Long-Term Effect of Tillage Practices on Soil Physical Properties and Winter Wheat Yield in North-East Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Site Characteristics
2.2. Tillage Systems and Experimental Design
2.3. Soil Sampling
2.4. Soil Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Influence of Tillage System on Soil Bulk Density (BD)
3.2. Influence of Tillage System on Soil Water Content (SWC)
3.3. Influence of Tillage System on Water-Stable Aggregates (WSAs)
3.4. Correlation Between Soil Physical Properties Studied
3.5. Influence of Tillage System on Winter Wheat Yield
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pearsons, K.A.; Omondi, E.C.; Zinati, G.; Smith, A.; Rui, Y. A tale of two systems: Does reducing tillage affect soil health differently in long-term, side-by-side conventional and organic agricultural systems? Soil Tillage Res. 2023, 226, 105562. [Google Scholar] [CrossRef]
- Fernandes, M.; Matheus, F.; Antonio, F.; Fernandes, C. Soil structure under tillage systems with and without cultivation in the off-season. Agric. Ecosyst. Environ. 2023, 342, 108237. [Google Scholar] [CrossRef]
- Johnson, A.M.; Hoyt, G.D. Changes to the soil environment under conservation tillage. HortTechnology 1999, 9, 380–393. [Google Scholar] [CrossRef]
- Sithole, N.J.; Magwaza, L.S.; Mafongoya, P.L. Conservation Agriculture and its impact on soil quality and maize yield: A South African perspective. Soil Tillage Res. 2016, 162, 55–67. [Google Scholar] [CrossRef]
- Turmel, M.S.; Speratti, A.; Baudron, F.; Verhulst, N.; Govaerts, B. Crop residue management and soil health: A systems analysis. Agric. Syst. 2015, 134, 6–16. [Google Scholar] [CrossRef]
- Țopa, D.; Cara, I.G.; Jităreanu, G. Long term impact of different tillage systems on carbon pools and stocks, soil bulk density, aggregation and nutrients: A field meta-analysis. Catena 2021, 199, 105102. [Google Scholar] [CrossRef]
- Singh, M.; Sarkar, B.; Sarkar, S.; Churchman, J.; Bolan, N.; Mandal, S.; Menon, M.; Purakayastha, T.J.; Beerling, D.J. Stabilization of soil organic carbon as influenced by clay mineralogy. Adv. Agron. 2018, 148, 33–84. [Google Scholar] [CrossRef]
- Zhang, M.; Wei, Y.; Kong, F.; Chen, F.; Zhang, H. Effects of tillage practices on soil carbon storage and greenhouse gas emission of farmland in North China. Trans. Chin. Soc. Agric. Eng. 2012, 28, 203–209. [Google Scholar] [CrossRef]
- Calistru, A.E.; Filipov, F.; Cara, I.G.; Cioboată, M.; Topa, D.; Jităreanu, G. Tillage and Straw Management Practices Influences Soil Nutrient Distribution: A Case Study from North Eastern Romania. Land. 2024, 13, 625. [Google Scholar] [CrossRef]
- Warkentin, B.P. The tillage effect in sustaining soil functions. J. Plant Nutr. Soil Sci. 2001, 164, 345–350. [Google Scholar] [CrossRef]
- Nouria, A.; Leea, J.; Yinb, X.; Tylerc, D.D.; Saxtond, A.M. Thirty-four years of no tillage and cover crops improve soil quality and increase cotton yield in Alsols, southeastern USA. Geoderma 2018, 337, 998–1008. [Google Scholar] [CrossRef]
- Marousek, J.; Gavurova, B. Recovering phosphorous from biogas fermentation residues indicates promising economic results. Chemosphere 2022, 291, 133008. [Google Scholar] [CrossRef] [PubMed]
- Francaviglia, R.; Almagro, M.; Vincente-Vincente, J.L. Conservation Agriculture and Soil Organic Carbon: Principles, Processes, Practices and Policy Options. Soil Syst. 2023, 7, 17. [Google Scholar] [CrossRef]
- Sione, S.M.J.; Wilson, M.G.; Lado, M.; Gonzalez, A.P. Evaluation of soil degradation produced by rice crop systems in a vertisol using a soil quality index. Catena 2017, 150, 79–86. [Google Scholar] [CrossRef]
- Lal, R. Tillage effects on soil degradation, soil resilience, soil quality, and sustainability. Soil Tillage Res. 1993, 27, 1–4. [Google Scholar] [CrossRef]
- Kumar, S.; Raj, A.D.; Kalambukattu, J.G.; Chatterjee, U. Climate Change Impact on Land Degradation and Soil Erosion in Hilly and Mountainous Landscape: Sustainability Issues and Adaptation Strategies. In Ecological Footprints of Climate Change: Adaptive Approaches and Sustainability; Springer: Cham, Switzerland, 2023; pp. 119–155. [Google Scholar] [CrossRef]
- Răus, L.; Jităreanu, G.; Ailincăi, C.; Pârvan, L.; Țopa, D. Impact of different soil tillage systems and organo-mineral fertilization on physical properties of the soil and on crops yield in pedoclimatical conditions of Moldavian plateau. Rom. Agric. Res. 2016, 33, 111–123. [Google Scholar]
- Hernanz, J.L.; Peixoto, H.; Cerisola, C.; Sanchez-Giron, V. An empirical model to predict soil bulk density profiles in field conditions using penetration resistance, moisture content and soil depth. J. Terramechanics 2000, 37, 167–184. [Google Scholar] [CrossRef]
- Vereecken, H.; Schnepf, A.; Hopmans, J.W.; Javaux, M.; Or, D.; Roose, T.; Vanderborght, J.; Young, M.H.; Amelung, W.; Aitkenhead, M.; et al. Modeling soil processes: Review, key challenges, and new perspectives. Vadose Zone J. 2016, 15, vzj2015-09. [Google Scholar] [CrossRef]
- Busari, M.A.; Kukal, S.S.; Kaur, A.; Bhatt, R.; Dulazi, A.A. Conservation tillage impacts on soil, crop and the environment. Int. Soil Water Conserv. Res. 2015, 3, 119–129. [Google Scholar] [CrossRef]
- Ardvidsson, J.; Ararso, E.; Tomas, R. Crop yield in Swedish experiments with shallow tillage and no tillage 1983–2012. Eur. J. Agron. 2014, 52, 307–315. [Google Scholar] [CrossRef]
- TerAvest, D.; Capenter-Boggs, L.; Thierfelder, C.; Reganold, J.P. Crop production and soil water management in conservation agriculture, no-till, and conventional tillage systems in Malawi. Agric. Ecosyst. Environ. 2015, 212, 285–296. [Google Scholar] [CrossRef]
- Onisie, T.; Zaharia, M. Lucrări Practice Agrotehnică; Editura Ion Ionescu de la Brad Iași: Iasi, Romania, 2002. [Google Scholar]
- Jakku, E.; Fleming, A.; Esping, M.; Fielke, S.; Finlay-Smits, S.C.; Turner, J.A. Disruption disrupted? Reflecting on the relationship between responsible innovation and digital agriculture research and development at multiple levels in Australia and Aotearoa New Zealand. Agric. Syst. 2023, 204, 103555. [Google Scholar] [CrossRef]
- Liu, S. Towards a sustainable agriculture: Achievements and challenges of Sustainable Development Goal Indicator. Glob. Food Secur. 2023, 37, 100694. [Google Scholar] [CrossRef]
- Mihu, G.D.; Ursu, A.; Filip, M.; Țopa, D.; Jitǎreanu, G. The influence of tillage systems on nutrients supply in soil on corn crop at the Ezareni farm, Iasi County. Res. J. Agric. Sci. 2022, 54, 93–100. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk density In Klute. Soc. Agron. 1986, 5, 363–375. [Google Scholar] [CrossRef]
- Kemper, W.D.; Rosenau, R.C. Aggregate stability and size distribution. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods; American Society of Agronomy,: Madison, WI, USA, 1986; Volume 9, pp. 425–442. [Google Scholar]
- Blanco-Canqui, H.; Ruis, S.J. No-tillage and soil physical environment. Geoderma 2018, 326, 164–200. [Google Scholar] [CrossRef]
- Gao, L.; Wang, B.; Li, S.; Wu, H.; Wu, X.; Liang, G.; Gong, D.; Zhang, X.; Cai, D.; Degre, A. Soil wet aggregate distribution and pore size distribution under different tillage systems after 16 years in the Loess plateau of China. Catena 2019, 173, 38–47. [Google Scholar] [CrossRef]
- Osunbitan, J.A.; Oyedele, D.J.; Adekalu, K.O. Tillage effects on bulk density, hydraulic conductivity and strength of a loamy sand soil in southwestern Nigeria. Soil Tillage Res. 2005, 82, 57–64. [Google Scholar] [CrossRef]
- Shokoofeh, S.K.; Seyed, A.K.; Sadegh, A.; Mahesh, K.G. Changes in Soil Properties and Productivity under Different Tillage Practices and Wheat Genotypes: A Short-Term Study in Iran. Sustainability 2018, 10, 3273. [Google Scholar] [CrossRef]
- Burtan, L.; Ţopa, D.; Jităreanu, G.; Calistru, A.E.; Răus, L.; Cara, I.G.; Sîrbu, C. The influence of conservative tillage systems on physico-chemical properties and yield under a cambic chernozem from northeastern part of Romania. Rom. Agric. Res. 2020, 37, 141–149. [Google Scholar] [CrossRef]
- Bengough, A.G.; McKenzie, B.M.; Hallett, P.D.; Valentine, T.A. Root elongation, water stress, and mechanical impedance: A review of limiting stresses and beneficial root tip traits. J. Agric. Sci. Technol. 2011, 2, 59–686. [Google Scholar] [CrossRef] [PubMed]
- Colombi, T.; Torres, L.C.; Walter, A.; Keller, T. Feedbacks between soil penetration resistance, root architecture and water uptake limit water accessibility and crop growth—A vicious circle. Sci. Total Environ. 2018, 626, 1026–1035. [Google Scholar] [CrossRef] [PubMed]
- Grzesiak, S.; Grzesiak, M.T.; Hura, T.; Marci´nska, I.; Rzepka, A. Changes in root system structure, leaf water potential and gas exchange of maize and triticale seedlings affected by soil compaction. Environ. Exp. Bot. 2013, 88, 2–10. [Google Scholar] [CrossRef]
- Arshad, M.A.; Lowery, B.; Grossman, B. Physical Tests for Monitoring Soil Quality. In Methods for Assessing Soil Quality; Doran, J.W., Jones, A.J., Eds.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 123–141. [Google Scholar]
- Kaufmann, M.; Tobias, S.; Schulin, R. Comparison of critical limits for crop plant growth based on different indicators for the state of soil compaction. J. Plant Nutr. Soil Sci. 2010, 173, 573–583. [Google Scholar] [CrossRef]
- Acar, M.; Çelik, İ.; Günal, H. Effects of long-term tillage systems on soil water content and wheat yield under mediterranean conditions. J. New Theory 2017, 17, 98–108. [Google Scholar]
- Rahimzadeh, R.; Navid, H. Implications of different soil management practices on clayey soil characteristics and a rotation of wheat -legumes in a rainfed condition. J. Agric. Sci. Sustain. Prod. 2011, 2. [Google Scholar]
- Martins, R.N.; Portes, M.F.; e Moraes, H.M.F.; Junior, M.R.F.; Rosas, J.T.F.; Junior, W.D.A.O. Influence of tillage systems on soil physical properties, spectral response and yield of the bean crop. Remote Sens. Appl. Soc. Environ. 2021, 22, 100517. [Google Scholar] [CrossRef]
- Ussiri, D.A.N.; Lal, R. Long term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping systems from an Alfisol in Ohio. Soil Tillage Res. 2009, 104, 39–47. [Google Scholar] [CrossRef]
- Salem, H.M.; Valero, C.; Muñoz, M.A.; Rodríguez, M.G.; Silva, L.L. Short-term effects of four tillage practices on soil physical properties, soil water potential, and maize yield. Geoderma 2015, 237–238, 60–70. [Google Scholar] [CrossRef]
- Wazzan, F.A.; Muhammad, S.A. Effects of Conservation and Conventional Tillage on some Soil Hydraulic Properties. IOP Conf. Ser. Earth Environ. Sci. 2022, 1060, 12002. [Google Scholar] [CrossRef]
- Strudley, M.W.; Green, T.R. Tillage effects on soil hydraulic properties in space and time: State of the science. Soil Tillage Res. 2008, 99, 4–48. [Google Scholar] [CrossRef]
- Alvarez, R.; Steinbach, H.S. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil Tillage Res. 2009, 104, 1–15. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, L.; Wang, J.; Chen, Z.; Xie, Y. The Variation of Surface Aggregates in the Degradation Process of the Dry Red Soil in Jinsha River Dry-Hot Valley. In International Conference on Logistics Engineering, Management and Computer Science (LEMCS 2015); Atlantis Press: Dordrecht, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Bogunovic, I.; Pereira, P.; Kisic, I.; Birkás, M.; Rodrigo-Comino, J. Spatiotemporal variation of soil compaction by tractor traffic passes in a Croatian vineyard. J. Agric. Sci. Technol. 2019, 21, 1921–1932. [Google Scholar]
- Ma, G.; Zhang, Y.; Li, H.; Yang, Y.; Li, R. Dynamics and interactions of soil moisture and temperature during degradation and restoration of alpine swamp meadow on the Qinghai-Tibet plateau. Front. Environ. Sci. 2025, 13, 1476167. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, L.; Zhu, S.; Sun, H.; Xu, C.; Fu, J.; Ning, T. Sensitivities of physical and chemical attributes of soil quality to different tillage management. Agronomy 2022, 12, 1153. [Google Scholar] [CrossRef]
- Popp, M.P.; Keisling, T.C.; McNew, R.W.; Oliver, L.R.; Dillon, C.R.; Wallace, D.M. Planting date, cultivar, and tillage system effects on dryland soybean production. Agron. J. 2022, 94, 81–88. [Google Scholar] [CrossRef]
- Bogunovic, I.; Pereira, P.; Kisic, I.; Sajko, K.; Sraka, M. Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena 2018, 160, 376–384. [Google Scholar] [CrossRef]
- Ali, A.; Streibig, J.C.; Andreasen, C. Yield loss prediction models based on early estimation of weed pressure. Crop Prot. 2013, 53, 125–131. [Google Scholar] [CrossRef]
- Corcoran, E.; Afshar, M.; Curceac, S.; Lashkari, A.; Raza, M.M.; Ahnert, S.; Morris, R. Current data and modeling bottlenecks for predicting crop yields in the United Kingdom. Front. Sustain. Food Syst. 2023, 7, 1023169. [Google Scholar] [CrossRef]
Bulk density (BD) (g/cm3) | Year | Soil Depth (cm) | NT | CT | ||
Sowing | Harvesting | Sowing | Harvesting | |||
2020 | 0–10 | 1.17 ± 0.09 b | 1.39 ± 0.14 b | 1.22 ± 0.07 a | 1.24 ± 0.10 a | |
10–20 | 1.42 ± 0.08 a | 1.51 ± 0.09 a | 1.26 ± 0.05 a | 1.29 ± 0.17 a | ||
20–30 | 1.38 ± 0.12 a | 1.44 ± 0.08 b | 1.27 ± 0.09 a | 1.30 ± 0.92 a | ||
30–40 | 1.42 ± 0.02 a | 1.41 ± 0.06 b | 1.32 ± 0.11 a | 1.35 ± 0.10 a | ||
2021 | 0–10 | 1.26 ± 0.11 b | 1.25 ± 0.07 b | 1.22 ± 0.08 b | 1.27 ± 0.08 a | |
10–20 | 1.45 ± 0.07 a | 1.43 ± 0.06 a | 1.31 ± 0.15 ab | 1.32 ± 0.10 a | ||
20–30 | 1.39 ± 0.08 a | 1.42 ± 0.08 a | 1.26 ± 0.13 ab | 1.33 ± 0.08 a | ||
30–40 | 1.38 ± 0.06 a | 1.39 ± 0.05 a | 1.38 ± 0.10 a | 1.36 ± 0.09 a | ||
2022 | 0–10 | 1.22 ± 0.11 c | 1.33 ± 0.08 b | 1.23 ± 0.07 b | 1.14 ± 0.05 b | |
10–20 | 1.50 ± 0.05 a | 1.47 ± 0.07 a | 1.38 ± 0.06 a | 1.27 ± 0.10 a | ||
20–30 | 1.38 ± 0.06 b | 1.44 ± 0.12 ab | 1.32 ± 0.09 ab | 1.25 ± 0.10 ab | ||
30–40 | 1.42 ± 0.07 ab | 1.41 ± 0.09 ab | 1.36 ± 0.09 a | 1.27 ± 0.11 a | ||
2023 | 0–10 | 1.17 ± 0.12 b | 1.24 ± 0.11 b | 1.17 ± 0.06 b | 1.17 ± 0.05 b | |
10–20 | 1.54 ± 0.10 a | 1.51 ± 0.07 a | 1.11 ± 0.08 b | 1.31 ± 0.06 a | ||
20–30 | 1.43 ± 0.07 a | 1,44 ± 0.09 a | 1.16 ± 0.05 b | 1.30 ± 0.04 a | ||
30–40 | 1.44 ± 0.12 a | 1.45 ± 0.08 a | 1.33 ± 0.14 a | 1.32 ± 0.08 a |
Water-stable aggregates (WSAs) (%) | Year | Soil Depth (cm) | NT | CT | ||
Sowing | Harvesting | Sowing | Harvesting | |||
2020 | 0–10 | 69.78 ± 1.24 ab | 75.73 ± 1.30 b | 60.72 ± 0.99 d | 68.33 ± 2.59 a | |
10–20 | 67.93 ± 1.35 b | 74.42 ± 4.32 c | 63.93 ± 1.33 c | 68.46 ± 1.17 a | ||
20–30 | 68.75 ± 3.93 b | 74.97 ± 0.94 ab | 69,47 ± 2.19 b | 73.23 ± 2.37 b | ||
30–40 | 71.70 ± 0.91 a | 78.27 ± 1.10 a | 71.85 ± 1.23 a | 74.66 ± 4.97 b | ||
2021 | 0–10 | 75.37 ± 1.39 ab | 75.01 ± 1.34 a | 52.53 ± 2.48 b | 65.08 ± 4.06 c | |
10–20 | 77.08 ± 1.07 a | 80.00 ± 0.75 bc | 52.57 ± 1.61 b | 59.79 ± 7.14 c | ||
20–30 | 70.77 ± 1.84 b | 78.11 ± 1.54 b | 51.46 ± 2.37 b | 75.18 ± 2.18 b | ||
30–40 | 70.50 ± 6.76 b | 81.08 ± 2.24 c | 80.26 ± 2.06 a | 83.36 ± 2.56 a | ||
2022 | 0–10 | 69.14 ± 1.80 c | 88.41 ± 0.58 a | 53.66 ± 1.30 c | 71.21 ± 6.00 b | |
10–20 | 87.13 ± 0.79 a | 83.60 ± 1.13 b | 54.46 ± 2.27 c | 76.68 ± 1.49 a | ||
20–30 | 77.33 ± 1.06 b | 76.79 ± 2.98 c | 62.96 ± 1.66 b | 74.84 ± 1.31 ab | ||
30–40 | 69.43 ± 4.27 c | 75.11 ± 0.62 c | 67.43 ± 1.16 a | 78.76 ± 1.57 a | ||
2023 | 0–10 | 65.80 ± 2.38 b | 74.04 ± 5.02 a | 65.45 ± 4.94 bc | 73.22 ± 1.34 b | |
10–20 | 78.69 ± 0.90 a | 71.15 ± 1.83 ab | 67.89 ± 3.24 b | 65.31 ± 4.91 c | ||
20–30 | 80.72 ± 2.71 a | 65.50 ± 1.70 c | 62.43 ± 3.25 b | 55.25 ± 5.48 d | ||
30–40 | 78.38 ± 2.21 a | 67.73 ± 1.11 bc | 75.21 ± 2.30 a | 82.14 ± 1.43 a |
Year | BD | WSAs | SWC | Yield | |
---|---|---|---|---|---|
2020 | BD | 1 | |||
WSAs | 0.458 ** | 1 | |||
SWC | −0.640 | 0.026 | 1 | ||
Yield | −1.000 ** | b | −1.000 ** | 1 | |
2021 | BD | 1 | |||
WSAs | 0.438 ** | 1 | |||
SWC | −0.057 | 0.407 ** | 1 | ||
Yield | 1.000 ** | b | −1.000 ** | 1 | |
2022 | BD | 1 | |||
WSAs | 0.321 ** | 1 | |||
SWC | 0.038 | −0.108 | 1 | ||
Yield | −1.000 ** | b | 1.000 ** | 1 | |
2023 | BD | 1 | |||
WSAs | −0.149 | 1 | |||
SWC | 0.089 | −0.081 | 1 | ||
Yield | 1.000 ** | b | −1.000 ** | 1 |
Yield (kg ha−1) | Year | NT | CT |
2020 | 2825 | 4300 | |
2021 | 5731 | 7317 | |
2022 | 5260 | 5409 | |
2023 | 3325 | 7254 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cakpo, S.S.; Aostăcioaei, T.G.; Mihu, G.-D.; Molocea, C.-C.; Ghelbere, C.; Ursu, A.; Țopa, D.C. Long-Term Effect of Tillage Practices on Soil Physical Properties and Winter Wheat Yield in North-East Romania. Agriculture 2025, 15, 989. https://doi.org/10.3390/agriculture15090989
Cakpo SS, Aostăcioaei TG, Mihu G-D, Molocea C-C, Ghelbere C, Ursu A, Țopa DC. Long-Term Effect of Tillage Practices on Soil Physical Properties and Winter Wheat Yield in North-East Romania. Agriculture. 2025; 15(9):989. https://doi.org/10.3390/agriculture15090989
Chicago/Turabian StyleCakpo, Segla Serginho, Tudor George Aostăcioaei, Gabriel-Dumitru Mihu, Cosmin-Costel Molocea, Cosmin Ghelbere, Ana Ursu, and Denis Constantin Țopa. 2025. "Long-Term Effect of Tillage Practices on Soil Physical Properties and Winter Wheat Yield in North-East Romania" Agriculture 15, no. 9: 989. https://doi.org/10.3390/agriculture15090989
APA StyleCakpo, S. S., Aostăcioaei, T. G., Mihu, G.-D., Molocea, C.-C., Ghelbere, C., Ursu, A., & Țopa, D. C. (2025). Long-Term Effect of Tillage Practices on Soil Physical Properties and Winter Wheat Yield in North-East Romania. Agriculture, 15(9), 989. https://doi.org/10.3390/agriculture15090989