Applications and Challenges of Visible-Near-Infrared and Mid-Infrared Spectroscopy in Soil Analysis: Chemometric Approaches and Data Fusion
Abstract
1. Introduction
2. Spectroscopy
2.1. Principles of NIR and MIR Methods
2.2. Spectral Range and Instrument Variability
2.3. Factors Affecting the Spectrum
2.4. Spectral Preprocessing
2.5. Chemometric Models
2.6. Model Validation
2.7. Evaluating Model Accuracy
3. Trends in the Use of NIR and MIR Spectroscopy in Soil Science
3.1. Application of NIR and Vis-NIR Spectroscopy
3.2. Application of MIR Spectroscopy in Soil
4. Data Fusion Methods in Soil Analysis
Prediction of Soil Properties by Data Fusion
5. Laboratory vs. Field Scenarios
6. Advances in Spectroscopy
7. Challenges in Implementation
8. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| IR | Infrared |
| UV-Vis | Ultraviolet-Visible |
| NIR | Near-infrared |
| Vis-NIR | Visible-Near-infrared |
| MIR | Mid-infrared |
| NMR | Nuclear magnetic resonance |
| IS | Imaging spectra |
| LS | Laboratory Vis-NIR spectra |
| FT-NIR | Fourier transform near-infrared |
| FT-IR | Fourier transform infrared |
| ATR | Attenuated total reflectance |
| SDGs | Sustainable development goals |
| nm | Nanometer |
| cm | Centimeter |
| N | Nitrogen |
| P | Phosphorus |
| K | Potassium |
| TK | Total potassium |
| avl. N | Available nitrogen |
| avl. P | Available phosphorus |
| avl. K | Available potassium |
| Ca | Calcium |
| Mg | Magnesium |
| Fe | Iron |
| Mn | Manganese |
| Pb | Lead |
| OM | Organic matter |
| OC | Organic carbon |
| SOC | Soil organic carbon |
| SOM | Soil organic matter |
| TOC | Total organic carbon |
| SIC | Soil inorganic carbon |
| IC | Inorganic carbon |
| CEC | Cation exchange capacity |
| EC | Electrical conductivity |
| TN | Total nitrogen |
| TC | Total carbon |
| TS | Total sulfur |
| CaCO3 | Calcium carbonate |
| NO3− | Nitrate |
| SNV | Standard normal variate |
| SG | Savitzky–Golay |
| MSC | Multiplicative scatter correction |
| EPO | External parameter orthogonalization |
| PLSR | Partial least squares regression |
| MBL | Memory-based learning |
| PCR | Principal component regression |
| MLR | Multiple linear regression |
| SVM | Support vector machine |
| SVMR | Support vector machine regression |
| SVR | Support vector regression |
| SMOTE | Synthetic minority oversampling technique |
| KNN | K-nearest neighbors |
| RF | Random forest |
| MARS | Multivariate adaptive regression splines |
| DrSeq-ANN | Dropout sequential artificial neural network |
| ANNs | Artificial neural networks |
| CNNs | Convolutional neural networks |
| LSTM | Long short-term memory |
| LOOCV | Leave-one-out-cross-validation |
| OPA | Outer product analysis |
| MOA | Model output averaging |
| OBC | Optimal band combination |
| CWT | Continuous wavelet transform |
| LASSO | Least absolute shrinkage and selection operator |
| GRA | Granger–Ramanathan averaging |
| FW | Fast wetting |
| SW | Slow wetting |
| MB | Mechanical breakdown |
| R2 | Coefficient of determination |
| CV | Coefficient of variation |
| SEP | Standard error of prediction |
| RPD | Ratio to performance deviation |
| MSE | Mean squared error |
| MAE | Mean absolute error |
| RMSE | Root mean squared error |
| MEMS | Micro-electromechanical systems |
| IoT | Internet of Things (IoT) |
References
- Fang, K.; Kou, D.; Wang, G.; Chen, L.; Ding, J.; Li, F.; Yang, G.; Qin, S.; Liu, L.; Zhang, Q.; et al. Decreased Soil Cation Exchange Capacity Across Northern China’s Grasslands Over the Last Three Decades. J. Geophys. Res. Biogeosci. 2017, 122, 3088–3097. [Google Scholar] [CrossRef]
- Freidberg, S. Assembled but Unrehearsed: Corporate Food Power and the ‘Dance’ of Supply Chain Sustainability. J. Peasant Stud. 2020, 47, 383–400. [Google Scholar] [CrossRef]
- Handayani, I.P.; Hale, C. Healthy Soils for Productivity and Sustainable Development in Agriculture. IOP Conf. Ser. Earth Environ. Sci. 2022, 1018, 012038. [Google Scholar] [CrossRef]
- Lončarić, Z.; Karalić, K.; Popović, B.; Rastija, D.; Vukobratović, M. Total and Plant Available Micronutrients in Acidic and Calcareous Soils in Croatia. Cereal Res. Commun. 2008, 36, 331–334. Available online: https://www.croris.hr/crosbi/publikacija/prilog-casopis/150100 (accessed on 5 January 2025).
- Soil Degradation: The Silent Global Crisis|Heinrich Böll Stiftung|Brussels Office—European Union. Available online: https://eu.boell.org/en/SoilAtlas-soil-degradation (accessed on 18 November 2025).
- Soil Health: Key to Achieving the Sustainable Development Goals. Available online: https://jeas.agropublishers.com/2023/08/soil-health-key-to-achieving-sustainable-development-goals/ (accessed on 18 November 2025).
- Jeon, S.H.; Jang, H.J.; Ng, W.; Minasny, B.; Kim, S.H.; Shim, J.H.; Roh, A.; Kwon, S.i.; Yun, J.J. Predicting Soil Properties for Fertiliser Recommendation in South Korea Using MIR Spectroscopy. Geoderma Reg. 2024, 39, e00901. [Google Scholar] [CrossRef]
- Evangelista, S.J.; Francos, N.; Sharififar, A.; Ng, W.; Minasny, B.; McBratney, A.B. Advancing Soil Security with Soil Spectroscopy: The Efficient Estimation of Indicators. Soil Secur. 2025, 21, 100211. [Google Scholar] [CrossRef]
- Li, S.; Shen, X.; Shen, X.; Cheng, J.; Xu, D.; Makar, R.S.; Guo, Y.; Hu, B.; Chen, S.; Hong, Y.; et al. Improving the Accuracy of Soil Classification by Using Vis–NIR, MIR, and Their Spectra Fusion. Remote Sens. 2025, 17, 1524. [Google Scholar] [CrossRef]
- Shin, S.K.; Lee, S.J.; Park, J.H. Prediction of Soil Properties Using Vis-NIR Spectroscopy Combined with Machine Learning: A Review. Sensors 2025, 25, 5045. [Google Scholar] [CrossRef]
- Vyavahare, G.D.; Yun, J.-J.; Park, J.-H.; Shim, J.-H.; Kim, S.H.; Kim, K.; Roh, A.; Jang, H.J.; Jeon, S. Evaluating the Performance of NIR Spectroscopy in Predicting Soil Properties: A Comparative Study. Appl. Sci. 2025, 15, 13240. [Google Scholar] [CrossRef]
- Swan, T.; Jang, H.J.; Huang, Y.-C.; Fidelis, C.; Yinil, D.; Bala, B.; Das, B.S.; Field, D. Comparative Analysis of Vis-NIR and MIR Spectroscopy for Predicting Soil Properties and Identifying Minerals at Smallholder Cocoa Farms across Papua New Guinea. Soil Adv. 2026, 5, 100094. [Google Scholar] [CrossRef]
- Engelmann, L.; Bierl, R.; Kirchhoff, M.; Ries, J.B. Application of Mid-Infrared Spectroscopy for Soil Analysis in Calcareous Argania Spinosa Forests in Morocco. Geoderma Reg. 2025, 42, e00964. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; McGlynn, R.N.; McBratney, A.B. Determining the Composition of Mineral-Organic Mixes Using UV–Vis–NIR Diffuse Reflectance Spectroscopy. Geoderma 2006, 137, 70–82. [Google Scholar] [CrossRef]
- Genot, V.; Bock, L.; Dardenne, P.; Colinet, G. L’intérêt de La Spectroscopie Proche Infrarouge En Analyse de Terre (Synthèse Bibliographique). Biotechnol. Agron. Soc. Environ. 2014, 18, 247–261. [Google Scholar]
- Stenberg, B.; Viscarra Rossel, R.A.; Mouazen, A.M.; Wetterlind, J. Visible and Near Infrared Spectroscopy in Soil Science. Adv. Agron. 2010, 107, 163–215. [Google Scholar] [CrossRef]
- Linsler, D.; Sawallisch, A.; Höper, H.; Schmidt, H.; Vohland, M.; Ludwig, B. Near-Infrared Spectroscopy for Determination of Soil Organic C, Microbial Biomass C and C and N Fractions in a Heterogeneous Sample of German Arable Surface Soils. Arch. Agron. Soil Sci. 2017, 63, 1499–1509. [Google Scholar] [CrossRef]
- Lelago, A.; Bibiso, M. Performance of Mid Infrared Spectroscopy to Predict Nutrients for Agricultural Soils in Selected Areas of Ethiopia. Heliyon 2022, 8, e09050. [Google Scholar] [CrossRef]
- Ng, W.; Minasny, B.; Jeon, S.H.; McBratney, A. Mid-Infrared Spectroscopy for Accurate Measurement of an Extensive Set of Soil Properties for Assessing Soil Functions. Soil Secur. 2022, 6, 100043. [Google Scholar] [CrossRef]
- Nath, D.; Laik, R.; Meena, V.S.; Kumari, V.; Singh, S.K.; Pramanick, B.; Sattar, A. Strategies to Admittance Soil Quality Using Mid-Infrared (Mid-IR) Spectroscopy an Alternate Tool for Conventional Lab Analysis: A Global Perspective. Environ. Chall. 2022, 7, 100469. [Google Scholar] [CrossRef]
- Piccini, C.; Metzger, K.; Debaene, G.; Stenberg, B.; Götzinger, S.; Borůvka, L.; Sandén, T.; Bragazza, L.; Liebisch, F. In-Field Soil Spectroscopy in Vis–NIR Range for Fast and Reliable Soil Analysis: A Review. Eur. J. Soil Sci. 2024, 75, e13481. [Google Scholar] [CrossRef]
- Penner, M.H. Basic Principles of Spectroscopy. In Food Analysis; Springer: Berlin/Heidelberg, Germany, 2017; pp. 79–88. [Google Scholar] [CrossRef]
- Agnello, S. Spectroscopy for Materials Characterization; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2021; pp. 1–467. [Google Scholar] [CrossRef]
- Ozaki, Y. Infrared Spectroscopy—Mid-Infrared, Near-Infrared, and Far-Infrared/Terahertz Spectroscopy. Anal. Sci. 2021, 37, 1193–1212. [Google Scholar] [CrossRef]
- An, D.; Zhang, L.; Liu, Z.; Liu, J.; Wei, Y. Advances in Infrared Spectroscopy and Hyperspectral Imaging Combined with Artificial Intelligence for the Detection of Cereals Quality. Crit. Rev. Food Sci. Nutr. 2023, 63, 9766–9796. [Google Scholar] [CrossRef]
- Hammes, G.G. Spectroscopy for the Biological Sciences. Available online: https://books.google.co.kr/books?hl=ko&lr=&id=glECXyfF4dcC&oi=fnd&pg=PR5&dq=Applications+of+Spectroscopy+in+Science.&ots=ucjhwgfL6a&sig=mvyQhREYNIVvZ4HA5CvKiZEwNbY#v=onepage&q=ApplicationsofSpectroscopyinScience.&f=false (accessed on 14 January 2025).
- Janik, L.J.; Merry, R.H.; Skjemstad, J.O. Can Mid Infrared Diffuse Reflectance Analysis Replace Soil Extractions? Aust. J. Exp. Agric. 1998, 38, 681–696. [Google Scholar] [CrossRef]
- Du, C.; Zhou, J. Evaluation of Soil Fertility Using Infrared Spectroscopy: A Review. Environ. Chem. Lett. 2009, 7, 97–113. [Google Scholar] [CrossRef]
- van der Marel, H.W.; Beutelspacher, H. Atlas of Infrared Spectroscopy of Clay Minerals and Their Admixtures; Elsevier Scientific Publishing Company: Amsterdam, The Netherlands, 1976. [Google Scholar]
- Coates, J. Interpretation of Infrared Spectra, A Practical Approach. In Encyclopedia of Analytical Chemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000. [Google Scholar] [CrossRef]
- Ozaki, Y.; Huck, C.W.; Beć, K.B. Near-IR Spectroscopy and Its Applications. In Molecular and Laser Spectroscopy. Advances and Applications; Gupta, V.P., Ed.; Elsevier: San Diego, CA, USA, 2018; pp. 11–38. [Google Scholar] [CrossRef]
- Madari, B.E.; Reeves, J.B.; Machado, P.L.O.A.; Guimarães, C.M.; Torres, E.; McCarty, G.W. Mid- and near-Infrared Spec-troscopic Assessment of Soil Compositional Parameters and Structural Indices in Two Ferralsols. Geoderma 2006, 136, 245–259. [Google Scholar] [CrossRef]
- Türker-Kaya, S.; Huck, C.W. A Review of Mid-Infrared and Near-Infrared Imaging: Principles, Concepts and Applications in Plant Tissue Analysis. Molecules 2017, 22, 168. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.N.; King, T.V.V.; Klejwa, M.; Swayze, G.A.; Vergo, N. High Spectral Resolution Reflectance Spectroscopy of Minerals. J. Geophys. Res. Solid Earth 1990, 95, 12653–12680. [Google Scholar] [CrossRef]
- Ng, W.; Malone, B.; Minasny, B.; Jeon, S. Near and Mid Infrared Soil Spectroscopy. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Madejová, J.; Pálková, H. Review of the Application of Infrared Spectroscopy in Studies of Acid-Treated Clay Minerals. Clays Clay Miner. 2024, 72, e30. [Google Scholar] [CrossRef]
- Shi, Z.; Yin, J.; Li, B.; Sun, F.; Miao, T.; Cao, Y.; Shi, Z.; Chen, S.; Hu, B.; Ji, W. Comparison of Depth-Specific Prediction of Soil Properties: MIR vs. Vis-NIR Spectroscopy. Sensors 2023, 23, 5967. [Google Scholar] [CrossRef]
- Gozukara, G.; Hartemink, A.E.; Huang, J.; Demattê, J.A.M. Prediction Accuracy of PXRF, MIR, and Vis-NIR Spectra for Soil Properties—A Review. Soil Sci. Soc. Am. J. 2025, 89, e70028. [Google Scholar] [CrossRef]
- Van Groenigen, J.W.; Mutters, C.S.; Horwath, W.R.; Van Kessel, C. NIR and DRIFT-MIR Spectrometry of Soils for Predicting Soil and Crop Parameters in a Flooded Field. Plant Soil 2003, 250, 155–165. [Google Scholar] [CrossRef]
- Knadel, M.; Stenberg, B.; Deng, F.; Thomsen, A.; Greve, M.H. Comparing Predictive Abilities of Three Visible-Near Infrared Spectrophotometers for Soil Organic Carbon and Clay Determination. J. Near Infrared Spectrosc. 2013, 21, 67–80. [Google Scholar] [CrossRef]
- Gomez, C.; Adeline, K.; Bacha, S.; Driessen, B.; Gorretta, N.; Lagacherie, P.; Roger, J.M.; Briottet, X. Sensitivity of Clay Content Prediction to Spectral Configuration of VNIR/SWIR Imaging Data, from Multispectral to Hyperspectral Scenarios. Available online: http://www.enmap.org/ (accessed on 21 August 2025).
- Viscarra Rossel, R.A.; Behrens, T.; Ben-Dor, E.; Brown, D.J.; Demattê, J.A.M.; Shepherd, K.D.; Shi, Z.; Stenberg, B.; Stevens, A.; Adamchuk, V.; et al. A Global Spectral Library to Characterize the World’s Soil. Earth-Sci. Rev. 2016, 155, 198–230. [Google Scholar] [CrossRef]
- Ahmadi, A.; Emami, M.; Daccache, A.; He, L. Soil Properties Prediction for Precision Agriculture Using Visible and Near-Infrared Spectroscopy: A Systematic Review and Meta-Analysis. Agronomy 2021, 11, 433. [Google Scholar] [CrossRef]
- Reeves, J.; McCarty, G.; Mimmo, T. The Potential of Diffuse Reflectance Spectroscopy for the Determination of Carbon Inventories in Soils. Environ. Pollut. 2002, 116, S277–S284. [Google Scholar] [CrossRef]
- Barra, I.; El Moatassem, T.; Kebede, F. Soil Particle Size Thresholds in Soil Spectroscopy and Its Effect on the Multivariate Models for the Analysis of Soil Properties. Sensors 2023, 23, 9171. [Google Scholar] [CrossRef]
- Stumpe, B.; Weihermüller, L.; Marschner, B. Sample Preparation and Selection for Qualitative and Quantitative Analyses of Soil Organic Carbon with Mid-Infrared Reflectance Spectroscopy. Eur. J. Soil Sci. 2011, 62, 849–862. [Google Scholar] [CrossRef]
- Janik, L.J.; Soriano-Disla, J.M.; Forrester, S.T.; McLaughlin, M.J. Moisture Effects on Diffuse Reflection Infrared Spectra of Contrasting Minerals and Soils: A Mechanistic Interpretation. Vib. Spectrosc. 2016, 86, 244–252. [Google Scholar] [CrossRef]
- Silvero, N.E.Q.; Di Raimo, L.A.D.L.; Pereira, G.S.; de Magalhães, L.P.; da Silva Terra, F.; Dassan, M.A.A.; Salazar, D.F.U.; Demattê, J.A.M. Effects of Water, Organic Matter, and Iron Forms in Mid-IR Spectra of Soils: Assessments from Laboratory to Satellite-Simulated Data. Geoderma 2020, 375, 114480. [Google Scholar] [CrossRef]
- Måren, I.E.; Karki, S.; Prajapati, C.; Yadav, R.K.; Shrestha, B.B. Facing North or South: Does Slope Aspect Impact Forest Stand Characteristics and Soil Properties in a Semiarid Trans-Himalayan Valley? J. Arid Environ. 2015, 121, 112–123. [Google Scholar] [CrossRef]
- Sztabkowski, K.; Jonczak, J. Parent Material Origin as a Factor Influencing the Development and Properties of Brunic Arenosols in a Young Glacial Landscape. CATENA 2025, 258, 109320. [Google Scholar] [CrossRef]
- Barré, P.; Durand, H.; Chenu, C.; Meunier, P.; Montagne, D.; Castel, G.; Billiou, D.; Soucémarianadin, L.; Cécillon, L. Geological Control of Soil Organic Carbon and Nitrogen Stocks at the Landscape Scale. Geoderma 2017, 285, 50–56. [Google Scholar] [CrossRef]
- Mao, X.; Van Zwieten, L.; Zhang, M.; Qiu, Z.; Yao, Y.; Wang, H. Soil Parent Material Controls Organic Matter Stocks and Retention Patterns in Subtropical China. J. Soils Sediments 2020, 20, 2426–2438. [Google Scholar] [CrossRef]
- Angst, G.; Messinger, J.; Greiner, M.; Häusler, W.; Hertel, D.; Kirfel, K.; Kögel-Knabner, I.; Leuschner, C.; Rethemeyer, J.; Mueller, C.W. Soil Organic Carbon Stocks in Topsoil and Subsoil Controlled by Parent Material, Carbon Input in the Rhizosphere, and Microbial-Derived Compounds. Soil Biol. Biochem. 2018, 122, 19–30. [Google Scholar] [CrossRef]
- Xu, S.; Shi, X.; Wang, M.; Zhao, Y. Effects of Subsetting by Parent Materials on Prediction of Soil Organic Matter Content in a Hilly Area Using Vis–NIR Spectroscopy. PLoS ONE 2016, 11, e0151536. [Google Scholar] [CrossRef]
- Richter, A.; Schöning, I.; Kahl, T.; Bauhus, J.; Ruess, L. Regional Environmental Conditions Shape Microbial Community Structure Stronger than Local Forest Management Intensity. For. Ecol. Manag. 2018, 409, 250–259. [Google Scholar] [CrossRef]
- Xiao, R.; Man, X.; Duan, B. Carbon and Nitrogen Stocks in Three Types of Larix Gmelinii Forests in Daxing’an Mountains, Northeast China. Forests 2020, 11, 305. [Google Scholar] [CrossRef]
- Spohn, M.; Klaus, K.; Wanek, W.; Richter, A. Microbial Carbon Use Efficiency and Biomass Turnover Times Depending on Soil Depth—Implications for Carbon Cycling. Soil Biol. Biochem. 2016, 96, 74–81. [Google Scholar] [CrossRef]
- Bargali, K.; Manral, V.; Padalia, K.; Bargali, S.S.; Upadhyay, V.P. Effect of Vegetation Type and Season on Microbial Biomass Carbon in Central Himalayan Forest Soils, India. Catena 2018, 171, 125–135. [Google Scholar] [CrossRef]
- Wang, Y.; Bao, H.; Kavana, D.J.; Li, Y.; Li, X.; Yan, L.; Xu, W.; Yu, B. Effects of Vegetation Types and Soil Properties on Regional Soil Carbon and Nitrogen in Salinized Reservoir Wetland, Northeast China. Plants 2023, 12, 3767. [Google Scholar] [CrossRef]
- Sun, Y.; Cai, W.; Shao, X. Chemometrics: An Excavator in Temperature-Dependent Near-Infrared Spectroscopy. Molecules 2022, 27, 452. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, A.; Abatzoglou, N.; Gosselin, R. Addressing Temperature Variations of Miniaturized NIR Spectrometers: Advancing Quantitative Models for Pharmaceutical Analysis. J. Pharm. Biomed. Anal. 2025, 264, 116959. [Google Scholar] [CrossRef] [PubMed]
- Mcguirk, S.L.; Cairns, I.H. Relationships between Soil Moisture and Visible–NIR Soil Reflectance: A Review Presenting New Analyses and Data to Fill the Gaps. Geotechnics 2024, 4, 78–108. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, J.; Wang, J.; Ge, X. Prediction of Soil Organic Matter in Northwestern China Using Fractional-Order Derivative Spectroscopy and Modified Normalized Difference Indices. Catena 2020, 185, 104257. [Google Scholar] [CrossRef]
- Jiang, Q.; Chen, Y.; Guo, L.; Fei, T.; Qi, K. Estimating Soil Organic Carbon of Cropland Soil at Different Levels of Soil Moisture Using VIS-NIR Spectroscopy. Remote Sens. 2016, 8, 755. [Google Scholar] [CrossRef]
- Xu, X.; Xie, L.; Ying, Y. Factors Influencing near Infrared Spectroscopy Analysis of Agro-Products: A Review. Front. Agric. Sci. Eng. 2019, 6, 105–115. [Google Scholar] [CrossRef]
- Eslamifar, M.; Tavakoli, H.; Thiessen, E.; Kock, R.; Correa, J.; Hartung, E. Effective Spectral Pre-Processing Methods Enhance Accuracy of Soil Property Prediction by NIR Spectroscopy. Discov. Appl. Sci. 2025, 7, 896. [Google Scholar] [CrossRef]
- Pal, A.; Dubey, S.K.; Goel, S.; Kalita, P.K. Portable Sensors in Precision Agriculture: Assessing Advances and Challenges in Soil Nutrient Determination. TrAC Trends Anal. Chem. 2024, 180, 117981. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; Noon, C.; Van Wesemael, B. Prediction of Soil Organic Carbon for Different Levels of Soil Moisture Using Vis-NIR Spectroscopy. Geoderma 2013, 199, 37–42. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B.; Bellon-Maurel, V.; Roger, J.M.; Gobrecht, A.; Ferrand, L.; Joalland, S. Removing the Effect of Soil Moisture from NIR Diffuse Reflectance Spectra for the Prediction of Soil Organic Carbon. Geoderma 2011, 167–168, 118–124. [Google Scholar] [CrossRef]
- Advanced Preprocessing: Noise, Offset, and Baseline Filtering—Eigenvector Research Documentation Wiki. Available online: https://wiki.eigenvector.com/index.php?title=Advanced_Preprocessing:_Noise,_Offset,_and_Baseline_Filtering (accessed on 18 October 2024).
- Levillain, P.; Fompeydie, D. Derivative spectrophotometry principles, advantages and limitations, applications. Analysis 1986, 14, 1–20. [Google Scholar]
- Arakaki, L.S.L.; Burns, D.H. Multispectral Analysis for Quantitative Measurements of Myoglobin Oxygen Fractional Saturation in the Presence of Hemoglobin Interference. Appl. Spectrosc. 1992, 46, 1919–1928. [Google Scholar] [CrossRef]
- Ozaki, Y.; Mizuno, A.; Sato, H.; Kawauchi, K.; Muraishi, S. Biomedical Application of Near-Infrared Fourier Transform Raman Spectroscopy. Part I: The 1064-Nm Excited Raman Spectra of Blood and Met Hemoglobin. Appl. Spectrosc. 1992, 46, 533–536. [Google Scholar] [CrossRef]
- Mokari, A.; Guo, S.; Bocklitz, T. Exploring the Steps of Infrared (IR) Spectral Analysis: Pre-Processing, (Classical) Data Modelling, and Deep Learning. Molecules 2023, 28, 6886. [Google Scholar] [CrossRef]
- Rinnan, Å.; van den Berg, F.; Engelsen, S.B. Review of the Most Common Pre-Processing Techniques for near-Infrared Spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Kumar, M.; Suman, S.; Pugazhendi, S.; Dhamodharan, K.; Venkatesan, K.A. Orthogonal Signal Correction Assisted Multivariate Regression Approach for the Estimation of Uranium and Acidity in PUREX Process Streams. Talanta 2024, 280, 126673. [Google Scholar] [CrossRef]
- Mazdeyasna, S.; Arefin, M.S.; Fales, A.; Leavesley, S.J.; Pfefer, T.J.; Wang, Q. Evaluating Normalization Methods for Robust Spectral Performance Assessments of Hyperspectral Imaging Cameras. Biosensors 2025, 15, 20. [Google Scholar] [CrossRef] [PubMed]
- Advanced Preprocessing: Variable Centering—Eigenvector Research Documentation Wiki. Available online: https://wiki.eigenvector.com/index.php?title=Advanced_Preprocessing:_Variable_Centering (accessed on 18 October 2024).
- Padarian, J.; Minasny, B.; McBratney, A.B. Machine Learning and Soil Sciences: A Review Aided by Machine Learning Tools. SOIL 2020, 6, 35–52. [Google Scholar] [CrossRef]
- Li, R.; Yin, B.; Cong, Y.; Du, Z. Simultaneous Prediction of Soil Properties Using Multi_CNN Model. Sensors 2020, 20, 6271. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shen, L.; Zhu, X.; Xie, Y.; He, S. Spectral Data-Driven Prediction of Soil Properties Using LSTM-CNN-Attention Model. Appl. Sci. 2024, 14, 11687. [Google Scholar] [CrossRef]
- Masri, D.; Woon, W.L.; Aung, Z. Soil Property Prediction: An Extreme Learning Machine Approach. Neural Inf. Process. 2015, 9490, 18–27. [Google Scholar] [CrossRef]
- Bonaccorso, G. Machine Learning Algorithms Reference Guide for Popular Algorithms for Data Science and Machine Learning; Packt Publishing: Birmingham, UK, 2017. [Google Scholar]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep Learning in Agriculture: A Survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Johnson, J.M.; Khoshgoftaar, T.M. Survey on Deep Learning with Class Imbalance. J. Big Data 2019, 6, 27. [Google Scholar] [CrossRef]
- Aydın, Y.; Işıkdağ, Ü.; Bekdaş, G.; Nigdeli, S.M.; Geem, Z.W. Use of Machine Learning Techniques in Soil Classification. Sustainability 2023, 15, 2374. [Google Scholar] [CrossRef]
- Mallah, S.; Khaki, B.D.; Davatgar, N.; Scholten, T.; Amirian-Chakan, A.; Emadi, M.; Kerry, R.; Mosavi, A.H.; Taghizadeh-Mehrjardi, R. Predicting Soil Textural Classes Using Random Forest Models: Learning from Imbalanced Dataset. Agronom 2022, 12, 2613. [Google Scholar] [CrossRef]
- Neyestani, M.; Sarmadian, F.; Jafari, A.; Keshavarzi, A.; Sharififar, A. Digital Mapping of Soil Classes Using Spatial Extrapolation with Imbalanced Data. Geoderma Reg. 2021, 26, e00422. [Google Scholar] [CrossRef]
- Bhagat, M.; Bakariya, B. A Comprehensive Review of Cross-Validation Techniques in Machine Learning. Int. J. Sci. Technol. 2025, 16, 1–4. [Google Scholar] [CrossRef]
- Berrar, D. Cross-Validation. Encycl. Bioinform. Comput. Biol. 2019, 1, 542–545. [Google Scholar] [CrossRef]
- Wani, F.; Rizvi, S.; Sharma, M.; Bhat, M. A Study on Cross Validation for Model Selection and Estimation. Int. J. Agric. Sci. 2018, 14, 165–172. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer Texts in Statistics; Springer: New York, NY, USA, 2021; ISBN 978-1-0716-1417-4. [Google Scholar]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013; pp. 1–600. [Google Scholar] [CrossRef]
- Powers, D.M.W. Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness and Correlation. Int. J. Mach. Learn. Technol. 2011, 2, 37–63. [Google Scholar]
- Different Metrices in Machine Learning for Measuring Performance of Classification Algorithms|by Sachinsoni|Medium. Available online: https://medium.com/%40sachinsoni600517/different-metrices-in-machine-learning-for-measuring-performance-of-classification-algorithms-509e55c0a451 (accessed on 28 April 2025).
- Soriano-Disla, J.M.; Janik, L.J.; Viscarra Rossel, R.A.; MacDonald, L.M.; McLaughlin, M.J. The Performance of Visible, near-, and Mid-Infrared Reflectance Spectroscopy for Prediction of Soil Physical, Chemical, and Biological Properties. Appl. Spectrosc. Rev. 2014, 49, 139–186. [Google Scholar] [CrossRef]
- Davies, A.M.C.; Fearn, T. Back to Basics: Calibration Statistics. Available online: https://www.spectroscopyeurope.com/td-column/back-basics-calibration-statistics (accessed on 28 April 2025).
- Miloš, B.; Bensa, A. Prediction of Soil Organic Carbon Using VIS-NIR Spectroscopy: Application to Red Mediterranean Soils from Croatia. Eurasian J. Soil Sci. 2017, 6, 365–373. [Google Scholar] [CrossRef]
- Bellon-Maurel, V.; McBratney, A. Near-Infrared (NIR) and Mid-Infrared (MIR) Spectroscopic Techniques for Assessing the Amount of Carbon Stock in Soils—Critical Review and Research Perspectives. Soil Biol. Biochem. 2011, 43, 1398–1410. [Google Scholar] [CrossRef]
- Seema; Ghosh, A.K.; Das, B.S.; Reddy, N. Application of VIS-NIR Spectroscopy for Estimation of Soil Organic Carbon Using Different Spectral Preprocessing Techniques and Multivariate Methods in the Middle Indo-Gangetic Plains of India. Geoderma Reg. 2020, 23, e00349. [Google Scholar] [CrossRef]
- Olatunde, K.A. Estimation of Soil Organic Carbon Using Chemometrics: A Comparison between Mid-Infrared and Visible near Infrared Diffuse Reflectance Spectroscopy. West Afr. J. Appl. Ecol. 2021, 29, 1–11. [Google Scholar]
- Miloš, B.; Bensa, A.; Japundžić-Palenkić, B. Evaluation of Vis-NIR Preprocessing Combined with PLS Regression for Estimation Soil Organic Carbon, Cation Exchange Capacity and Clay from Eastern Croatia. Geoderma Reg. 2022, 30, e00558. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Viscarra Rossel, R.A.; Saberioon, M.; Borůvka, L.; Kratina, J.; Pavlů, L. National-Scale Spectroscopic Assessment of Soil Organic Carbon in Forests of the Czech Republic. Geoderma 2021, 385, 114832. [Google Scholar] [CrossRef]
- Ramírez, P.B.; Calderón, F.J.; Jastrow, J.D.; Ping, C.L.; Matamala, R. Applying NIR and MIR Spectroscopy for C and Soil Property Prediction in Northern Cold-Region Ecosystems. Which Approach Works Better? Geoderma Reg. 2023, 32, e00617. [Google Scholar] [CrossRef]
- Zhao, D.; Arshad, M.; Li, N.; Triantafilis, J. Predicting Soil Physical and Chemical Properties Using Vis-NIR in Australian Cotton Areas. Catena 2021, 196, 104938. [Google Scholar] [CrossRef]
- Clingensmith, C.M.; Grunwald, S. Predicting Soil Properties and Interpreting Vis-NIR Models from across Continental United States. Sensors 2022, 22, 3187. [Google Scholar] [CrossRef]
- Carvalho, J.K.; Moura-Bueno, J.M.; Ramon, R.; Almeida, T.F.; Naibo, G.; Martins, A.P.; Santos, L.S.; Gianello, C.; Tiecher, T. Combining Different Pre-Processing and Multivariate Methods for Prediction of Soil Organic Matter by near Infrared Spectroscopy (NIRS) in Southern Brazil. Geoderma Reg. 2022, 29, e00530. [Google Scholar] [CrossRef]
- Singha, C.; Swain, K.C.; Sahoo, S.; Govind, A. Prediction of Soil Nutrients through PLSR and SVMR Models by VIs-NIR Reflectance Spectroscopy. Egypt. J. Remote Sens. Space Sci. 2023, 26, 901–918. [Google Scholar] [CrossRef]
- El-Sayed, M.A.; Abd-Elazem, A.H.; Moursy, A.R.A.; Mohamed, E.S.; Kucher, D.E.; Fadl, M.E. Integration Vis-NIR Spectroscopy and Artificial Intelligence to Predict Some Soil Parameters in Arid Region: A Case Study of Wadi Elkobaneyya, South Egypt. Agronomy 2023, 13, 935. [Google Scholar] [CrossRef]
- Lucena, P.G.C.; Aquino, R.V.S.; Sousa, J.E.S.; Souza Júnior, V.S.; Pacheco Filho, J.G.A.; Pereira, C.F. Mineral and Particle-Size Chemometric Classification Using Handheld near-Infrared Instruments for Soil in Northeast Brazil. Geoderma Reg. 2024, 38, e00819. [Google Scholar] [CrossRef]
- Sabetizade, M.; Gorji, M.; Roudier, P.; Zolfaghari, A.A.; Keshavarzi, A. Combination of MIR Spectroscopy and Environmental Covariates to Predict Soil Organic Carbon in a Semi-Arid Region. Catena 2021, 196, 104844. [Google Scholar] [CrossRef]
- Jang, H.J.; Dobarco, M.R.; Minasny, B.; Campusano, J.P.; McBratney, A. Assessing Human Impacts on Soil Organic Carbon Change in the Lower Namoi Valley, Australia. Anthropocene 2023, 43, 100393. [Google Scholar] [CrossRef]
- Metzger, K.; Zhang, C.; Ward, M.; Daly, K. Mid-Infrared Spectroscopy as an Alternative to Laboratory Extraction for the Determination of Lime Requirement in Tillage Soils. Geoderma 2020, 364, 114171. [Google Scholar] [CrossRef]
- Hati, K.M.; Sinha, N.K.; Mohanty, M.; Jha, P.; Londhe, S.; Sila, A.; Towett, E.; Chaudhary, R.S.; Jayaraman, S.; Coumar, M.V.; et al. Mid-Infrared Reflectance Spectroscopy for Estimation of Soil Properties of Alfisols from Eastern India. Sustainability 2022, 14, 4883. [Google Scholar] [CrossRef]
- Mammadov, E.; Denk, M.; Mamedov, A.I.; Glaesser, C. Predicting Soil Properties for Agricultural Land in the Caucasus Mountains Using Mid-Infrared Spectroscopy. Land 2024, 13, 154. [Google Scholar] [CrossRef]
- Sanderman, J.; Savage, K.; Dangal, S.R.S. Mid-Infrared Spectroscopy for Prediction of Soil Health Indicators in the United States. Soil Sci. Soc. Am. J. 2020, 84, 251–261. [Google Scholar] [CrossRef]
- Shi, L.; O’Rourke, S.; de Santana, F.B.; Daly, K. Prediction of Soil Bulk Density in Agricultural Soils Using Mid-Infrared Spectroscopy. Geoderma 2023, 434, 116487. [Google Scholar] [CrossRef]
- Sherif, F. Developing Spectral Libraries Using Mid Infrared Spectroscopy to Determine Key Soil Properties and Soil Health. Master Thesis, Michigan State University, East Lansing, MI, USA, 2023; pp. 1–24. [Google Scholar]
- Li, H.; Wang, J.; Zhang, J.; Liu, T.; Acquah, G.E.; Yuan, H. Combining Variable Selection and Multiple Linear Regression for Soil Organic Matter and Total Nitrogen Estimation by DRIFT-MIR Spectroscopy. Agronomy 2022, 12, 638. [Google Scholar] [CrossRef]
- Jakkan, D.A.; Ghare, P.; Sakode, C. Multi-Parameter Soil Property Prediction Incorporating Mid-Infrared Spectroscopy and Dropout Sequential Artificial Neural Network. Water Air Soil Pollut. 2023, 234, 694. [Google Scholar] [CrossRef]
- Nyawasha, R.W.; Wadoux, A.M.J.C.; Todoroff, P.; Chikowo, R.; Falconnier, G.N.; Lagorsse, M.; Corbeels, M.; Cardinael, R. Multivariate Regional Deep Learning Prediction of Soil Properties from Near-Infrared, Mid-Infrared and Their Combined Spectra. Geoderma Reg. 2024, 37, e00805. [Google Scholar] [CrossRef]
- Li, X.; Pan, W.; Li, D.; Gao, W.; Zeng, R.; Zheng, G.; Cai, K.; Zeng, Y.; Jiang, C. Can Fusion of Vis-NIR and MIR Spectra at Three Levels Improve the Prediction Accuracy of Soil Nutrients? Geoderma 2024, 441, 116754. [Google Scholar] [CrossRef]
- Hong, Y.; Munnaf, M.A.; Guerrero, A.; Chen, S.; Liu, Y.; Shi, Z.; Mouazen, A.M. Fusion of Visible-to-near-Infrared and Mid-Infrared Spectroscopy to Estimate Soil Organic Carbon. Soil Tillage Res. 2022, 217, 105284. [Google Scholar] [CrossRef]
- Karray, E.; Elmannai, H.; Toumi, E.; Gharbia, M.H.; Meshoul, S.; Aichi, H.; Rabah, Z. Ben Evaluating the Potentials of PLSR and SVR Models for Soil Properties Prediction Using Field Imaging, Laboratory VNIR Spectroscopy and Their Combination. Comput. Model. Eng. Sci. 2023, 136, 1399–1425. [Google Scholar] [CrossRef]
- Xu, H.; Xu, D.; Chen, S.; Ma, W.; Shi, Z. Rapid Determination of Soil Class Based on Visible-Near Infrared, Mid-Infrared Spectroscopy and Data Fusion. Remote Sens. 2020, 12, 1512. [Google Scholar] [CrossRef]
- Afriyie, E.; Verdoodt, A.; Mouazen, A.M. Data Fusion of Visible Near-Infrared and Mid-Infrared Spectroscopy for Rapid Estimation of Soil Aggregate Stability Indices. Comput. Electron. Agric. 2021, 187, 106229. [Google Scholar] [CrossRef]
- Ng, W.K.P.; Maxfield, P.J.; Crew, A.P.; Teixeira, D.L.; Bevan, T.; Bell, M.J. Comparison of Soil Organic Carbon Measurement Methods. Agronomy 2025, 15, 1826. [Google Scholar] [CrossRef]
- Semella, S.; Hutengs, C.; Seidel, M.; Ulrich, M.; Schneider, B.; Ortner, M.; Thiele-Bruhn, S.; Ludwig, B.; Vohland, M. Accuracy and Reproducibility of Laboratory Diffuse Reflectance Measurements with Portable VNIR and MIR Spectrometers for Predictive Soil Organic Carbon Modeling. Sensors 2022, 22, 2749. [Google Scholar] [CrossRef]
- Smola, A.J.; Schölkopf, B. A Tutorial on Support Vector Regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef]
- Chinilin, A.V.; Vindeker, G.V.; Savin, I.Y. Vis-NIR Spectroscopy for Soil Organic Carbon Assessment: A Meta-Analysis. Eurasian Soil Sci. 2023, 56, 1605–1617. [Google Scholar] [CrossRef]
- Soil Spectroscopy TRAINING MATERIAL A Primer on Soil Analysis Using Visible and near-Infrared (Vis-NIR) and Mid-Infrared (MIR) Spectroscopy|Semantic Scholar. Available online: https://www.semanticscholar.org/paper/Soil-spectroscopy-TRAINING-MATERIAL-A-primer-on-and/ab023fb3360551fdff0433f193253f3d5ef06b14 (accessed on 18 November 2025).
- Viscarra Rossel, R.A.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near Infrared, Mid Infrared or Combined Diffuse Reflectance Spectroscopy for Simultaneous Assessment of Various Soil Properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Vohland, M.; Ludwig, M.; Thiele-Bruhn, S.; Ludwig, B. Determination of Soil Properties with Visible to Near- and Mid-Infrared Spectroscopy: Effects of Spectral Variable Selection. Geoderma 2014, 223–225, 88–96. [Google Scholar] [CrossRef]
- Janik, L.J.; Simpson, S.L.; Farrell, M.; Mosley, L.M. Rapid and Portable Mid-Infrared Analysis of Wet Sediment Samples by a Novel “Filter-Press” Attenuated Total Reflectance Method. Environ. Earth Sci. 2024, 83, 55. [Google Scholar] [CrossRef]
- Munnaf, M.A.; Haesaert, G.; Van Meirvenne, M.; Mouazen, A.M. Site-Specific Seeding Using Multi-Sensor and Data Fusion Techniques: A Review. Adv. Agron. 2020, 161, 241–323. [Google Scholar] [CrossRef]
- Ludwig, B.; Greenberg, I.; Vohland, M.; Michel, K. Optimised Use of Data Fusion and Memory-Based Learning with an Austrian Soil Library for Predictions with Infrared Data. Eur. J. Soil Sci. 2023, 74, e13394. [Google Scholar] [CrossRef]
- Castanedo, F. A Review of Data Fusion Techniques. Sci. World J. 2013, 2013, 1–19. [Google Scholar] [CrossRef]
- Johnson, J.M.; Vandamme, E.; Senthilkumar, K.; Sila, A.; Shepherd, K.D.; Saito, K. Near-Infrared, Mid-Infrared or Combined Diffuse Reflectance Spectroscopy for Assessing Soil Fertility in Rice Fields in Sub-Saharan Africa. Geoderma 2019, 354, 113840. [Google Scholar] [CrossRef]
- Ng, W.; Minasny, B.; Montazerolghaem, M.; Padarian, J.; Ferguson, R.; Bailey, S.; McBratney, A.B. Convolutional Neural Network for Simultaneous Prediction of Several Soil Properties Using Visible/near-Infrared, Mid-Infrared, and Their Combined Spectra. Geoderma 2019, 352, 251–267. [Google Scholar] [CrossRef]
- Izaurralde, R.C.; Rice, C.W.; Wielopolski, L.; Ebinger, M.H.; Reeves, J.B.; Thomson, A.M.; Harris, R.; Francis, B.; Mitra, S.; Rappaport, A.G.; et al. Evaluation of Three Field-Based Methods for Quantifying Soil Carbon. PLoS ONE 2013, 8, e55560. [Google Scholar] [CrossRef] [PubMed]
- Hutengs, C.; Ludwig, B.; Jung, A.; Eisele, A.; Vohland, M. Comparison of Portable and Bench-Top Spectrometers for Mid-Infrared Diffuse Reflectance Measurements of Soils. Sensors 2018, 18, 993. [Google Scholar] [CrossRef] [PubMed]
- Kuang, B.; Mahmood, H.S.; Quraishi, M.Z.; Hoogmoed, W.B.; Mouazen, A.M.; van Henten, E.J. Sensing Soil Properties in the Laboratory, In Situ, and On-Line: A Review. Adv. Agron. 2012, 114, 155–223. [Google Scholar] [CrossRef]
- Breure, T.S.; Prout, J.M.; Haefele, S.M.; Milne, A.E.; Hannam, J.A.; Moreno-Rojas, S.; Corstanje, R. Comparing the Effect of Different Sample Conditions and Spectral Libraries on the Prediction Accuracy of Soil Properties from Near- and Mid-Infrared Spectra at the Field-Scale. Soil Tillage Res. 2022, 215, 105196. [Google Scholar] [CrossRef]
- Tekin, Y.; Tumsavas, Z.; Mouazen, A.M. Effect of Moisture Content on Prediction of Organic Carbon and PH Using Visible and Near-Infrared Spectroscopy. Soil Sci. Soc. Am. J. 2012, 76, 188–198. [Google Scholar] [CrossRef]
- Wijewardane, N.K.; Ge, Y.; Sanderman, J.; Ferguson, R. Fine Grinding Is Needed to Maintain the High Accuracy of Mid-Infrared Diffuse Reflectance Spectroscopy for Soil Property Estimation. Soil Sci. Soc. Am. J. 2021, 85, 263–272. [Google Scholar] [CrossRef]
- Wetterlind, J.; Stenberg, B.; Rossel, R.A.V. Soil Analysis Using Visible and Near Infrared Spectroscopy. Methods Mol. Biol. 2013, 953, 95–107. [Google Scholar] [CrossRef]
- Forrester, S.T.; Janik, L.J.; Soriano-Disla, J.M.; Mason, S.; Burkitt, L.; Moody, P.; Gourley, C.J.P.; Mclaughlin, M.J. Use of Handheld Mid-Infrared Spectroscopy and Partial Least-Squares Regression for the Prediction of the Phosphorus Buffering Index in Australian Soils. Soil Res. 2015, 53, 67–80. [Google Scholar] [CrossRef]
- Ji, W.; Adamchuk, V.I.; Biswas, A.; Dhawale, N.M.; Sudarsan, B.; Zhang, Y.; Viscarra Rossel, R.A.; Shi, Z. Assessment of Soil Properties in Situ Using a Prototype Portable MIR Spectrometer in Two Agricultural Fields. Biosyst. Eng. 2016, 152, 14–27. [Google Scholar] [CrossRef]
- Zhang, Y.; Biswas, A.; Ji, W.; Adamchuk, V.I. Depth-Specific Prediction of Soil Properties In Situ Using Vis-NIR Spectroscopy. Soil Sci. Soc. Am. J. 2017, 81, 993–1004. [Google Scholar] [CrossRef]
- Silva, F.H.C.A.; Wijewardane, N.K.; Cox, M.S.; Zhang, X. Assessment of Different VisNIR and MIR Spectroscopic Techniques and the Potential of Calibration Transfer between MIR Laboratory and Portable Instruments to Estimate Soil Properties. Soil Tillage Res. 2025, 251, 106555. [Google Scholar] [CrossRef]
- Piekarczyk, J.; Kazmierowski, C.; Krolewicz, S.; Cierniewski, J. Effects of Soil Surface Roughness on Soil Reflectance Measured in Laboratory and Outdoor Conditions. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 827–834. [Google Scholar] [CrossRef]
- Mouazen, A.M.; Al-Asadi, R.A. Influence of Soil Moisture Content on Assessment of Bulk Density with Combined Frequency Domain Reflectometry and Visible and near Infrared Spectroscopy under Semi Field Conditions. Soil Tillage Res. 2018, 176, 95–103. [Google Scholar] [CrossRef]
- Soriano-Disla, J.M.; Janik, L.J.; McLaughlin, M.J. Assessment of Cyanide Contamination in Soils with a Handheld Mid-Infrared Spectrometer. Talanta 2018, 178, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, I.; Seidel, M.; Vohland, M.; Ludwig, B. Performance of Field-Scale Lab vs in Situ Visible/near- and Mid-Infrared Spectroscopy for Estimation of Soil Properties. Eur. J. Soil Sci. 2022, 73, e13180. [Google Scholar] [CrossRef]
- Ji, W.; Viscarra Rossel, R.A.; Shi, Z. Improved Estimates of Organic Carbon Using Proximally Sensed Vis-NIR Spectra Corrected by Piecewise Direct Standardization. Eur. J. Soil Sci. 2015, 66, 670–678. [Google Scholar] [CrossRef]
- Roudier, P.; Hedley, C.B.; Lobsey, C.R.; Viscarra Rossel, R.A.; Leroux, C. Evaluation of Two Methods to Eliminate the Effect of Water from Soil Vis–NIR Spectra for Predictions of Organic Carbon. Geoderma 2017, 296, 98–107. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, W.; Li, M.; Wang, W. A New Coupled Elimination Method of Soil Moisture and Particle Size Interferences on Predicting Soil Total Nitrogen Concentration through Discrete NIR Spectral Band Data. Remote Sens. 2021, 13, 762. [Google Scholar] [CrossRef]
- Debaene, G.; Bartmiński, P.; Siłuch, M. In Situ VIS-NIR Spectroscopy for a Basic and Rapid Soil Investigation. Sensors 2023, 23, 5495. [Google Scholar] [CrossRef]
- Hutengs, C.; Seidel, M.; Oertel, F.; Ludwig, B.; Vohland, M. In Situ and Laboratory Soil Spectroscopy with Portable Visible-to-near-Infrared and Mid-Infrared Instruments for the Assessment of Organic Carbon in Soils. Geoderma 2019, 355, 113900. [Google Scholar] [CrossRef]
- Priori, S.; Mzid, N.; Pascucci, S.; Pignatti, S.; Casa, R. Performance of a Portable FT-NIR MEMS Spectrometer to Predict Soil Features. Soil Syst. 2022, 6, 66. [Google Scholar] [CrossRef]
- Gebbers, R.; Adamchuk, V.I. Precision Agriculture and Food Security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef] [PubMed]
- Shining the Light on Spectroscopy for Sustainable Soil Management|Global Soil Partnership|Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/global-soil-partnership/resources/highlights/detail/en/c/1505320/?utm_source=chatgpt.com (accessed on 18 December 2025).
- NeoSpectra Micro Spectral FT-IR Sensor—Photonic Solutions. Available online: https://photonicsolutions.co.uk/products/neospectra-micro-spectral-ft-ir-sensor/ (accessed on 8 July 2025).
- Samsung Patents a Smartphone-Embedded IR Spectrometer. Could Be on the Galaxy S11—Gizmochina. Available online: https://www.gizmochina.com/2019/10/01/samsung-patents-a-smartphone-embedded-ir-spectrometer-could-be-on-the-galaxy-s11/ (accessed on 8 July 2025).
- Salazar, O.; Benvenuto, A.; Fajardo, M.; Fuentes, J.P.; Nájera, F.; Celedón, A.; Pfeiffer, M.; Renwick, L.L.R.; Seguel, O.; Tapia, Y.; et al. Evaluation of a Miniaturized Portable NIR Spectrometer for the Prediction of Soil Properties in Mediterranean Central Chile. Geoderma Reg. 2023, 34, e00675. [Google Scholar] [CrossRef]
- Sorenson, P.T.; Bulmer, D.; Peak, D. Evaluation of Two Miniaturized FT-NIR Spectrometers for Rapid Soil Property Analysis. Soil Sci. Soc. Am. J. 2024, 88, 126–135. [Google Scholar] [CrossRef]
- Tang, J.; Wang, Q.; Liu, D.; Li, J.; Zhang, R.; Zhang, M.; Sun, J. A Novel Approach to Spectral Moisture Interference Correction for Nitrogen and Soil Organic Matter Inversion in Native Black Soils: Bayesian-Optimized Dynamic Moisture Mitigation. Ecol. Inform. 2025, 90, 103240. [Google Scholar] [CrossRef]
- Process Spectroscopy Market Growth Outlook & Segment Analysis 2024–2034. Available online: https://www.emergenresearch.com/industry-report/process-spectroscopy-market?utm_source=chatgpt.com (accessed on 19 November 2025).
- Process Spectroscopy Market Share & Opportunities 2025–2032. Available online: https://www.coherentmarketinsights.com/market-insight/process-spectroscopy-market-4358?utm_source=chatgpt.com (accessed on 19 November 2025).
- Choosing the Right Analytical Technology: NIR vs. Wet Chemistry. Available online: https://www.bluesunscientific.com/post/choosing-between-nir-and-wet-chemistry-a-lab-manager-s-guide?utm_source=chatgpt.com (accessed on 19 November 2025).
- Boost Efficiency in the QC Laboratory: How NIRS Helps Reduce Costs up to 90%|Metrohm. Available online: https://www.metrohm.com/en/applications/whitepaper/wp-054.html (accessed on 19 November 2025).





| Technique | Wavelength Range | Multivariate Calibration | Preprocessing | Sample Size | Sample Depth (cm) | Predicted Properties | References |
|---|---|---|---|---|---|---|---|
| Vis-NIR | 350–2500 nm | PLSR | UN-P | 280 | 0–15 | SOC b | [100] |
| Vis-NIR | 400–2500 nm | PLSR | Log10(1/R) | 53 | 10 | SOC a | [101] |
| MIR | 2500–16,660 nm | PLSR | Log10(1/R) | 53 | 10 | SOC a | |
| Vis-NIR | 350–2500 nm | PLSR | Savitzky–Golay first derivative | 132 | 0–25 | SOC a, CEC b, clay a | [102] |
| Vis-NIR | 350–2500 nm | SVM-radial basis kernel | Log10(1/R), Savitzky–Golay | 5400 | 2–10 and 10–40 | SOC b | [103] |
| NIR | 4000–10,000 cm−1 | PLSR | UN-P | 119 | NR | TN b, TOC a, CEC a, clay a, pH c, bulk density c | [104] |
| MIR | 400–4000 cm−1 | PLSR, RF | Savitzky–Golay first derivative and 5 points smoothing | 119 | NR | TN a, TOC a, CEC b, clay a (RF), pH b, bulk density c | |
| MIR | 400–4000 cm−1 | PLSR | UN-P | 119 | NR | TN a, TOC a, CEC b (109), clay a, pH c, bulk density c (74) | |
| Vis-NIR | 350–2500 nm | Cubist | Savitzky–Golay, SNV | 3 | 0–120 | Sand c, silt b, clay b, pH c, CEC c | [105] |
| Vis-NIR | 350–2500 nm | RF, Cubist | Savitzky–Golay, Continuum removal by subtraction and division (CR-S and CR-D) | 14,000 | 0–30 | SOC a (RF, Cubist), TN a (Cubist), TS a (Cubist), CEC a (Cubist), clay a (Cubist), sand a (Cubist), pH a (Cubist), exchangeable Ca a (Cubist) | [106] |
| NIR | 1200–2400 nm | SVM | SNV | 2388 | 0–20 | SOM b | [107] |
| Vis-NIR | 350–2500 nm | PLSR, Support vector machine regression model (SVMR) | Savitzky–Golay smoothing with the first derivative, SNV | 200 | 0–30 | OC a (SVMR), available N c (PLSR), P b (PLSR), K b (PLSR), EC c (SVMR), texture c (PLSR) | [108] |
| Vis-NIR | 350–2500 nm | RF, ANN | MSC | 96 | 0–5 | pH a (RF), CaCO3 a (RF), EC a (ANN) | [109] |
| NIR | 900–1700 nm | SVM | Savitzky–Golay first derivative, MSC, SNV | 176 | NR | Mineral NR, particle size NR | [110] |
| MIR | 600–7500 cm−1 | Cubist | Savitzky–Golay first derivative | 151 | 0–5 and 5–15 | SOC a | [111] |
| MIR | 400–4000 cm−1 | Cubist | Trimming, noise-to-signal ratio, Savitzky–Golay filtering, SNV | 151 | 80 | SOC a | [112] |
| MIR | 450–4000 cm−1 | PLSR | Trim, smoothing, SNV | 655 | 5–10 | Lime b | [113] |
| MIR | 500–4000 cm−1 | PLSR | Savitzky–Golay first derivative, MSC, SNV, detrending | 336 | 0–15 | SOC b, pH b, sand b, silt b, clay b | [114] |
| MIR | 650–5000 cm−1 | PLSR | First derivatives, MSC | 114 | 0–15 | pH a, SOC a, Ca a, Mg a (MSC), CaCO3 a | [115] |
| MIR | NR | Memory-based learning | NR | 1000 | NR | Bulk density a, texture a, pH a, CEC a, SOC a, TN a, EC a | [116] |
| MIR | 600–7498 cm−1 | Memory-based learning | Savitzky–Golay, SNV | 500 | NR | Elements a,b,c, TC a, TN b, pH a, CEC a, clay a, sand a | [19] |
| MIR | 600–4000 cm−1 | SVM | Savitzky–Golay first derivative | 671 | 50 | Bulk density a | [117] |
| MIR | 400–6000 cm−1 | RF | First derivative | NR | NR | pH a, TN a, TC a, base cations a, CEC a | [118] |
| DRIFT-MIR | 400–4000 cm−1 | MLR-sCARS | MSV, SNV | 510 | 0–20 | SOM b, TN a | [119] |
| MIR | 500–4100 nm | Dropout sequential artificial neural network | Logarithmic derivative | NR | NR | TN a, OC b, K a, P a | [120] |
| MIR | 650–4000 cm−1 | PLSR-univariate | Savitzky–Golay, SNV | 228 | 0–20 and 20–40 | TC a, TN a, sand b, clay a | [121] |
| vis-NIR-MIR | 350–2500 nm and 650–4000 cm−1 | PLSR, SVM | UN-P | 501 | 0–20 | TN a, TK a, avl. N c (SVM) | [122] |
| Vis-NIR-MIR | 400–2600 nm and 650–4000 cm−1 | PLSR | Savitzky–Golay smoothing | 111 | 15–25 | SOC c | [123] |
| Vis-NIR-lab. spectra | 350–2500 nm | SVR | Log10(1/R), Savitzky–Golay (SG) smoothing filter (SF), Gap-Segment-Derivative (GSD), Detrend Normalization (DT) | 309 | 0–30 | SOM b | [124] |
| Vis-NIR-MIR | 350–2500 nm and 650–4000 cm−1 | SVM | Savitzky–Golay | 571 | NR | Soil class (61.1%) | [125] |
| Vis-NIR-MIR | 350–1700 nm and 650–4000 cm−1 | PLSR | Standardization, moving average, first derivative with Savitzky–Golay smoothing | NR | 0–5 | soil aggregate stability a | [126] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Vyavahare, G.D.; Yun, J.-J.; Park, J.-H.; Shim, J.-H.; Kim, S.H.; Kim, K.; Roh, A.; Kim, S.H.; Jang, H.J.; Ng, W.; et al. Applications and Challenges of Visible-Near-Infrared and Mid-Infrared Spectroscopy in Soil Analysis: Chemometric Approaches and Data Fusion. Agriculture 2026, 16, 135. https://doi.org/10.3390/agriculture16010135
Vyavahare GD, Yun J-J, Park J-H, Shim J-H, Kim SH, Kim K, Roh A, Kim SH, Jang HJ, Ng W, et al. Applications and Challenges of Visible-Near-Infrared and Mid-Infrared Spectroscopy in Soil Analysis: Chemometric Approaches and Data Fusion. Agriculture. 2026; 16(1):135. https://doi.org/10.3390/agriculture16010135
Chicago/Turabian StyleVyavahare, Govind Dnyandev, Jin-Ju Yun, Jae-Hyuk Park, Jae-Hong Shim, Seong Heon Kim, Kyeongyeong Kim, Ahnsung Roh, So Hui Kim, Ho Jun Jang, Wartini Ng, and et al. 2026. "Applications and Challenges of Visible-Near-Infrared and Mid-Infrared Spectroscopy in Soil Analysis: Chemometric Approaches and Data Fusion" Agriculture 16, no. 1: 135. https://doi.org/10.3390/agriculture16010135
APA StyleVyavahare, G. D., Yun, J.-J., Park, J.-H., Shim, J.-H., Kim, S. H., Kim, K., Roh, A., Kim, S. H., Jang, H. J., Ng, W., & Jeon, S. (2026). Applications and Challenges of Visible-Near-Infrared and Mid-Infrared Spectroscopy in Soil Analysis: Chemometric Approaches and Data Fusion. Agriculture, 16(1), 135. https://doi.org/10.3390/agriculture16010135

