Error Threshold-Based Autonomous Navigation with Right-Angle Turning for Crawler-Type Combine Harvesters in Paddy Fields
Abstract
1. Introduction
2. Materials and Methods
2.1. Path Planning
2.2. Straight-Line Path Tracking
2.3. Right-Angle Turning
3. Results and Discussion
3.1. Evaluation of Straight-Line Path Tracking Performance
3.2. Evaluation of Right-Angle Turning Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cui, B.; Cui, X.; Wei, X.; Zhu, Y.; Ma, Z.; Zhao, Y.; Liu, Y. Design and Testing of a Tractor Automatic Navigation System Based on Dynamic Path Search and a Fuzzy Stanley Model. Agriculture 2024, 14, 2136. [Google Scholar] [CrossRef]
- Xie, B.; Jin, Y.; Faheem, M.; Gao, W.; Liu, J.; Jiang, H.; Cai, L.; Li, Y. Research progress of autonomous navigation technology for multi-agricultural scenes. Comput. Electron. Agric. 2023, 211, 107963. [Google Scholar] [CrossRef]
- Yin, X.; Wang, Y.; Chen, Y.; Jin, C.; Du, J. Development of autonomous navigation controller for agricultural vehicles. Int. J. Agric. Biol. Eng. 2020, 13, 70–76. [Google Scholar] [CrossRef]
- Sun, J.; Zeng, L.; Ying, J.; Zheng, H.; Sun, Q.; Meng, X. Research Status and Prospect of Key Technologies of Agricultural Track Chassis. Trans. Chin. Soc. Agric. Mach. 2024, 55, 202–220. [Google Scholar] [CrossRef]
- Hu, C.; Ru, Y.; Li, X.; Fang, S.; Zhou, H.; Yan, X.; Liu, M.; Xie, R. Path tracking control for brake-steering tracked vehicles based on an improved pure pursuit algorithm. Biosyst. Eng. 2024, 242, 1–15. [Google Scholar] [CrossRef]
- Ding, Y.; He, Z.; Xia, Z.; Peng, J.; Wu, T. Design of navigation immune controller of small crawler-type rape seeder. Trans. Chin. Soc. Agric. Eng. 2019, 35, 12–20. [Google Scholar] [CrossRef]
- Chen, T.; Seok Ahn, H.; Sun, W.; Pan, J.; Liu, Y.; Cheng, J.; Xu, L. Optimizing path planning for a single tracked combine harvester: A comprehensive approach to harvesting and unloading processes. Comput. Electron. Agric. 2024, 224, 109217. [Google Scholar] [CrossRef]
- Guo, H.; Li, Y.; Wang, H.; Wang, C.; Zhang, J.; Wang, T.; Rong, L.; Wang, H.; Wang, Z.; Huo, Y.; et al. Path planning of greenhouse electric crawler tractor based on the improved A* and DWA algorithms. Comput. Electron. Agric. 2024, 227, 109596. [Google Scholar] [CrossRef]
- Ren, H.; Wu, J.; Lin, T.; Yao, Y.; Liu, C. Research on an Intelligent Agricultural Machinery Unmanned Driving System. Agriculture 2023, 13, 1907. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, B.; Du, X.; Hu, X.; Wu, C.; Cai, J. An Adaptive Path Tracking Controller with Dynamic Look-Ahead Distance Optimization for Crawler Orchard Sprayers. Actuators 2025, 14, 154. [Google Scholar] [CrossRef]
- Lu, E.; Xu, L.; Li, Y.; Tang, Z.; Ma, Z. Modeling of working environment and coverage path planning method of combine harvesters. Int. J. Agric. Biol. Eng. 2020, 13, 132–137. [Google Scholar] [CrossRef]
- Takai, R.; Barawid, O.; Noguchi, N. Autonomous Navigation System of Crawler-Type Robot Tractor. IFAC Proceedings Volumes. In Proceedings of the 18th IFAC World Congress, Milano, Italy, 28 August–2 September 2011; Volume 44, pp. 14165–14169. [Google Scholar] [CrossRef]
- Takai, R.; Yang, L.; Noguchi, N. Development of Crawler-Type Robot Tractor Based on GNSS and IMU. IFAC Proceedings Volumes. In Proceedings of the 5th IFAC Conference on Bio-Robotics, Sakai, Japan, 27–29 March 2013; Volume 46, pp. 95–98. [Google Scholar] [CrossRef]
- Kurita, H.; Iida, M.; Cho, W.; Suguri, M. Rice Autonomous Harvesting: Operation Framework. J. Field Robot. 2017, 34, 1084–1099. [Google Scholar] [CrossRef]
- Song, Y.; Xue, J.; Zhang, T.; Sun, X.; Sun, H.; Gao, W.; Chen, Q. Path tracking control of crawler tractor based on adaptive adjustment of lookahead distance using sparrow search algorithm. Comput. Electron. Agric. 2025, 234, 110219. [Google Scholar] [CrossRef]
- Wang, N.; Jin, Z.; Wang, T.; Xiao, J.; Zhang, Z.; Wang, H.; Zhang, M.; Li, H. Hybrid path planning methods for complete coverage in harvesting operation scenarios. Comput. Electron. Agric. 2025, 231, 109946. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, W.; Xiong, Z.; Hu, Z.; Wang, D.; Ding, Y. Design and Experiment of Fuzzy Adaptive Pure Pursuit Control of Crawler-Type Rape Seeder. Trans. Chin. Soc. Agric. Mach. 2021, 52, 105–114. [Google Scholar] [CrossRef]
- Zhou, J.; Wen, J.; Yao, L.; Yang, Z.; Xu, L.; Yao, L. Agricultural Machinery Path Tracking with Varying Curvatures Based on an Improved Pure-Pursuit Method. Agriculture 2025, 15, 266. [Google Scholar] [CrossRef]
- He, J.; Man, Z.; Hu, L.; Luo, X.; Wang, P.; Li, M.; Li, W. Path tracking control method and experiments for the crawler-mounted peanut combine harvester. Trans. Chin. Soc. Agric. Eng. 2023, 39, 9–17. [Google Scholar] [CrossRef]
- Zhang, S.; Wei, X.; Liu, C.; Ge, J.; Cui, X.; Wang, F.; Wang, A.; Chen, W. Adaptive path tracking and control system for unmanned crawler harvesters in paddy fields. Comput. Electron. Agric. 2025, 230, 109878. [Google Scholar] [CrossRef]
- Zhou, B.; Su, X.; Yu, H.; Guo, W.; Zhang, Q. Research on Path Tracking of Articulated Steering Tractor Based on Modified Model Predictive Control. Agriculture 2023, 13, 871. [Google Scholar] [CrossRef]
- Xu, J.; Lai, J.; Guo, R.; Lu, X.; Xu, L. Efficiency-Oriented MPC Algorithm for Path Tracking in Autonomous Agricultural Machinery. Agronomy 2022, 12, 1662. [Google Scholar] [CrossRef]
- Lee, K.; Choi, H.; Kim, J. Development of Path Generation and Algorithm for Autonomous Combine Harvester Using Dual GPS Antenna. Sensors 2023, 23, 4944. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Xiong, C.; Huang, X.; Ding, Y.; Wang, S. Coverage operation path planning algorithms for the rape combine harvester in quadrilateral fields. Trans. Chin. Soc. Agric. Eng. 2021, 37, 140–148. [Google Scholar] [CrossRef]
- Wei, W.; Xiao, M.; Duan, W.; Wang, H.; Zhu, Y.; Zhai, C.; Geng, G. Research Progress on Autonomous Operation Technology for Agricultural Equipment in Large Fields. Agriculture 2024, 14, 1473. [Google Scholar] [CrossRef]
- Zhang, S.; Wei, X.; Deng, Y.; Zhang, C.; Ji, X.; Wang, A. Design and experiments of the whole field path tracking algorithm for a track based harvest. Trans. Chin. Soc. Agric. Eng. 2023, 39, 36–45. [Google Scholar] [CrossRef]











| Parameter | Value |
|---|---|
| Engine power (ps) | 140 |
| Cutting width (m) | 2.3 |
| Feeding capacity (kg/s) | 7 |
| Machine weight (kg) | 3890 |
| Dimensions (m × m × m) | 6.2 × 2.75 × 2.9 |
| Track gauge (m) | 1.2 |
| Grain tank capacity (m) | 1.6 |
| de | [−de3, −de2) | [−de2, −de1) | [−de1, 0) | (0, de1] | (de1, de2] | (de2, de3] | |
|---|---|---|---|---|---|---|---|
| θe | |||||||
| (−∞, −θe2) | LR | LR | LR | N | N | N | |
| [−θe2, −θe1) | LR | SR | SR | SR | SL | LL | |
| [−θe1, 0) | LR | SR | N | N | SL | LL | |
| (0, θe1] | LR | SR | N | N | SL | LL | |
| (θe1, θe2] | LR | SR | SL | SL | SL | LL | |
| (θe2, +∞) | N | N | N | LL | LL | LL | |
| Path | Lateral Error (cm) | Heading Error (°) | ||||
|---|---|---|---|---|---|---|
| Average | Maximum | RMS | Average | Maximum | RMS | |
| P0P1 | 2.74 | 7.52 | 3.35 | 0.46 | 1.29 | 0.58 |
| P1P2 | 2.71 | 9.77 | 3.36 | 1.07 | 1.71 | 1.14 |
| P2P3 | 3.69 | 10.25 | 4.8 | 0.64 | 1.94 | 0.78 |
| P3P4 | 5.19 | 7.83 | 5.38 | 0.56 | 1.8 | 0.71 |
| P4P5 | 3.12 | 7.72 | 3.57 | 0.67 | 1.73 | 0.78 |
| P5P6 | 3.31 | 9.11 | 4.11 | 0.71 | 1.15 | 0.73 |
| P6P7 | 2.28 | 7.3 | 2.61 | 0.5 | 1.49 | 0.64 |
| P7P8 | 3.91 | 9.95 | 5 | 1.18 | 1.47 | 1.19 |
| P8P9 | 2.79 | 7.3 | 3.48 | 0.7 | 1.47 | 0.79 |
| P9P10 | 1.58 | 4 | 1.86 | 1.07 | 1.44 | 1.1 |
| P10P11 | 1.9 | 7.65 | 2.4 | 0.72 | 1.44 | 0.78 |
| P11P12 | 6.19 | 8.38 | 6.26 | 0.66 | 0.97 | 0.67 |
| P12P13 | 3.3 | 9.83 | 3.98 | 0.56 | 1.65 | 0.67 |
| P13P14 | 6.44 | 8.39 | 6.48 | 0.44 | 0.95 | 0.5 |
| Number | Lateral Error (cm) | Heading Error (°) | Alignment Time (s) | Alignment Distance (m) |
|---|---|---|---|---|
| 1 | 7.13 | −0.94 | 0 | 0 |
| 2 | 17.64 | 0.61 | 3.8 | 3.04 |
| 3 | 13.53 | −3.54 | 3.6 | 2.88 |
| 4 | −6.87 | −14.46 | 4 | 3.2 |
| 5 | 6.85 | −2.09 | 0.6 | 0.48 |
| 6 | 9.35 | −1.15 | 0 | 0 |
| 7 | 8.95 | −1.21 | 0 | 0 |
| 8 | 7.64 | −2.32 | 2 | 1.6 |
| 9 | 0.41 | 3.13 | 1 | 0.8 |
| 10 | 2.08 | 2.44 | 0.8 | 0.64 |
| 11 | 7.36 | −2.65 | 3.2 | 2.56 |
| 12 | 14.18 | 0.32 | 3.2 | 2.56 |
| 13 | −8.79 | 2.29 | 1.4 | 1.12 |
| 14 | 8.39 | 9.1 | 2.8 | 2.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
An, G.; Du, J.; Jin, C.; Ma, W.; Yin, X. Error Threshold-Based Autonomous Navigation with Right-Angle Turning for Crawler-Type Combine Harvesters in Paddy Fields. Agriculture 2026, 16, 42. https://doi.org/10.3390/agriculture16010042
An G, Du J, Jin C, Ma W, Yin X. Error Threshold-Based Autonomous Navigation with Right-Angle Turning for Crawler-Type Combine Harvesters in Paddy Fields. Agriculture. 2026; 16(1):42. https://doi.org/10.3390/agriculture16010042
Chicago/Turabian StyleAn, Guangshun, Juan Du, Chengqian Jin, Wenpeng Ma, and Xiang Yin. 2026. "Error Threshold-Based Autonomous Navigation with Right-Angle Turning for Crawler-Type Combine Harvesters in Paddy Fields" Agriculture 16, no. 1: 42. https://doi.org/10.3390/agriculture16010042
APA StyleAn, G., Du, J., Jin, C., Ma, W., & Yin, X. (2026). Error Threshold-Based Autonomous Navigation with Right-Angle Turning for Crawler-Type Combine Harvesters in Paddy Fields. Agriculture, 16(1), 42. https://doi.org/10.3390/agriculture16010042

