EffiFormer-CGS: Deep Learning Framework for Automated Quantification of Fusarium Spore Germination
Abstract
1. Introduction
- (1)
- CBAM attention mechanism: By combining channel and spatial attention, CBAM enhances the model’s sensitivity to critical regions, including the spore body and germ tube tips [12].
- (2)
- Gradient Focal Heatmap Loss (GFHL): This novel loss function emphasizes regions of high uncertainty or structural variability in prediction distributions, thereby improving learning in cases of blurred boundaries and morphological heterogeneity.
- (3)
- SimCCLabel coordinate encoding: By reformulating two-dimensional coordinate regression into two independent one-dimensional classification tasks, this method achieves sub-pixel-level localization accuracy while substantially reducing memory usage [13].
2. Materials and Methods
2.1. Experimental Design and Data Acquisition
2.1.1. Spore Inoculation and Culture Conditions
2.1.2. Fungicide Treatment Protocol and Grouping Design
2.1.3. Microscopic Image Acquisition and Dataset Construction
2.2. Image Preprocessing and Annotation
2.2.1. Preprocessing
2.2.2. Image Annotation Process
3. EffiFormer-CGS Three-Module Fusion Framework
3.1. Object Detection Module
3.2. UniFormer-CGS Key Point Localization Module
3.2.1. UniFormer Backbone Network
3.2.2. CBAM Attention Module
3.2.3. Gradient Focal Heatmap Loss Module (GFHL: Gradient Focal Heatmap Loss Function)
3.2.4. SimCCLabel Encoding
3.3. Phenotypic Quantification Module
3.4. Three-Module Fusion Mechanism
4. Experimental Results
4.1. Experimental Environment and Parameter Settings
4.2. Performance Comparison of Target Detection and Key Point Localization
4.2.1. Comparison of Target Detection Models
4.2.2. Ablation Experiment on the Key Point Localization Module
4.3. Effects of Different Agents and Concentrations on Spore Germination
4.4. Comparison of Model Visualization Results
5. Discussion
5.1. Comparison with Existing Methods
5.2. Biological Significance and Implications
5.3. Limitations and Potential Improvements
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
| Module | Input Resolution | Initial Learning Rate | Pretrained Model | Backbone Version | Batch Size | Epochs | Loss Weights (cls/bbox) |
|---|---|---|---|---|---|---|---|
| Target Detection Module | 640 × 640 | 4 × 10−4 | OpenMMLab EfficientDet-B0 | EfficientDet-B0 | 32 | 300 | 1.0/50.0 |
| Key Point Localization Module | 256 × 192 | 5 × 10−4 | No | - | 64 | 210 | - |
References
- Inbaia, S.; Farooqi, A.; Ray, R.V. Aggressiveness and Mycotoxin Profile of Fusarium Avenaceum Isolates Causing Fusarium Seedling Blight and Fusarium Head Blight in UK Malting Barley. Front. Plant Sci. 2023, 14, 1121553. [Google Scholar] [CrossRef] [PubMed]
- Blackwell, B.A.; Schneiderman, D.; Thapa, I.; Bosnich, W.; Pimentel, K.; Kebede, A.Z.; Reid, L.M.; Harris, L.J. Assessment of Deoxynivalenol and Deoxynivalenol Derivatives in Fusarium Graminearum-Inoculated Canadian Maize Inbreds. Can. J. Plant Pathol. 2022, 44, 504–517. [Google Scholar] [CrossRef]
- Wang, A.; Shang, Z.; Jiang, R.; Zhang, M.; Wang, J.; Li, H.; Zhang, B.; Tang, H.; Xu, F.; Hu, X.; et al. Development and Application of a qPCR-Based Method Coupled with Spore Trapping to Monitor Airborne Pathogens of Wheat Causing Stripe Rust, Powdery Mildew, and Fusarium Head Blight. Plant Dis. 2025, 109, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Yeo, B.C. Recovering Microscopic Images in Material Science Documents by Image Inpainting. Appl. Sci. 2023, 13, 4071. [Google Scholar] [CrossRef]
- Ballesteros, D.; Hill, L.M.; Lynch, R.T.; Pritchard, H.W.; Walters, C. Longevity of Preserved Germplasm: The Temperature Dependency of Aging Reactions in Glassy Matrices of Dried Fern Spores. Plant Cell Physiol. 2019, 60, 376–392. [Google Scholar] [CrossRef]
- Camerlingo, C.; Di Meo, G.; Lepore, M.; Lisitskiy, M.; Poli, A.; Portaccio, M.; Romano, I.; Di Donato, P. Graphene-Based and Surface-Enhanced Raman Spectroscopy for Monitoring the Physio-Chemical Response of Thermophilic Bacterial Spores to Low Temperatures Exposure. Sensors 2020, 20, 4150. [Google Scholar] [CrossRef]
- Zhang, D.; Tao, W.; Cheng, T.; Zhou, X.; Hu, G.; Qiao, H.; Guo, W.; Wang, Z.; Gu, C. GSD-YOLO: A Lightweight Decoupled Wheat Scab Spore Detection Network Based on Yolov7-Tiny. Agriculture 2024, 14, 2278. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, W.; Cheng, T.; Lei, Y.; Qiao, H.; Guo, W.; Yang, X.; Gu, C. Segmentation of Wheat Scab Fungus Spores Based on CRF_ResUNet++. Comput. Electron. Agric. 2024, 216, 108547. [Google Scholar] [CrossRef]
- Jin, L.; Wang, X.; Nie, X.; Wang, W.; Guo, Y.; Yan, S.; Zhao, J. Rethinking the Person Localization for Single-Stage Multi-Person Pose Estimation. IEEE Trans. Multimed. 2024, 26, 1436–1447. [Google Scholar] [CrossRef]
- Praetorius, J.-P.; Hitzler, S.U.J.; Gresnigt, M.S.; Figge, M.T. Image-Based Quantification of Candida Albicans Filamentation and Hyphal Length Using the Open-Source Visual Programming Language JIPipe. FEMS Yeast Res. 2025, 25, foaf011. [Google Scholar] [CrossRef]
- Genze, N.; Bharti, R.; Grieb, M.; Schultheiss, S.J.; Grimm, D.G. Accurate Machine Learning-Based Germination Detection, Prediction and Quality Assessment of Three Grain Crops. Plant Methods 2020, 16, 157. [Google Scholar] [CrossRef]
- Zeng, W.; He, M. Rice Disease Segmentation Method Based on CBAM-CARAFE-DeepLabv3+. Crop Prot. 2024, 180, 106665. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, G.; Dong, H.; Chen, C. SimCC Coordinate Based Learning of Human Pose Constraint Information. Digit. Signal Prog. 2024, 144, 104286. [Google Scholar] [CrossRef]
- Yang, A.; Wang, T.; Gan, W.; Lai, H.; Lu, K.; Hao, C.; Xu, Z.; Zeng, R.; Wang, Z.; Ran, Z.; et al. Efficient Adsorption of Triazole Fungicides Using a Porous Organic Polymer with Imine/Aminal Linkages. Sep. Purif. Technol. 2025, 354, 129117. [Google Scholar] [CrossRef]
- Roman, D.L.; Voiculescu, D.I.; Filip, M.; Ostafe, V.; Isvoran, A. Effects of Triazole Fungicides on Soil Microbiota and on the Activities of Enzymes Found in Soil: A Review. Agriculture 2021, 11, 893. [Google Scholar] [CrossRef]
- Huang, J.-T.; Ting, C.-H. Deep Learning Object Detection Applied to Defect Recognition of Memory Modules. Int. J. Adv. Manuf. Technol. 2022, 121, 8433–8445. [Google Scholar] [CrossRef]
- Ma, J.; Hu, C.; Zhou, P.; Jin, F.; Wang, X.; Huang, H. Review of Image Augmentation Used in Deep Learning-Based Material Microscopic Image Segmentation. Appl. Sci. 2023, 13, 6478. [Google Scholar] [CrossRef]
- Kawai, S.; Nakano, M. Analysis of Vegetative Cells and Spore Germination in Food Using Flow Cytometry. J. Microbiol. Methods 2025, 232, 107137. [Google Scholar] [CrossRef]
- Saleh, M.A.; Ameen, Z.S.; Altrjman, C.; Al-Turjman, F. Computer-Vision-Based Statue Detection with Gaussian Smoothing Filter and EfficientDet. Sustainability 2022, 14, 11413. [Google Scholar] [CrossRef]
- Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao, Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X.; et al. Deep High-Resolution Representation Learning for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 3349–3364. [Google Scholar] [CrossRef]
- Li, K.; Wang, Y.; Zhang, J.; Gao, P.; Song, G.; Liu, Y.; Li, H.; Qiao, Y. UniFormer: Unifying Convolution and Self-Attention for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 12581–12600. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Mali, K. Microscopic Image Segmentation Approach Based on Modified Affinity Propagation-Based Clustering. Multimed. Tools Appl. 2024, 83, 78161–78182. [Google Scholar] [CrossRef]
- Kong, H.; Yuan, Z.; Zhou, H.; Liang, G.; Yan, Z.; Cheng, G.; Hu, Z. Synthetic High-Energy Computed Tomography Image via a Wasserstein Generative Adversarial Network with the Convolutional Block Attention Module. Quant. Imaging Med. Surg. 2023, 13, 4365–4379. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jiang, M.; Chen, H.; Zheng, J.; Pan, Z. Incorporating Geometry Knowledge into an Incremental Learning Structure for Few-Shot Intent Recognition. Knowl.-Based Syst. 2022, 251, 109296. [Google Scholar] [CrossRef]
- Li, X.; Lv, C.; Wang, W.; Li, G.; Yang, L.; Yang, J. Generalized Focal Loss: Towards Efficient Representation Learning for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 3139–3153. [Google Scholar] [CrossRef]
- Zheng, Q.; Guo, H.; Yin, Y.; Zheng, B.; Jiang, H. LFSimCC: Spatial Fusion Lightweight Network for Human Pose Estimation. J. Vis. Commun. Image Represent. 2024, 99, 104093. [Google Scholar] [CrossRef]
- Roshanfekrrad, M.; Papadopoulos, C.; Calonne-Salmon, M.; Schneider, C.; Zhang, K.; Karpouzas, D.; Declerck, S. Development of a High-Throughput Spore Germination Test to Assess the Toxicity of Pesticides on Arbuscular Mycorrhizal Fungi. Mycorrhiza 2025, 35, 38. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, F.; Lou, L.; Cheng, P.; Huang, Y. Real-Time Detection of Full-Scale Forest Fire Smoke Based on Deep Convolution Neural Network. Remote Sens. 2022, 14, 536. [Google Scholar] [CrossRef]
- Cardini, A.; Pellegrino, E.; Del Dottore, E.; Gamper, H.A.; Mazzolai, B.; Ercoli, L. HyLength: A Semi-Automated Digital Image Analysis Tool for Measuring the Length of Roots and Fungal Hyphae of Dense Mycelia. Mycorrhiza 2020, 30, 229–242. [Google Scholar] [CrossRef]
- Chen, J.; Wei, J.; Fu, L.; Wang, S.; Liu, J.; Guo, Q.; Jiang, J.; Tian, Y.; Che, Z.; Chen, G.; et al. Tebuconazole Resistance of Fusarium Graminearum Field Populations from Wheat in Henan Province. J. Phytopathol. 2021, 169, 525–532. [Google Scholar] [CrossRef]
- Ortiz, S.C.; Easter, T.; Valero, C.; Bromley, M.J.; Bertuzzi, M. A Microscopy-Based Image Analysis Pipeline for the Quantification of Germination of Filamentous Fungi. Fungal Genet. Biol. 2025, 176, 103942. [Google Scholar] [CrossRef]
- Yin, Y.; Miao, J.; Shao, W.; Liu, X.; Zhao, Y.; Ma, Z. Fungicide Resistance: Progress in Understanding Mechanism, Monitoring, and Management. Phytopathology 2023, 113, 707–718. [Google Scholar] [CrossRef]








| Fungicide Group | Magnification | Time Point | Concentration (ppm) | Number of Groups |
|---|---|---|---|---|
| Control Group | 10× | 2.0–2.5 h, 5.0–5.5 h, 0.5–2.5 h | No Fungicide | 3 |
| 40× | 2.0–2.5 h | No Fungicide | 1 | |
| Prochloraz | 10× | 2.0–2.5 h | 5, 6, 7 | 3 |
| 10× | 0.5–2.5 h | 6 | 1 | |
| 40× | 2.0–2.5 h | 5, 7 | 2 | |
| Prothioconazole | 10× | 2.0–2.5 h | 5, 6, 7 | 3 |
| 10× | 0.5–2.5 h | 6 | 1 | |
| 40× | 2.0–2.5 h | 5, 6, 7 | 3 | |
| Tebuconazole | 10× | 2.0–2.5 h | 5, 6, 7 | 3 |
| 10× | 0.5–2.5 h | 6 | 1 | |
| 40× | 2.0–2.5 h | 5, 6, 7 | 3 |
| mAP@0.5:0.95/% | mAP@0.5/% | |
|---|---|---|
| EfficientDet | 90.8 | 93.4 |
| DiffusionDet | 78.6 | 94.3 |
| RmDet | 58.4 | 71.5 |
| VitDet | 52.5 | 79.1 |
| YOLOv8s | 68.7 | 84.4 |
| Rtmpose | UniFormer | CBAM | GFHL | SCL | mAP@0.5:0.95 | mAP@0.5 |
|---|---|---|---|---|---|---|
| √ | × | × | × | × | 81.0 | 85.6 |
| × | √ | × | × | × | 81.0 | 87.1 |
| × | √ | √ | × | × | 82.2 | 87.2 |
| × | √ | × | √ | × | 82.6 | 86.5 |
| × | √ | × | × | √ | 83.7 | 88.3 |
| × | √ | √ | √ | × | 85.2 | 89.5 |
| × | √ | √ | × | √ | 84.3 | 86.6 |
| × | √ | × | √ | √ | 83.9 | 88.7 |
| × | √ | √ | √ | √ | 83.7 | 91.4 |
| Reagent | Concentration | Germination Rate/% | Germination Degree/% | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Manual | Machine | Average | Relative Error/% | Manual | Machine | Average | Relative Error/% | ||
| Control Group | No Reagent | 89.37 | 91.51 | 90.44 | 2.39 | 64.07 | 70.65 | 67.36 | 10.27 |
| Prochloraz | 5 | 58.33 | 55.31 | 56.82 | 5.18 | 35.37 | 29.41 | 32.39 | 16.85 |
| 6 | 58.32 | 56.25 | 57.29 | 3.55 | 34.89 | 30.23 | 32.56 | 13.36 | |
| 7 | 58.47 | 59.35 | 58.91 | 1.51 | 31.41 | 27.84 | 29.63 | 11.37 | |
| Prothioconazole | 5 | 72.55 | 72.42 | 72.49 | 0.18 | 60.03 | 62.94 | 61.49 | 4.85 |
| 6 | 78.86 | 81.38 | 80.12 | 3.20 | 53.15 | 46.01 | 49.58 | 13.43 | |
| 7 | 77.05 | 75.20 | 76.13 | 2.40 | 51.77 | 45.98 | 48.88 | 11.18 | |
| Tebuconazole | 5 | 68.20 | 65.70 | 66.95 | 3.67 | 35.97 | 39.34 | 37.66 | 9.37 |
| 6 | 70.11 | 68.54 | 69.33 | 2.24 | 48.61 | 50.90 | 49.76 | 4.71 | |
| 7 | 71.24 | 67.66 | 69.45 | 5.03 | 54.08 | 46.51 | 50.30 | 14.00 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, Z.; Bai, X.; Cheng, T.; Ding, Z.; Han, D.; Zhang, D.; Xie, S.; Guo, T.; Yang, X.; Gu, C. EffiFormer-CGS: Deep Learning Framework for Automated Quantification of Fusarium Spore Germination. Agriculture 2026, 16, 131. https://doi.org/10.3390/agriculture16010131
Wang Z, Bai X, Cheng T, Ding Z, Han D, Zhang D, Xie S, Guo T, Yang X, Gu C. EffiFormer-CGS: Deep Learning Framework for Automated Quantification of Fusarium Spore Germination. Agriculture. 2026; 16(1):131. https://doi.org/10.3390/agriculture16010131
Chicago/Turabian StyleWang, Ziheng, Xuehui Bai, Tao Cheng, Ziyu Ding, Dong Han, Dongyan Zhang, Shiying Xie, Tianyi Guo, Xue Yang, and Chunyan Gu. 2026. "EffiFormer-CGS: Deep Learning Framework for Automated Quantification of Fusarium Spore Germination" Agriculture 16, no. 1: 131. https://doi.org/10.3390/agriculture16010131
APA StyleWang, Z., Bai, X., Cheng, T., Ding, Z., Han, D., Zhang, D., Xie, S., Guo, T., Yang, X., & Gu, C. (2026). EffiFormer-CGS: Deep Learning Framework for Automated Quantification of Fusarium Spore Germination. Agriculture, 16(1), 131. https://doi.org/10.3390/agriculture16010131

