Soil Organic Carbon Regulates Nitrogen Mineralization and Uptake from Citrus Sewage Sludge in a Wheat Cropping System
Abstract
1. Introduction
2. Materials and Methods
2.1. Soils
2.2. Citrus Sewage Sludge Characterization and Chemical Properties
2.3. Citrus Sewage Sludge Analyses
2.4. Experimental Design and Setup
2.5. Soil Analyses
2.6. Plant Analyses
2.7. Statistical Analysis
3. Results and Discussion
3.1. Chemical Properties of Citrus Sewage Sludge
3.2. Effect of N Supply Forms on N Dynamics in Soils
3.3. Effect of N Supply Forms on Plants
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations. World Population Prospects: The 2019 Revision; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Fukase, E.; Martin, W. Economic Growth, Convergence, and World Food Demand and Supply. World Dev. 2020, 132, 104954. [Google Scholar] [CrossRef]
- Penuelas, J.; Coello, F.; Sardans, J. A better use of fertilizers is needed for global food security and environmental sustainability. Agric. Food Secur. 2023, 12, 5. [Google Scholar] [CrossRef]
- Kagan, K.; Jonak, K.; Wolińska, A. The Impact of Reduced N Fertilization Rates According to the “Farm to Fork” Strategy on the Environment and Human Health. Appl. Sci. 2024, 14, 10726. [Google Scholar] [CrossRef]
- Brunelle, T.; Dumas, P.; Souty, F.; Nadaud, F.; Bamière, L. Evaluating the Impact of Rising Fertilizer Prices on Crop Yields. Agric. Econ. 2015, 46, 653–666. [Google Scholar] [CrossRef]
- Sniatala, B.; Kurniawan, T.A.; Sobotka, D.; Makinia, J.; Othman, M.H.D. Macro-Nutrients Recovery from Liquid Waste as a Sustainable Resource for Production of Recovered Mineral Fertilizer. Sci. Total Environ. 2023, 856, 159283. [Google Scholar] [CrossRef]
- Laudicina, V.A.; Barbera, V.; Gristina, L.; Badalucco, L. Management Practices to Preserve Soil Organic Matter in Semiarid Mediterranean Environment. In Soil Organic Matter: Ecology, Environmental Impact and Management; Nova Science Publishers, Inc.: New York, NY, USA, 2012; pp. 39–61. [Google Scholar]
- Tang, S.; Pan, W.; Yang, Y.; Luo, Z.; Wanek, W.; Kuzyakov, Y.; Marsden, K.A.; Liang, G.; Chadwick, D.R.; Gregory, A.S.; et al. Soil carbon sequestration enhanced by long-term nitrogen and phosphorus fertilization. Nat. Geosci. 2025, 18, 1005–1013. [Google Scholar] [CrossRef]
- Pahalvi, H.N.; Rafiya, L.; Rashid, S.; Nisar, B.; Kamili, A.N. Chemical Fertilizers and Their Impact on Soil Health. In Microbiota and Biofertilizers; Dar, G.H., Bhat, R.A., Mehmood, M.A., Hakeem, K.R., Eds.; Springer: Cham, Switzerland, 2021; Volume 2. [Google Scholar] [CrossRef]
- Palazzolo, E.; Laudicina, V.A.; Roccuzzo, G.; Allegra, M.; Torrisi, B.; Micalizzi, A.; Badalucco, L. Bioindicators and Nutrient Availability through Whole Soil Profile under Orange Groves after Long-Term Different Organic Fertilizations. SN Appl. Sci. 2019, 1, 468. [Google Scholar] [CrossRef]
- FAO. Citrus Fruit Fresh and Processed Statistical Bulletin; FAO: Rome, Italy, 2020; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/4760a5b5-f3b2-41c7-8713-ccdb1a5f8c08/content (accessed on 17 September 2025).
- Rovetto, E.; La Spada, F.; Aloi, F.; Riolo, M.; Pane, A.; Garbelotto, M.; Cacciola, S.O. Green Solutions and New Technologies for Sustainable Management of Fungus and Oomycete Diseases in the Citrus Fruit Supply Chain. J. Plant Pathol. 2024, 106, 411–437. [Google Scholar] [CrossRef]
- Zema, D.A.; Calabrò, P.S.; Folino, A.; Tamburino, V.; Zappia, G.; Zimbone, S.M. Wastewater Management in Citrus Processing Industries: An Overview of Advantages and Limits. Water 2019, 11, 2481. [Google Scholar] [CrossRef]
- Lucia, C.; Badalucco, L.; Corsino, S.F.; Galati, A.; Iovino, M.; Muscarella, S.M.; Paliaga, S.; Torregrossa, M.; Laudicina, V.A. Management and Valorisation of Sewage Sludge to Foster the Circular Economy in the Agricultural Sector. Discov. Soil 2025, 2, 80. [Google Scholar] [CrossRef]
- Lucia, C.; Laudicina, V.A.; Badalucco, L.; Galati, A.; Palazzolo, E.; Torregrossa, M.; Viviani, G.; Corsino, S.F. Challenges and Opportunities for Citrus Wastewater Management and Valorisation: A Review. J. Environ. Manag. 2022, 321, 115924. [Google Scholar] [CrossRef]
- Lucia, C.; Pampinella, D.; Palazzolo, E.; Badalucco, L.; Laudicina, V.A. From Waste to Resources: Sewage Sludges from the Citrus Processing Industry to Improve Soil Fertility and Performance of Lettuce (Lactuca sativa L.). Agriculture 2023, 13, 913. [Google Scholar] [CrossRef]
- Almási, C.; Orosz, V.; Tóth, T.; Mansour, M.M.; Demeter, I.; Henzsel, I.; Bogdányi, Z.; Szegi, T.A.; Makádi, M. Effects of Sewage Sludge Compost on Carbon, Nitrogen, Phosphorus, and Sulfur Ratios and Soil Enzyme Activities in a Long-Term Experiment. Agronomy 2025, 15, 143. [Google Scholar] [CrossRef]
- Gerke, J. The Central Role of Soil Organic Matter in Soil Fertility and Carbon Storage. Soil Syst. 2022, 6, 33. [Google Scholar] [CrossRef]
- Paliaga, S.; Muscarella, S.M.; Lucia, C.; Pampinella, D.; Palazzolo, E.; Badalucco, L.; Badagliacca, G.; Laudicina, V.A. Long-Term Organic Management: Mitigating Land Use Intensity Drawbacks and Enhancing Soil Microbial Redundancy. J. Plant Nutr. Soil Sci. 2024, 187, 287–294. [Google Scholar] [CrossRef]
- Geisseler, D.; Smith, R.; Cahn, M.; Muramoto, J. Nitrogen mineralization from organic fertilizers and composts: Literature survey and model fitting. J. Environ. Qual. 2021, 50, 1325–1338. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 13th ed.; USDA–Natural Resources Conservation Service: Washington, DC, USA, 2022. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis. Part 3, Chemical Methods; Sparks, D.L., Ed.; Soil Science Society of America Book Series No 5; Soil Science Society of America: Madison, WI, USA; American Society of Agronomy: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Ferree, M.A.; Shannon, R.D. Evaluation of a second derivative UV/visible spectroscopy technique for nitrate and total nitrogen analysis of wastewater samples. Water Res. 2001, 35, 327–332. [Google Scholar] [CrossRef]
- Mulvaney, R.L. Nitrogen—Inorganic Forms. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1996; pp. 1123–1184. ISBN 978-0-89118-866-7. [Google Scholar]
- Bremner, J.M. Nitrogen Total. In Methods of Soil Analysis: Part 3 Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA; American Society of Agronomy, Inc.: Madison, WI, USA, 1996; pp. 1085–1121. [Google Scholar]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis Part 2 Chemical and Microbiological Properties; Page, A.L., Ed.; American Society of Agronomy, Inc.: Madison, WI, USA; Soil Science Society of America, Inc.: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Murphy, J.; Riley, J.P. A Modified Single Solution Method for the Determination of Phosphate in Natural Waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Jones, B.J., Jr.; Case, V.W. Sampling, Handling, and Analyzing Plant Tissue Samples. In Soil Testing and Plant Analysis, 3rd ed.; Westerman, R.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1990; pp. 389–427. [Google Scholar]
- Hoagland, D.R.; Dennis, R. The Water-Culture Method for Growing Plants without Soil. Calif. Agric. Exp. Stn. Circ. 1938, 347, 32. [Google Scholar]
- Eivazi, F.; Tabatabai, M.A. Glucosidases and Galactosidases in Soils. Soil Biol. Biochem. 1988, 20, 601–606. [Google Scholar] [CrossRef]
- AOAC. Crude Protein in Cereal Grains and Oil Seeds; AOAC Official Method 992.23; AOAC International: Washington, DC, USA.
- Ayeyemi, T.; Recena, R.; García-López, A.M.; Delgado, A. Circular Economy Approach to Enhance Soil Fertility Based on Recovering Phosphorus from Wastewater. Agronomy 2023, 13, 1513. [Google Scholar] [CrossRef]
- Council Directive 86/278/EEC of 12 June 1986 on the Protection of the Environment, and in Particular of the Soil, When Sewage Sludge Is Used in Agriculture. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:31986L0278 (accessed on 17 September 2025).
- Arrobas, M.; Meneses, R.; Gusmão, A.G.; da Silva, J.M.; Correia, C.M.; Rodrigues, M.Â. Nitrogen-Rich Sewage Sludge Mineralized Quickly, Improving Lettuce Nutrition and Yield, with Reduced Risk of Heavy Metal Contamination of Soil and Plant Tissues. Agronomy 2024, 14, 924. [Google Scholar] [CrossRef]
- Singh, R.P.; Agrawal, M. Potential Benefits and Risks of Land Application of Sewage Sludge. Waste Manag. 2008, 28, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Phuleria, H.C.; Chandel, M.K. Unlocking the Nutrient Value of Sewage Sludge. Water Environ. J. 2022, 36, 321–331. [Google Scholar] [CrossRef]
- Gianico, A.; Braguglia, C.M.; Gallipoli, A.; Montecchio, D.; Mininni, G. Land Application of Biosolids in Europe: Possibilities, Constraints and Future Perspectives. Water 2021, 13, 103. [Google Scholar] [CrossRef]
- Ayiti, O.E.; Babalola, O.O. Factors Influencing Soil Nitrification Process and the Effect on Environment and Health. Front. Sustain. Food Syst. 2022, 6, 821994. [Google Scholar] [CrossRef]
- Duan, R.; Long, X.E.; Tang, Y.F.; Wen, J.; Su, S.; Bai, L.; Zeng, X. Effects of Different Fertilizer Application Methods on the Community of Nitrifiers and Denitrifiers in a Paddy Soil. J. Soils Sediments 2018, 18, 24–38. [Google Scholar] [CrossRef]
- Booth, M.S.; Stark, J.M.; Rastetter, E. Controls on Nitrogen Cycling in Terrestrial Ecosystems: A Synthetic Analysis of Literature Data. Ecol. Monogr. 2005, 75, 139–157. [Google Scholar] [CrossRef]
- Horwath, W.R.; Paul, E.A. Carbon Cycling: The Dynamics and Formation of Organic Matter. In Soil Microbiology, Ecology and Biochemistry, 4th ed.; Paul, E.A., Ed.; Academic Press: London, UK, 2015; pp. 339–382. [Google Scholar]
- Antille, D.L.; Sakrabani, R.; Godwin, R.J. Nitrogen release characteristics from biosolids-derived organomineral fertilizers. Commun. Soil Sci. Plant Anal. 2014, 45, 1687–1698. [Google Scholar] [CrossRef]
- Volpi, I.; Laville, P.; Bonari, E.; Di Nasso, N.N.; Bosco, S. Improving the Management of Mineral Fertilizers for Nitrous Oxide Mitigation: The Effect of Nitrogen Fertilizer Type, Urease and Nitrification Inhibitors in two Different Textured Soils. Geoderma 2017, 307, 181–188. [Google Scholar] [CrossRef]
- Turner, B.L.; Hopkins, D.W.; Haygarth, P.M.; Ostle, N. β-Glucosidase Activity in Pasture Soils. Appl. Soil Ecol. 2002, 20, 157–162. [Google Scholar] [CrossRef]
- de Almeida, R.F.; Naves, E.R.; da Mota, R.P. Soil Quality: Enzymatic Activity of Soil β-Glucosidase. Glob. J. Agric. Res. Rev. 2015, 3, 146–150. [Google Scholar]
- Pascual, I.; Antolín, M.C.; García, C.; Polo, A.; Sánchez-Díaz, M. Effect of Water Deficit on Microbial Characteristics in Soil Amended with Sewage Sludge or Inorganic Fertilizer under Laboratory Conditions. Bioresour. Technol. 2007, 98, 29–37. [Google Scholar] [CrossRef]





| Parameters | Unit | S1 | S2 |
|---|---|---|---|
| pH | 8.5 | 7.9 | |
| Electrical Conductivity | µS cm−1 | 139 | 131 |
| Oxidable Organic Carbon | % | 0.7 | 0.5 |
| Total carbonates | % | 47 | 7 |
| Active Carbonate | % | 10 | 2 |
| Nitrate | mg kg−1 | 65 | 60 |
| Ammonium | mg kg−1 | 5 | 9 |
| Total N | % | 0.08 | 0.08 |
| Available P | mg kg−1 | 6 | 9 |
| Cation Exchange Capacity | cmolc kg−1 | 10 | 10 |
| Parameter | CSS |
|---|---|
| pH | 6.7 ± 0.1 |
| Electrical conductivity (dS m−1) | 2.19 ± 0.07 |
| Total carbon (g kg−1) | 158 ± 1.8 |
| N (g kg−1) | 52 ± 1.2 |
| P (g kg−1) | 4 ± 0.3 |
| Ca (g kg−1) | 2 ± 0.2 |
| K (g kg−1) | 0.6 ± 0.1 |
| Mg (g kg−1) | 0.5 ± 0.1 |
| Na (g kg−1) | 0.1 ± 0.04 |
| Fe (mg kg−1) | 4 ± 0.2 |
| Zn (mg kg−1) | 18 ± 0.3 |
| Pb (mg kg−1) | 6 ± 0.4 |
| Cu (mg kg−1) | 16 ± 0.3 |
| Ni (mg kg−1) | 122 ± 0.7 |
| Mn (mg kg−1) | 10 ± 0.2 |
| Al (mg kg−1) | 122 ± 0.9 |
| Cr (mg kg−1) | 10 ± 0.4 |
| Cd (mg kg−1) | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lucia, C.; Muscarella, S.M.; Delgado, A.; Nieto Cantero, J.; Laudicina, V.A. Soil Organic Carbon Regulates Nitrogen Mineralization and Uptake from Citrus Sewage Sludge in a Wheat Cropping System. Agriculture 2026, 16, 37. https://doi.org/10.3390/agriculture16010037
Lucia C, Muscarella SM, Delgado A, Nieto Cantero J, Laudicina VA. Soil Organic Carbon Regulates Nitrogen Mineralization and Uptake from Citrus Sewage Sludge in a Wheat Cropping System. Agriculture. 2026; 16(1):37. https://doi.org/10.3390/agriculture16010037
Chicago/Turabian StyleLucia, Caterina, Sofia Maria Muscarella, Antonio Delgado, Juan Nieto Cantero, and Vito Armando Laudicina. 2026. "Soil Organic Carbon Regulates Nitrogen Mineralization and Uptake from Citrus Sewage Sludge in a Wheat Cropping System" Agriculture 16, no. 1: 37. https://doi.org/10.3390/agriculture16010037
APA StyleLucia, C., Muscarella, S. M., Delgado, A., Nieto Cantero, J., & Laudicina, V. A. (2026). Soil Organic Carbon Regulates Nitrogen Mineralization and Uptake from Citrus Sewage Sludge in a Wheat Cropping System. Agriculture, 16(1), 37. https://doi.org/10.3390/agriculture16010037

