electrical Conductivity (EC) sensor in agriculture: A Review. Adv. Agric. Food Res. J. 2025, 6. [Google Scholar] [CrossRef]
- Park, J.H.; Sung, J. Comparison of various EC sensors for monitoring soil temperature, water content, and EC, and Its relation to ion contents in agricultural soils. J. Soil Groundw. Environ. 2021, 26, 157–164. [Google Scholar]
- Gholizadeh, A.; Amin, M.S.M.; Anuar, A.R.; Aimrun, W. Apparent electrical conductivity in correspondence to soil chemical properties and plant nutrients in soil. Commun. Soil Sci. Plant Anal. 2011, 42, 1447–1461. [Google Scholar] [CrossRef]
- Mazur, P.; Gozdowski, D.; Wnuk, A. Relationships between soil electrical conductivity and sentinel-2-derived NDVI with pH and content of selected nutrients. Agronomy 2022, 12, 354. [Google Scholar] [CrossRef]
- Jafaryahya, J.; Keshavarz, R.; Abolhasan, M.; Lipman, J.; Shariati, N. Integrating electrical features for simultaneous prediction of soil moisture and potassium levels based on neural network prediction model. IEEE Trans. Instrum. Meas. 2025, 74, 2513912. [Google Scholar] [CrossRef]
- Mirzakhaninafchi, H.; Mani, I.; Hasan, M.; Nafchi, A.M.; Parray, R.A.; Kumar, D. Development of prediction models for soil nitrogen management based on electrical conductivity and moisture content. Sensors 2022, 22, 6728. [Google Scholar] [CrossRef] [PubMed]
- Mazur, P.; Gozdowski, D.; Wójcik-Gront, E. Soil electrical conductivity and satellite-derived vegetation indices for evaluation of phosphorus, potassium and magnesium content, pH, and delineation of within-field management zones. Agriculture 2022, 12, 883. [Google Scholar] [CrossRef]
- Kim, H.N.; Park, J.H. Monitoring of soil EC for the prediction of soil nutrient regime under different soil water and organic matter contents. Appl. Biol. Chem. 2024, 67, 1. [Google Scholar] [CrossRef]
- Klein, K.A.; Santamarina, J.C. Electrical conductivity in soils: Underlying phenomena. J. Environ. Eng. Geophys. 2003, 8, 263–273. [Google Scholar] [CrossRef]
- Corwin, D.L.; Scudiero, E. Field-scale apparent soil electrical conductivity. Soil Sci. Soc. Am. J. 2020, 84, 1405–1441. [Google Scholar] [CrossRef]
- Abera, T.; Wegary, D.; Semu, E.; Msanya, B.; Debele, T.; Kim, H. Pedological characterization, fertility status and classification of the soils under maize production of Bako Tibe and Toke Kutaye Districts of Western Showa, Ethiopia. Ethiop. J. Appl. Sci. Technol. 2016, 7, 1–17. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle-size analysis. Methods of soil analysis: Part 1 Physical and mineralogical methods. Soil Since Soc. Am. 1986, 5, 383–411. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Doane, T.A.; Horwáth, W.R. Spectrophotometric determination of nitrate with a single reagent. Anal. Lett. 2003, 36, 2713–2722. [Google Scholar] [CrossRef]
- Novamsky, I.; Van Eck, R.; Van Schouwenburg, C.; Walinga, I. Total nitrogen determination in plant material by means of the indophenol-blue method. Neth. J. Agric. Sci. 1974, 22, 3–5. [Google Scholar] [CrossRef]
- Bray, R.H.; Kurtz, L.T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–46. [Google Scholar] [CrossRef]
- Buragohain, P.; Sreedeep, S.; Lin, P.; Ni, J.; Garg, A. Influence of soil variability on single and competitive interaction of ammonium and potassium: Experimental study on seven different soils. J. Soils Sed. 2019, 19, 186–197. [Google Scholar] [CrossRef]
- Farooq, M.; Hussain, M.; Wakeel, A.; Siddique, K.H. Salt stress in maize: Effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev. 2015, 35, 461–481. [Google Scholar] [CrossRef]
- Wang, Z.; Tao, T.; Wang, H.; Chen, J.; Small, G.E.; Johnson, D.; Chen, J.; Zhang, Y.; Zhu, Q.; Zhang, S. Forms of nitrogen inputs regulate the intensity of soil acidification. Glob. Change Biol. 2023, 29, 4044–4055. [Google Scholar] [CrossRef]
- Tian, D.; Niu, S. A global analysis of soil acidification caused by nitrogen addition. Environ. Res. Lett. 2015, 10, 024019. [Google Scholar] [CrossRef]
- Han, T.; Cai, A.; Liu, K.; Huang, J.; Wang, B.; Li, D.; Qaswar, M.; Feng, G.; Zhang, H. The links between potassium availability and soil exchangeable calcium, magnesium, and aluminum are mediated by lime in acidic soil. J. Soils Sed. 2019, 19, 1382–1392. [Google Scholar] [CrossRef]
- Behera, S.K.; Shukla, A.K. Spatial distribution of surface soil acidity, electrical conductivity, soil organic carbon content and exchangeable potassium, calcium and magnesium in some cropped acid soils of India. Land Degrad. Dev. 2015, 26, 71–79. [Google Scholar] [CrossRef]
- Seok, Y.J.; Park, J.H. Reducing nitrogen leaching using wood vinegar treated in urea-fertilized soil. Environ. Sci. Pollut. Res. 2024, 31, 7138–7145. [Google Scholar]
- Sin, S.K.; Kim, J.Y.; Park, J.H. Evaluation of Plant Available Nutrient Levels Using EC Monitored by Sensor in Pepper and Broccoli Soil. J. Bio-Environ. Control 2023, 32, 328–335. [Google Scholar] [CrossRef]
- Othaman, N.C.; Isa, M.M.; Ismail, R.; Ahmad, M.; Hui, C. Factors that affect soil electrical conductivity (EC) based system for smart farming application. In Proceedings of the AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2020; p. 020055. [Google Scholar]
- Dal Molin, S.J.; Ernani, P.R.; Gerber, J.M. Soil acidification and nitrogen release following application of nitrogen fertilizers. Commun. Soil Sci. Plant Anal. 2020, 51, 2551–2558. [Google Scholar] [CrossRef]
- Delgado, A.; Quemada, M.; Mateos, L.; Villalobos, F.J. Fertilization with phosphorus, potassium, and other nutrients. In Principles of Agronomy for Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2024; pp. 415–437. [Google Scholar]
- Han, J.; Shi, J.; Zeng, L.; Xu, J.; Wu, L. Effects of nitrogen fertilization on the acidity and salinity of greenhouse soils. Environ. Sci. Pollut. Res. 2015, 22, 2976–2986. [Google Scholar]
- Vargas, O.L.; Bryla, D.R. Growth and fruit production of highbush blueberry fertilized with ammonium sulfate and urea applied by fertigation or as granular fertilizer. HortScience 2015, 50, 479–485. [Google Scholar] [CrossRef]
- Carneiro, M.A.; Lima, A.M.; Cavalcante, Í.H.; Cunha, J.C.; Rodrigues, M.S.; Lessa, T.B.d.S. Soil salinity and yield of mango fertigated with potassium sources. Rev. Bras. Eng. Agrícola E Ambient. 2017, 21, 310–316. [Google Scholar] [CrossRef]
- Rosolem, C.A.; Almeida, D.S.; Rocha, K.F.; Bacco, G.H. Potassium fertilisation with humic acid coated KCl in a sandy clay loam tropical soil. Soil Res. 2018, 56, 244–251. [Google Scholar] [CrossRef]
- Yao, R.; Li, H.; Zhu, W.; Yang, J.; Wang, X.; Yin, C.; Jing, Y.; Chen, Q.; Xie, W. Biochar and potassium humate shift the migration, transformation and redistribution of urea-N in salt-affected soil under drip fertigation: Soil column and incubation experiments. Irrig. Sci. 2022, 40, 267–282. [Google Scholar] [CrossRef]
- Kumari, S.; Ali, N.; Dagati, M.; Dong, Y. IoT-Enabled Soil Moisture and Conductivity Monitoring Under Controlled and Field Fertigation Systems. AgriEngineering 2025, 7, 207. [Google Scholar]
- Islam, M.R.; Oliullah, K.; Kabir, M.M.; Alom, M.; Mridha, M. Machine learning enabled IoT system for soil nutrients monitoring and crop recommendation. J. Agric. Food Res. 2023, 14, 100880. [Google Scholar] [CrossRef]
- Ananthi, N.; Divya, J.; Divya, M.; Janani, V. IoT based smart soil monitoring system for agricultural production. In Proceedings of the 2017 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR), Chennai, India, 7–8 April 2017; pp. 209–214. [Google Scholar]
- Gaikwad, S.V.; Vibhute, A.D.; Kale, K.V.; Mehrotra, S.C. An innovative IoT based system for precision farming. Comput. Electron. Agric. 2021, 187, 106291. [Google Scholar] [CrossRef]
- Reshma, R.; Sathiyavathi, V.; Sindhu, T.; Selvakumar, K.; SaiRamesh, L. IoT based classification techniques for soil content analysis and crop yield prediction. In Proceedings of the 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), Palladam, India, 7–9 October 2020; pp. 156–160. [Google Scholar]




| Texture | pH | EC (dS m−1) | SOM (%) | NH4+-N (mg kg−1) | NO3−-N (mg kg−1) | Available P (mg kg−1) | Exchangeable Cation (cmolc kg−1) | ||
|---|---|---|---|---|---|---|---|---|---|
| Ca2+ | Mg2+ | K+ | |||||||
| Sandy loam | 6.77 | 0.16 | 2.07 | 12.3 | 1.65 | 70.6 | 4.28 | 1.32 | 0.48 |
| Cumulative Fertilization Rate (%) | Treatment | Sensor EC (dS m−1) | pH | Extract EC (dS m−1) | NH4+-N (mmol kg−1) | NO3−-N (mmol kg−1) | Exchangeable Cation (cmolc kg−1) | ||
|---|---|---|---|---|---|---|---|---|---|
| Ca2+ | Mg2+ | K+ | |||||||
| 25 | N | 0.57 ± 0.15 a | 5.42 ± 0.05 b | 1.52 ± 0.59 a | 1.97 ± 0.16 a | 74.4 ± 1.42 a | 6.78 ± 1.76 a | 2.72 ± 0.89 a | 0.81 ± 0.10 b |
| K | 0.70 ± 0.09 a | 5.92 ± 0.09 a | 2.29 ± 0.81 a | 2.44 ± 0.23 a | 78.6 ± 6.50 a | 9.49 ± 1.33 a | 4.05 ± 0.83 a | 1.53 ± 0.04 a | |
| NK | 0.59 ± 0.12 a | 5.68 ± 0.21 ab | 2.24 ± 0.24 a | 2.16 ± 0.08 a | 103.9 ± 32.4 a | 9.86 ± 1.21 a | 4.17 ± 0.74 a | 1.36 ± 0.0 a | |
| 50 | N | 0.53 ± 0.11 a | 5.01 ± 0.08 b | 3.56 ± 0.81 b | 5.03 ± 3.84 a | 164.6 ± 13.7 a | 14.3 ± 3.34 a | 6.20 ± 1.35 a | 1.02 ± 0.13 b |
| K | 0.56 ± 0.04 a | 5.84 ± 0.01 a | 3.00 ± 0.27 b | 1.04 ± 0.63 a | 87.2 ± 5.16 b | 13.0 ± 0.49 a | 6.07 ± 0.34 a | 2.15 ± 0.0 a | |
| NK | 0.59 ± 0.12 a | 5.21 ± 0.11 b | 5.21 ± 0.07 a | 6.24 ± 3.23 a | 186.1 ± 4.74 a | 17.1 ± 0.76 a | 7.50 ± 0.39 a | 2.40 ± 0.29 a | |
| 75 | N | 0.65 ± 0.10 a | 4.68 ± 0.12 c | 3.40 ± 0.28 a | 4.70 ± 0.81 a | 49.4 ± 0.73 a | 11.9 ± 0.03 a | 5.02 ± 0.21 a | 0.95 ± 0.01 a |
| K | 0.54 ± 0.02 a | 5.72 ± 0.11 a | 4.24 ± 0.42 a | 1.04 ± 0.10 b | 70.2 ± 6.15 a | 15.1 ± 0.05 a | 6.69 ± 0.06 a | 2.68 ± 0.15 a | |
| NK | 0.66 ± 0.13 a | 5.16 ± 0.15 b | 7.57 ± 2.53 a | 4.70 ± 1.17 a | 212.9 ± 96.6 a | 25.3 ± 11.2 a | 11.2 ± 5.68 a | 3.40 ± 1.39 a | |
| 100 | N | 0.75 ± 0.10 a | 4.70 ± 0.07 b | 7.43 ± 0.31 ab | 11.3 ± 0.63 a | 291.1 ± 68.1 a | 23.8 ± 0.80 a | 9.85 ± 0.10 a | 1.32 ± 0.03 b |
| K | 0.47 ± 0.03 a | 5.70 ± 0.11 a | 4.26 ± 2.42 b | 0.95 ± 0.37 c | 70.7 ± 21.9 b | 14.6 ± 10.2 a | 5.79 ± 3.99 a | 2.85 ± 1.10 ab | |
| NK | 0.75 ± 0.16 a | 5.42 ± 0.27 a | 9.40 ± 1.06 a | 8.68 ± 0.69 b | 284.6 ± 49.5 a | 30.1 ± 3.99 a | 11.4 ± 2.27 a | 3.70 ± 0.41 a | |
| 125 | N | 0.75 ± 0.12 a | 5.04 ± 0.04 b | 4.66 ± 0.33 b | 8.64 ± 2.77 a | 154.1 ± 12.4 a | 16.3 ± 0.07 b | 6.00 ± 0.18 b | 1.04 ± 0.04 c |
| K | 0.49 ± 0.04 a | 5.67 ± 0.04 a | 2.86 ± 0.06 b | 0.51 ± 0.05 a | 45.6 ± 11.6 b | 11.2 ± 0.29 c | 4.45 ± 0.35 c | 2.99 ± 0.13 b | |
| NK | 0.76 ± 0.10 a | 5.46 ± 0.31 ab | 7.37 ± 1.21 a | 9.75 ± 4.52 a | 245.0 ± 47.3 a | 23.6 ± 0.88 a | 9.79 ± 0.48 a | 3.89 ± 0.03 a | |
| 150 | N | 0.76 ± 0.11 a | 5.16 ± 0.03 b | 4.97 ± 0.82 b | 11.5 ± 2.09 a | 163.2 ± 12.3 ab | 13.7 ± 3.17 a | 5.26 ± 1.61 a | 1.04 ± 0.13 b |
| K | 0.51 ± 0.04 a | 5.47 ± 0.06 a | 5.50 ± 1.03 ab | 0.60 ± 0.02 b | 62.9 ± 16.7 b | 19.8 ± 0.83 a | 6.91 ± 0.90 a | 4.16 ± 0.04 a | |
| NK | 0.79 ± 0.14 a | 5.51 ± 0.01 a | 8.62 ± 1.19 a | 11.8 ± 0.71 a | 220.7 ± 71.2 a | 20.8 ± 8.64 a | 7.99 ± 3.33 a | 3.86 ± 0.81 a | |
| 200 | N | 0.79 ± 0.14 a | 6.21 ± 0.11 a | 4.51 ± 0.47 a | 17.5 ± 3.33 a | 128.5 ± 21.8 a | 11.9 ± 1.34 a | 4.52 ± 0.42 a | 0.98 ± 0.08 b |
| K | 0.55 ± 0.05 a | 5.67 ± 0.11 a | 4.69 ± 1.77 a | 0.71 ± 0.09 b | 45.3 ± 14.2 a | 10.9 ± 4.03 a | 3.84 ± 0.87 a | 3.80 ± 0.43 ab | |
| NK | 0.87 ± 0.16 a | 6.08 ± 0.45 a | 7.09 ± 2.98 a | 21.1 ± 1.16 a | 204.7 ± 97.1 a | 19.1 ± 11.6 a | 7.57 ± 4.80 a | 4.84 ± 1.74 a | |
| 300 | N | 0.84 ± 0.18 a | 5.20 ± 0.40 a | 2.09 ± 0.81 ab | 17.7 ± 8.00 ab | 67.3 ± 47.3 a | 6.38 ± 2.83 a | 2.24 ± 1.26 a | 0.83 ± 0.17 b |
| K | 0.63 ± 0.01 a | 5.81 ± 0.05 a | 1.08 ± 0.15 b | 1.07 ± 0.06 b | 16.5 ± 1.33 a | 3.34 ± 0.22 a | 1.02 ± 0.15 a | 2.96 ± 0.54 a | |
| NK | 0.93 ± 0.20 a | 5.39 ± 0.02 a | 3.43 ± 0.81 a | 21.9 ± 6.80 a | 85.0 ± 37.3 a | 6.79 ± 1.05 a | 2.42 ± 0.47 a | 3.61 ± 0.38 a | |
| PC1 | PC2 | PC3 | |
|---|---|---|---|
| Sensor-based EC | 0.117 | 0.912 | 0.080 |
| pH | −0.207 | −0.082 | 0.881 |
| Extract EC | 0.966 | 0.061 | 0.068 |
| Ca | 0.977 | −0.153 | −0.067 |
| Mg | 0.959 | −0.186 | −0.101 |
| K | 0.544 | −0.206 | 0.670 |
| CEC | 0.977 | −0.186 | 0.009 |
| NH4+-N | 0.246 | 0.885 | 0.165 |
| NO3--N | 0.883 | 0.251 | −0.164 |
| Eigenvalue | 4.954 | 1.824 | 1.305 |
| Variability (%) | 55.046 | 20.272 | 14.502 |
| Cumulative % | 55.046 | 75.318 | 89.819 |
| Fertigation Event | N and K Application (mmol kg−1) | (dS m−1) | (dS m−1) | ||
|---|---|---|---|---|---|
| Linear | Polynomial | Saturation | |||
| F1 | 2.09 | 0.08 | 0.07 | 0.09 | 0.09 |
| F2 | 3.09 | 0.09 | 0.10 | 0.13 | 0.11 |
| Sensor EC (dS m−1) | pH | Extract EC (dS m−1) | NH4+-N (mmol kg−1) | NO3−-N (mmol kg−1) | Exchangeable Cation (cmolc kg−1) | ||
|---|---|---|---|---|---|---|---|
| Ca2+ | Mg2+ | K+ | |||||
| 0.47 ± 0.06 | 5.72 ± 0.59 | 0.65 ± 0.10 | 12.9 ± 6.13 | 50.0 ± 7.75 | 2.89 ± 0.74 | 1.02 ± 0.29 | 1.83 ± 0.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Shin, S.K.; Lee, Y.-E.; Lee, S.J.; Park, J.H. Evaluation of Sensor-Based Soil EC Responses to Nitrogen and Potassium Fertilization Under Laboratory and Field Conditions. Agriculture 2026, 16, 137. https://doi.org/10.3390/agriculture16020137
Shin SK, Lee Y-E, Lee SJ, Park JH. Evaluation of Sensor-Based Soil EC Responses to Nitrogen and Potassium Fertilization Under Laboratory and Field Conditions. Agriculture. 2026; 16(2):137. https://doi.org/10.3390/agriculture16020137
Chicago/Turabian StyleShin, Su Kyeong, Ye-Eun Lee, Seung Jun Lee, and Jin Hee Park. 2026. "Evaluation of Sensor-Based Soil EC Responses to Nitrogen and Potassium Fertilization Under Laboratory and Field Conditions" Agriculture 16, no. 2: 137. https://doi.org/10.3390/agriculture16020137
APA StyleShin, S. K., Lee, Y.-E., Lee, S. J., & Park, J. H. (2026). Evaluation of Sensor-Based Soil EC Responses to Nitrogen and Potassium Fertilization Under Laboratory and Field Conditions. Agriculture, 16(2), 137. https://doi.org/10.3390/agriculture16020137

