Research on Seed Selection Method for Wheat Variety Bainong 207 Based on Embryo Phenotype
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experiment Methods
2.2.1. Wheat Embryo Phenotyping Measurement
- (1)
- Stabilize wheat seeds in a seed sampling hole plate, with the embryo side facing upward;
- (2)
- Place the sampling hole plate on the three-dimensional adjustment stand;
- (3)
- Adjust the vertical height and horizontal position of the stand until clear images of the seeds are obtained.
2.2.2. Hydration-Dehydration Treatment on Seeds
2.2.3. Seed Germination Test
2.2.4. The Computational Platform and Software Environment
2.3. Parameter Measurement and Calculation Methods
- Germinative force
- 2.
- Germination percentage
- 3.
- Seedling height and root length
- 4.
- Seed vigor index
- 5.
- Fresh weight and dry weight of the seedling
- 6.
- Statistical methods
- 7.
- Object detection model evaluation
3. Results
3.1. Classification Results of Wheat Embryo Phenotypes
3.2. Monitoring the Water Absorption Processes of Seeds with Different Embryo Phenotypes
3.3. Comparison of Germination Force and Germination Percentage Among Seeds with Different Embryo Phenotypes
3.4. Comparison of Seedling Heights and Root Lengths of Seedlings with Different Seed Embryo Phenotypes
3.5. Comparison of Fresh and Dry Weights of Seedlings with Different Seed Embryo Phenotypes
3.6. Classification Results of Different Embryo Phenotypes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khalid, A.; Hameed, A.; Tahir, M.F. Wheat Quality: A Review on Chemical Composition, Nutritional Attributes, Grain Anatomy, Types, Classification, and Function of Seed Storage Proteins in Bread Making Quality. Front. Nutr. 2023, 10, 1053196. [Google Scholar] [CrossRef]
- Kumar, S.; Jacob, S.R.; Mir, R.R.; Vikas, V.K.; Kulwal, P.; Chandra, T.; Kaur, S.; Kumar, U.; Kumar, S.; Sharma, S.; et al. Indian Wheat Genomics Initiative for Harnessing the Potential of Wheat Germplasm Resources for Breeding Disease-Resistant, Nutrient-Dense, and Climate-Resilient Cultivars. Front. Genet. 2022, 13, 834366. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Beres, B.L. Yield Gaps in Wheat: Path to Enhancing Productivity. Front. Plant Sci. 2019, 10, 01603. [Google Scholar] [CrossRef] [PubMed]
- Vitale, J.; Adam, B.; Vitale, P. Economics of Wheat Breeding Strategies: Focusing on Oklahoma Hard Red Winter Wheat. Agronomy 2020, 10, 238. [Google Scholar] [CrossRef]
- Ding, J.; Li, F.; Le, T.; Xu, D.; Zhu, M.; Li, C.; Zhu, X.; Guo, W. Tillage and Seeding Strategies for Wheat Optimizing Production in Harvested Rice Fields with High Soil Moisture. Sci. Rep. 2021, 11, 119. [Google Scholar] [CrossRef] [PubMed]
- Bilsborrow, P.; Cooper, J.; Tétard-Jones, C.; Średnicka-Tober, D.; Barański, M.; Eyre, M.; Schmidt, C.; Shotton, P.; Volakakis, N.; Cakmak, I.; et al. The Effect of Organic and Conventional Management on the Yield and Quality of Wheat Grown in a Long-Term Field Trial. Eur. J. Agron. 2013, 51, 71–80. [Google Scholar] [CrossRef]
- Zhu, S.; Zhuo, J.; Huang, H.; Li, G. Wheat Grain Integrity Image Detection System Based on CNN. Trans. Chin. Soc. Agric. Mach. 2020, 51, 36–42. [Google Scholar]
- Guo, S.; Li, Z.; Xue, J. Establishment and Optimization of Comprehensive Evaluation Model for Seed and Seed Oil Traits of Handeliodendron Bodinieri. Trans. Chin. Soc. Agric. Eng. 2019, 35, 314–322. [Google Scholar]
- Whan, B.R.; Carlton, G.P.; Anderson, W.K. Potential for Increasing Early Vigour and Total Biomass in Spring Wheat. I. Identification of Genetic Improvements. Crop Pasture Sci. 1991, 42, 347–361. [Google Scholar] [CrossRef]
- Regan, K.L.; Siddique, K.H.M.; Turner, N.C.; Whan, B.R. Potential for Increasing Early Vigour and Total Biomass in Spring Wheat. II. Characteristics Associated with Early Vigour. Crop Pasture Sci. 1992, 43, 541–553. [Google Scholar] [CrossRef]
- Botwright, T.L.; Condon, A.G.; Rebetzke, G.J.; Richards, R.A. Field Evaluation of Early Vigour for Genetic Improvement of Grain Yield in Wheat. Aust. J. Agric. Res. 2002, 53, 1137–1145. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, X.; Yang, Y. Effects of Microelement on Germination Status of Wheat Seed. J. Anhui Agric. Sci. 2014, 42, 1650–1652. [Google Scholar]
- Liu, Z.; He, Z.; Miao, F.; Jia, B. Method and Experiment for Estimating Emergence Rate of Water and Fertilizer Integrated Maize Based on Drone Technology. Acta Agric. Zhejiangensis 2019, 31, 977–985. [Google Scholar]
- Xiang, Y.; Li, H.; Zhang, T.; Wang, J.; Sun, Q. Study on Early Detection of Seed Vigor of Maize and Wheat Seeds by Conductivity Method. J. China Agric. Univ. 2020, 25, 12–19. [Google Scholar]
- Shi, R.; Zhang, H.; Wang, C.; Kang, K.; Luo, B. Detection of Wheat Single Seed Vigor Using Hyperspectral Imaging an d Spectrum Fusion Strategy. Spectrosc. Spectr. Anal. 2024, 44, 3206–3212. [Google Scholar]
- Zhang, H.; Zheng, L.; Tan, L.; Yang, J.; Gao, J. Research on the Method of Imperfect Wheat Grain Recognition Utilizing Hyperspectral Imaging Technology. Sensors 2024, 24, 6474. [Google Scholar] [CrossRef]
- Cervantes, E.; Martín, J.J.; Saadaoui, E. Updated Methods for Seed Shape Analysis. Scientifica 2016, 2016, 5691825. [Google Scholar] [CrossRef]
- Dong, G.; Guo, J.; Wang, C.; Chen, Z.; Deng, L.; Zhu, D. The Classification of Wheat Varieties Based on Near Infrared Hyperspectral Imaging and Information Fusion. Spectrosc. Spectr. Anal. 2015, 35, 3369–3374. [Google Scholar]
- Zhang, T.; Li, J.; Tong, J.; Song, Y.; Wang, L.; Wu, R.; Wei, X.; Song, Y.; Zeng, R. End-to-End Deep Fusion of Hyperspectral Imaging and Computer Vision Techniques for Rapid Detection of Wheat Seed Quality. Artif. Intell. Agric. 2025, 15, 537–549. [Google Scholar] [CrossRef]
- Whan, A.P.; Smith, A.B.; Cavanagh, C.R.; Ral, J.-P.F.; Shaw, L.M.; Howitt, C.A.; Bischof, L. GrainScan: A Low Cost, Fast Method for Grain Size and Colour Measurements. Plant Methods 2014, 10, 23. [Google Scholar] [CrossRef]
- Lurstwut, B.; Pornpanomchai, C. Image Analysis Based on Color, Shape and Texture for Rice Seed (Oryza sativa L.) Germination Evaluation. Agric. Nat. Resour. 2017, 51, 383–389. [Google Scholar] [CrossRef]
- Zhu, F.; Paul, P.; Hussain, W.; Wallman, K.; Dhatt, B.K.; Sandhu, J.; Irvin, L.; Morota, G.; Yu, H.; Walia, H. SeedExtractor: An Open-Source GUI for Seed Image Analysis. Front. Plant Sci. 2021, 11, 581546. [Google Scholar] [CrossRef] [PubMed]
- Loddo, A.; Di Ruberto, C.; Vale, A.M.P.G.; Ucchesu, M.; Soares, J.M.; Bacchetta, G. An Effective and Friendly Tool for Seed Image Analysis. Vis. Comput. 2021, 39, 335–352. [Google Scholar] [CrossRef]
- Bekkering, C.S.; Huang, J.; Tian, L. Image-Based, Organ-Level Plant Phenotyping for Wheat Improvement. Agronomy 2020, 10, 1287. [Google Scholar] [CrossRef]
- López-Castañeda, C.; Richards, R.A.; Farquhar, G.D.; Williamson, R.E. Williamson Seed and Seedling Characteristics Contributing to Variation in Early Vigor among Temperate Cereals. Crop Sci. 1996, 36, 1257–1266. [Google Scholar] [CrossRef]
- Botwright, T.L.; Rebetzke, G.J.; Condon, A.G.; Richards, R.A. Influence of Variety, Seed Position and Seed Source on Screening for Coleoptile Length in Bread Wheat (Triticum aestivum L.). Euphytica 2001, 119, 349–356. [Google Scholar] [CrossRef]
- Wu, L.; Li, Y.; Su, L.; Li, W.; Liu, Y.; Chen, G.; Xu, Q.; Jiang, Y.; Pu, Z.; Jiang, Y.; et al. Identification, Characterization, and Associations with Agronomic Traits and Early Vigor of Mature Wheat Embryo Size Loci. Theor. Appl. Genet. 2025, 138, 175. [Google Scholar] [CrossRef]
- Mohsen, M.N.; Mahdi, B.; Abolfazl, T. Effect of Seed and Embryo Size on Early Growth of Wheat Genotypes. Afr. J. Microbiol. Res. 2011, 5, 4859–4868. [Google Scholar] [CrossRef]
- Wang, S.; Wang, T.; Xuan, Q.; Qu, X.; Xu, Q.; Jiang, Q.; Pu, Z.; Li, Y.; Jiang, Y.; Chen, G.; et al. Major and Stably Expressed QTL for Traits Related to the Mature Wheat Embryo Independent of Kernel Size. Theor. Appl. Genet. 2023, 136, 90. [Google Scholar] [CrossRef]
- Moore, C.; Rebetzke, G. Genomic Regions for Embryo Size and Early Vigour in Multiple Wheat (Triticum aestivum L.) Populations. Agronomy 2015, 5, 152–179. [Google Scholar] [CrossRef]
- FabFábián, A.; Jäger, K.; Rakszegi, M.; Barnabás, B. Embryo and Endosperm Development in Wheat (Triticum aestivum L.) Kernels Subjected to Drought Stress. Plant Cell Rep. 2011, 30, 551–563. [Google Scholar] [CrossRef] [PubMed]
- Yan, N.; Zhang, H.; Dong, H.T.; Kang, K.; Luo, B. Wheat Variety Recognition Method Based on Same Position Segmentation of Transmitted Light and Reflected Light Images. Acta Agric. Zhejiangensis 2022, 34, 590–598. [Google Scholar]
- Zhang, H.; Ji, J.; Ma, H.; Guo, H.; Liu, N.; Cui, H. Wheat Seed Phenotype Detection Device and Its Application. Agriculture 2023, 13, 706. [Google Scholar] [CrossRef]
- GB/T 3543.6; Rules for Agricultural Seed Testing-Part 6: Sowing Quality-Determination of Moisture Content. State Administration for Market Regulation: Beijing, China, 2025.
- GB/T 3543.4; Rules for Agricultural Seed Testing-Part 4: Sowing Quality-Germination Test. State Administration for Market Regulation: Beijing, China, 2025.
- Kaufmann, M.L.; Guitard, A.A. The Effect of Seed Size on Early Plant Development in Barley. Can. J. Plant Sci. 1967, 47, 73–78. [Google Scholar] [CrossRef]
- Pandey, M.P.; Seshu, D.V.; Akbar, M. Genetics of Embryo Size and Its Relationship with Seed and Seedling Vigour in Rice (Oryza sativa L.). Indian J. Genet. Plant Breed. 1994, 54, 258–268. [Google Scholar]
- Aparicio, N.; Villegas, D.; Araus, J.L.; Blanco, R.; Royo, C. Seedling Development and Biomass as Affected by Seed Size and Morphology in Durum Wheat. J. Agric. Sci. 2003, 139, 143–150. [Google Scholar] [CrossRef]
- Ogilvie, I.S.; Kaltsikes, P.J. The Relationship between Seed Size, Embryo Size and Mature Plant Characters in Hexaploid Triticale. Z. Für Pflanzenzücht 1977, 79, 105–109. [Google Scholar]
- Revilla, P.; Butrón, A.; Malvar, R.A.; Ordás, R.A. Relationships among Kernel Weight, Early Vigor, and Growth in Maize. Crop Sci. 1999, 39, 654–658. [Google Scholar] [CrossRef]
- Jia, J.; Wang, J.; Xie, Z.; Yang, L.; Sun, B.; Sun, Q. Wheat Seeds Selection Based on Computer Image Recognition Technique. J. China Agric. Univ. 2014, 19, 180–186. [Google Scholar]
- Nik, M.M.; Babaeian, M.; Tavassoli, A. Effect of Seed Size and Genotype on Germination Characteristic and Seed Nutrient Content of Wheat. Sci. Res. Essays 2011, 6, 2019–2025. [Google Scholar] [CrossRef]
- Mian, M.A.R.; Nafziger, E.D. Seed Size and Water Potential Effects on Germination and Seedling Growth of Winter Wheat. Crop Sci. 1994, 34, 169–171. [Google Scholar] [CrossRef]
- Rukavina, H.; Kolak, I.; Sarcevic, H.; Satovic, Z. Seed Size, Yield and Harvest Characteristics of Three Croatian Spring Malting Barleys. Bodenkultur 2002, 53, 9–12. [Google Scholar]
- Shahwani, A.R.; Baloch, S.U.; Baloch, S.K.; Mengal, B.; Bashir, W.; Baloch, H.N.; Baloch, R.A.; Sial, A.H.; Sabiel, S.A.; Razzaq, K.; et al. Influence of Seed Size on Germinability and Grain Yield of Wheat (Triticum aestivum L.) Varieties. J. Nat. Sci. Res. 2014, 4, 147–155. [Google Scholar]
- Zareian, A.; Hamidi, A.; Sadeghi, H.; Jazaeri, M.R. Effect of Seed Size on Some Germination Characteristics, Seedling Emergence Percentage and Yield of Three Wheat (Triticum aestivum L.) Cultivars in Laboratory and Field. Middle East J. Sci. Res. 2013, 13, 1126–1131. [Google Scholar]
- Lima, E.R.; Santiago, A.S.; Araújo, A.P.; Teixeira, M.G. Effects of the Size of Sown Seed on Growth and Yield of Common Bean Cultivars of Different Seed Sizes. Braz. J. Plant Physiol. 2005, 17, 273–281. [Google Scholar] [CrossRef]
- Lafond, G.P.; Baker, R.J. Effects of Temperature, Moisture Stress, and Seed Size on Germination of Nine Spring Wheat Cultivars. Crop Sci. 1986, 26, 563–567. [Google Scholar] [CrossRef]
- Krishnasamy, V.; Seshu, D.V. Seed Germination Rate and Associated Characters in Rice. Crop Sci. 1989, 29, 904–908. [Google Scholar] [CrossRef]








| Wheat Varieties | Phenotype I (%) | Phenotype II (%) | Phenotype III (%) | Total (%) |
|---|---|---|---|---|
| Bainong 207 | 12.0 | 68.5 | 5.5 | 86.0 |
| Luomai 40 | 7.0 | 71.5 | 8.0 | 86.5 |
| Weilong 169 | 13.0 | 61.5 | 6.0 | 80.5 |
| Zhengmai 158 | 8.0 | 73.0 | 4.0 | 85.0 |
| Zhoumai 42 | 12.5 | 63.0 | 3.0 | 78.5 |
| Phenotypes | Length (mm) | Width (mm) | Thickness (mm) | Embryo Width (mm) | Embryo Length (mm) | Hundred-Grain Weight (g) |
|---|---|---|---|---|---|---|
| Phenotype Ⅰ | 5.86 ± 0.33 b | 3.55 ± 0.19 b | 3.28 ± 0.14 ab | 2.27 ± 0.26 ab | 1.89 ± 0.16 b | 5.01 ± 0.05 b |
| Phenotype Ⅱ | 5.97 ± 0.31 a | 3.50 ± 0.23 b | 3.25 ± 0.18 b | 2.17 ± 0.23 b | 2.06 ± 0.22 a | 5.02 ± 0.01 b |
| Phenotype Ⅲ | 5.86 ± 0.30 b | 3.71 ± 0.20 a | 3.30 ± 0.18 a | 2.51 ± 0.14 a | 2.10 ± 0.15 a | 5.25 ± 0.12 a |
| Wheat Varieties | Phenotype I (%) | Phenotype II (%) | Phenotype III (%) |
|---|---|---|---|
| Bainong 207 | 91.0 | 4.5 | 4.5 |
| Luomai 40 | 88.0 | 8.0 | 4.0 |
| Weilong 169 | 97.0 | 2.0 | 1.0 |
| Zhengmai 158 | 89.0 | 8.5 | 2.5 |
| Zhoumai 42 | 90.0 | 9.5 | 0.5 |
| Phenotypes | Germination Force (%) | Germination Percentage (%) |
|---|---|---|
| Phenotype Ⅰ | 89.33 ± 2.08 a | 96.00 ± 1.73 a |
| Phenotype Ⅱ | 84.00 ± 2.00 a | 91.67 ± 1.15 ab |
| Phenotype Ⅲ | 72.33 ± 8.14 b | 86.33 ± 6.66 b |
| Phenotypes | Seedling Height (mm) | Root Length (mm) |
|---|---|---|
| Phenotype Ⅰ | 72.52 ± 22.02 b | 103.06 ± 39.38 c |
| Phenotype Ⅱ | 80.22 ± 22.85 a | 113.63 ± 41.09 b |
| Phenotype Ⅲ | 82.25 ± 22.18 a | 120.58 ± 33.78 a |
| Phenotypes | Fresh Weight (g) | Dry Weight (g) |
|---|---|---|
| Phenotype Ⅰ | 0.1798 ± 0.0465 b | 0.0386 ± 0.0023 b |
| Phenotype Ⅱ | 0.1967 ± 0.0324 a | 0.0373 ± 0.0039 b |
| Phenotype Ⅲ | 0.2101 ± 0.0226 a | 0.0394 ± 0.0034 a |
| Parameters | Value | Parameters | Value |
|---|---|---|---|
| epochs | 100 | optimizer | auto |
| patience | 30 | weight_decay | 0.0005 |
| batch | 16 | momentum | 0.937 |
| imgsz | 640 | warmup_momentum | 0.8 |
| workers | 8 | close_mosaic | 10 |
| lrf | 0.01 | patience | 30 |
| Groups | P (%) | R (%) | mAP@0.5 (%) | mAP0.5~0.95 (%) |
|---|---|---|---|---|
| A | 99.9 | 100.0 | 99.5 | 98.9 |
| B | 99.9 | 100.0 | 99.5 | 72.4 |
| C | 85.0 | 95.0 | 94.7 | 67.5 |
| Phenotypes | P (%) | R (%) | mAP@0.5 (%) | mAP0.5~0.95 (%) |
|---|---|---|---|---|
| Phenotype Ⅰ | 99.9 | 100.0 | 99.4 | 99.3 |
| Phenotype Ⅱ | 100.0 | 100.0 | 99.8 | 99.5 |
| Phenotype Ⅲ | 99.8 | 100.0 | 99.3 | 97.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Liu, X.; Zhang, Y.; Chen, J.; Yu, C.; Li, H. Research on Seed Selection Method for Wheat Variety Bainong 207 Based on Embryo Phenotype. Agriculture 2026, 16, 33. https://doi.org/10.3390/agriculture16010033
Liu X, Zhang Y, Chen J, Yu C, Li H. Research on Seed Selection Method for Wheat Variety Bainong 207 Based on Embryo Phenotype. Agriculture. 2026; 16(1):33. https://doi.org/10.3390/agriculture16010033
Chicago/Turabian StyleLiu, Xuewen, Yi Zhang, Jing Chen, Changchang Yu, and He Li. 2026. "Research on Seed Selection Method for Wheat Variety Bainong 207 Based on Embryo Phenotype" Agriculture 16, no. 1: 33. https://doi.org/10.3390/agriculture16010033
APA StyleLiu, X., Zhang, Y., Chen, J., Yu, C., & Li, H. (2026). Research on Seed Selection Method for Wheat Variety Bainong 207 Based on Embryo Phenotype. Agriculture, 16(1), 33. https://doi.org/10.3390/agriculture16010033

