The Effect of 3′,4′-Methylenedioxychalcone Derivatives on Mycelial Growth and Conidial Germination of Monilinia fructicola: An In Silico and In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical
2.2. Synthesis of 3′,4′-Methylenedioxychalcone Derivatives
2.3. Antifungal Activity
2.3.1. Fungal Growing Conditions
2.3.2. Effect of the Compounds on the Mycelial Growth of M. fructicola
2.3.3. Effect of the Compounds on Conidial Germination of M. fructicola
2.4. In Silico Analysis
2.4.1. Molecular Docking
2.4.2. Prediction of Lipophilicity
3. Results and Discussion
3.1. Synthesis of 3,4-Methylenedioxychalcone Derivatives
3.2. Inhibitory Effect of 3,4-Methylenedioxychalcone Derivatives on Mycelial Growth and Conidial Germination Inhibition of M. fructicola
3.3. Molecular Docking and Lipophilicity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Baky, N.A.; Amara, A.A.A.F. Recent Approaches towards Control of Fungal Diseases in Plants: An Updated Review. J. Fungi 2021, 7, 900–917. [Google Scholar] [CrossRef] [PubMed]
- Martini, C.; Mari, M. Monilinia fructicola, Monilinia laxa (Monilinia Rot, Brown Rot). In Postharvest Decay; Bautista-Baños, S., Ed.; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar] [CrossRef]
- Luo, Y.; Ma, Z.; Michailides, T.J. Analysis of Factors Affecting Latent Infection and Sporulation of Monilinia fructicola on Prune Fruit. Plant Dis. 2001, 85, 999–1003. [Google Scholar] [CrossRef]
- Villarino, M.; Melgarejo, P.; Usall, J.; Segarra, J.; Lamarca, N.; de Cal, A. Secondary inoculum dynamics of Monilinia spp. and relationship to the incidence of postharvest brown rot in peaches and the weather conditions during the growing season. Eur. J. Plant Pathol. 2012, 133, 585–598. [Google Scholar] [CrossRef]
- Bano, A.; Gupta, A.; Prusty, M.R.; Kumar, M. Elicitation of Fruit Fungi Infection and Its Protective Response to Improve the Postharvest Quality of Fruits. Stresses 2023, 3, 231–255. [Google Scholar] [CrossRef]
- Mustafa, M.H.; Bassi, D.; Corre, M.-N.; Lino, L.O.; Signoret, V.; Quilot-Turion, B.; Cirilli, M. Phenotyping Brown Rot Susceptibility in Stone Fruit: A Literature Review with Emphasis on Peach. Horticulturae 2021, 7, 115. [Google Scholar] [CrossRef]
- Bai, Y.; Hou, Y.; Wang, Q.; Lu, C.; Ma, X.; Wang, Z.; Xu, H. Analysis of the Binding Modes and Resistance Mechanism of Four Methyl Benzimidazole Carbamates Inhibitors Fungicides with Monilinia fructicola Β2-Tubulin Protein. J. Mol. Struct. 2023, 1291, 136057. [Google Scholar] [CrossRef]
- McLaughlin, M.S.; Roy, M.; Abbasi, P.A.; Carisse, O.; Yurgel, S.N.; Ali, S. Why Do We Need Alternative Methods for Fungal Disease Management in Plants? Plants 2023, 12, 3822. [Google Scholar] [CrossRef]
- Santos, T.A.C.; Sousa Ferreira, C.; Barreto Alves, P.; Scher, R.; Assis Pinheiro, L.; Vilaça Costa, E.; Roberto Gagliardi, P.; Fernandes, R.P.M. Methoxy Chalcone Derivatives: Promising Antimicrobial Agents Against Phytopathogens. Chem. Biodivers. 2024, 21, e202400945. [Google Scholar] [CrossRef]
- Mellado, M.; Espinoza, L.; Madrid, A.; Mella, J.; Chávez-Weisser, E.; Diaz, K.; Cuellar, M. Design, synthesis, antifungal activity, and structure–activity relationship studies of chalcones and hybrid dihydrochromane–chalcones. Mol. Divers. 2020, 24, 603–615. [Google Scholar] [CrossRef]
- Deng, T.; Xin, H.; Luo, X.; Zhou, Q.; Wang, Y.; Hu, C.; Fu, H.; Xue, W. Antifungal activity of chalcone derivatives containing 1,2,3,4-tetrahydroquinoline and studies on them as potential SDH inhibitors. Pest Manag. Sci. 2025, 81, 1251–1260. [Google Scholar] [CrossRef]
- Rudrapal, M.; Khan, J.; Dukhyil, A.A.B.; Alarousy, R.M.I.I.; Attah, E.I.; Sharma, T.; Khairnar, S.J.; Bendale, A.R. Chalcone Scaffolds, Bioprecursors of Flavonoids: Chemistry, Bioactivities, and Pharmacokinetics. Molecules 2021, 26, 7177. [Google Scholar] [CrossRef]
- Narwal, S.; Devi, B.; Dhanda, T.; Kumar, S.; Tahlan, S. Exploring Chalcone Derivatives: Synthesis and Their Therapeutic Potential. J. Mol. Struct. 2024, 1303, 137554. [Google Scholar] [CrossRef]
- Prasad, Y.R.; Rao, A.L.; Rambabu, R. Synthesis and Antimicrobial Activity of Some Chalcone Derivatives. J. Chem. 2008, 5, 461–466. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, Y.; Xin, H.; Tian, J.; Deng, T.; Meng, K.; An, Y.; Xue, W. Synthesis and Antifungal Activity of Chalcone Derivatives Containing 1,3,4-Thiadiazole. Chem. Biodivers. 2024, 21, e202401031. [Google Scholar] [CrossRef]
- Di Liberto, M.G.; Stegmayer, M.I.; Fernández, L.N.; Quiroga, A.D.; Svetaz, L.A.; Derita, M.G. Control of Brown Rot Produced by Monilinia fructicola in Peaches Using a Full-Spectrum Extract of Zuccagnia punctata Cav. Horticulturae 2023, 9, 1141. [Google Scholar] [CrossRef]
- Rajendran, G.; Bhanu, D.; Aruchamy, B.; Ramani, P.; Pandurangan, N.; Bobba, K.N.; Oh, E.J.; Chung, H.Y.; Gangadaran, P.; Ahn, B.-C. Chalcone: A Promising Bioactive Scaffold in Medicinal Chemistry. Pharmaceuticals 2022, 15, 1250. [Google Scholar] [CrossRef]
- Villena, J.; Montenegro, I.; Said, B.; Werner, E.; Flores, S.; Madrid, A. Ultrasound Assisted Synthesis and Cytotoxicity Evaluation of Known 2′,4′-Dihydroxychalcone Derivatives against Cancer Cell Lines. Food Chem. Toxicol. 2021, 148, 111969. [Google Scholar] [CrossRef]
- Borchhardt, D.M.; Mascarello, A.; Chiaradia, L.D.; Nunes, R.J.; Oliva, G.; Yunes, R.A.; Andricopulo, A.D. Biochemical Evaluation of a Series of Synthetic Chalcone and Hydrazide Derivatives as Novel Inhibitors of Cruzain from Trypanos cruzi. J. Braz. Chem. Soc. 2010, 21, 142–150. [Google Scholar] [CrossRef]
- Chiaradia, L.D.; Martins, P.G.A.; Cordeiro, M.N.S.; Guido, R.V.C.; Ecco, G.; Andricopulo, A.D.; Yunes, R.A.; Vernal, J.; Nunes, R.J.; Terenzi, H. Synthesis, biological evaluation, and molecular modeling of chalcone derivatives as potent inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatases (PtpA and PtpB). J. Med. Chem. 2012, 55, 390–402. [Google Scholar] [CrossRef]
- Sadgir, N.V.; Dhonnar, S.L.; Jagdale, B.S. Synthesis, molecular structure, FMO, spectroscopic, antimicrobial and in-silico investigation of (E)-1-(benzo[d][1,3] dioxol-5-yl)-3-(4-aryl)prop-2-en-1-one derivative: Experimental and computational study. Results Chem. 2023, 5, 100887. [Google Scholar] [CrossRef]
- Parambi, D.G.T.; Oh, J.M.; Baek, S.C.; Lee, J.P.; Tondo, A.R.; Nicolotti, O.; Kim, H.; Mathew, B. Design, synthesis and biological evaluation of oxygenated chalcones as potent and selective MAO-B inhibitors. Bioorg. Chem. 2019, 93, 103335. [Google Scholar] [CrossRef]
- Brito, C.; Hansen, H.; Espinoza, L.; Faúndez, M.; Olea, A.F.; Pino, S.; Díaz, K. Assessing the Control of Postharvest Gray Mold Disease on Tomato Fruit Using Mixtures of Essential Oils and Their Respective Hydrolates. Plants 2021, 10, 1719. [Google Scholar] [CrossRef]
- Díaz, K.; Werner, E.; Besoain, X.; Flores, S.; Donoso, V.; Said, B.; Caro, N.; Vega, E.; Montenegro, I.; Madrid, A. In Vitro Antifungal Activity and Toxicity of Dihydrocarvone-Hybrid Derivatives against Monilinia fructicola. Antibiotics 2021, 10, 818. [Google Scholar] [CrossRef]
- Pereira, W.V.; Primiano, I.V.; Morales, R.G.F.; Peres, N.A.; Amorim, L.; May De Mio, L.L. Reduced Sensitivity to Azoxystrobin of Monilinia fructicola Isolates from Brazilian Stone Fruits Is Not Associated with Previously Described Mutations in the Cytochrome b Gene. Plant Dis. 2017, 101, 766–773. [Google Scholar] [CrossRef]
- Huang, L.S.; Sun, G.; Cobessi, D.; Wang, A.C.; Shen, J.T.; Tung, E.Y.; Berry, E.A. 3-nitropropionic acid is a suicide inhibitor of mitochondrial respiration that, upon oxidation by complex II, forms a covalent adduct with a catalytic base arginine in the active site of the enzyme. J. Biol. Chem. 2006, 281, 5965–5972. [Google Scholar] [CrossRef]
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998, 19, 1639–1662. [Google Scholar] [CrossRef]
- Gasull, E.I.; Silber, J.J.; Blanco, S.E.; Tomas, F.; Ferretti, F.H. A theoretical and experimental study of the formation mechanism of 4-X-chalcones by the Claisen–Schmidt reaction. J. Mol. Struct. THEOCHEM 2000, 503, 131–144. [Google Scholar] [CrossRef]
- Cancio, N.; Costantino, A.R.; Silbestri, G.F.; Pereyra, M.T. Ultrasound-Assisted Syntheses of Chalcones: Experimental Design and Optimization. Proceedings 2019, 41, 13. [Google Scholar] [CrossRef]
- Alam, S.; Islam, A. Synthesis of 2′4′-dihydroxy-6′-methoxy-3, 4-methylenedioxydihydro chalcone and 2′,4′,6′-trihydroxy-4-methoxydihydrochalcone. Biol. Sci. -PJSIR 2003, 46, 27–30. [Google Scholar]
- Shin, J.H.; Fu, T.; Park, K.H.; Kim, K.S. The effect of fungicides on mycelial growth and conidial germination of the ginseng root rot Fungus, Cylindrocarpon destructans. Mycobiology 2017, 45, 220–225. [Google Scholar] [CrossRef]
- Osherov, N.; May, G.S. The molecular mechanisms of conidial germination. FEMS Microbiol. Lett. 2001, 199, 153–160. [Google Scholar] [CrossRef]
- Gong, A.D.; Sun, G.J.; Zhao, Z.Y.; Liao, Y.C.; Zhang, J.B. Staphylococcus saprophyticus L-38 produces volatile 3,3-dimethyl-1,2-epoxybutane with strong inhibitory activity against Aspergillus flavus germination and aflatoxin production. World Mycotoxin J. 2020, 13, 247–258. [Google Scholar] [CrossRef]
- Muniyappan, G.; Gurudevan, T.; Thangaraj, P.; Balamurali, A.S.; Iyadurai, A.P.; Suppaiah, R.; Subbiah, K.A.; Shanmugam, H. Benzothiazole—An Antifungal Compound Derived from Medicinal Mushroom Ganoderma lucidum against Mango Anthracnose Pathogen Colletotrichum gloeosporioides (Penz and (Sacc.)). Molecules 2023, 28, 2476. [Google Scholar] [CrossRef]
- Hernández, A.; Ruiz-Moyano, S.; Galván, A.I.; Merchán, A.V.; Pérez Nevado, F.; Aranda, E.; Serradilla, M.J.; de Guía Córdoba, M.; Martín, A. Anti-fungal activity of phenolic sweet orange peel extract for controlling fungi responsible for post-harvest fruit decay. Fungal Biol. 2021, 125, 143–152. [Google Scholar] [CrossRef]
- Mustafa, M.H.; Corre, M.-N.; Heurtevin, L.; Bassi, D.; Cirilli, M.; Quilot-Turion, B. Stone fruit phenolic and triterpenoid compounds modulate gene expression of Monilinia spp. in culture media. Fungal Biol. 2023, 127, 1085–1097. [Google Scholar] [CrossRef]
- Madrid, A.; Silva, V.; Reyes, C.; Werner, E.; Besoain, X.; Montenegro, I.; Muñoz, E.; Díaz, K. Control of Peach Brown Rot Disease Produced by Monilinia fructicola and Monilinia laxa Using Benzylidene-Cycloalkanones. J. Fungi 2024, 10, 609. [Google Scholar] [CrossRef]
- Camargos, R.B.; Perina, F.J.; Carvalho, D.D.C.; Alves, E.; Mascarello, A.; Chiaradia-Delatorre, L.D.; Yunes, R.A.; Nunes, R.J.; Oliveira, D.F. Chalcones to control Alternaria alternata in Murcott tangor fruits. Biosci. J. 2016, 32, 1512–1521. [Google Scholar] [CrossRef]
- Alberton, E.H.; Damazio, R.G.; Cazarolli, L.H.; Chiaradia, L.D.; Leal, P.C.; Nunes, R.J.; Yunes, R.A.; Silva, F.R.M.B. Influence of Chalcone Analogues on Serum Glucose Levels in Hyperglycemic Rats. Chem.-Biol. Interact. 2008, 171, 355–362. [Google Scholar] [CrossRef]
- Marques, B.C.; Santos, M.B.; Anselmo, D.B.; Monteiro, D.A.; Gomes, E.; Saiki, M.F.C.; Rahal, P.; Rosalen, P.L.; Sardi, J.C.O.; Regasini, L.O. Methoxychalcones: Effect of Methoxyl Group on the Antifungal, Antibacterial and Antiproliferative Activities. Med. Chem. 2020, 16, 881–891. [Google Scholar] [CrossRef]
- Gupta, D.; Jain, D.K. Chalcone derivatives as potential antifungal agents: Synthesis, and antifungal activity. J. Adv. Pharm. Technol. Res. 2015, 6, 114–117. [Google Scholar] [CrossRef]
- Prusky, D.; Alkan, N.; Mengiste, T.; Fluhr, R. Quiescent and necrotrophic lifestyle choice during postharvest disease development. Annu. Rev. Phytopathol. 2013, 51, 762013. [Google Scholar] [CrossRef] [PubMed]
- Bernat, M.; Segarra, J.; Navas-Cortés, J.A.; Casals, C.; Torres, R.; Teixidó, N.; Usall, J. Influence of temperature and humidity on the survival of Monilinia fructicola conidia on stone fruits and inert surfaces. Ann. Appl. Biol. 2018, 173, 63–70. [Google Scholar] [CrossRef]
- Lee, M.-H.; Bostock, R.M. Induction, regulation, and role in pathogenesis of appressoria in Monilinia fructicola. Phytopathology 2006, 96, 1072–1080. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, A.; Wang, X.; Tao, K.; Jin, H.; Hou, T. Novel pyrazole carboxamide containing a diarylamine scaffold potentially targeting fungal succinate dehydrogenase: Antifungal activity and mechanism of action. J. Agric. Food Chem. 2022, 70, 13464–13472. [Google Scholar] [CrossRef]
- Luo, X.; Chen, Y.; Wang, Y.; Xing, Z.; Peng, J.; Chen, J. Design, synthesis and antifungal activity of novel amide derivatives containing a pyrrolidine moiety as potential succinate dehydrogenase inhibitor. Mol. Divers. 2024, 28, 805–816. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.H.; Yang, S.S.; Zhang, Q.; Zhang, T.T.; Zhang, T.Y.; Zhou, B.H.; Zhou, L. Discovery of N-phenylpropiolamide as a novel succinate dehydrogenase inhibitor scaffold with broad-spectrum antifungal activity on phytopathogenic fungi. J. Agric. Food Chem. 2023, 71, 3681–3693. [Google Scholar] [CrossRef]
- Ma, Z.; Qiu, S.; Zhang, D.; Guo, X.; Lu, Y.; Fan, Y.; Chen, X. Design, synthesis, and antifungal activity of novel dithiin tetracarboximide derivatives as potential succinate dehydrogenase inhibitors. Pest Manag. Sci. 2023, 79, 1922–1930. [Google Scholar] [CrossRef]
- Cramer, J.; Sager, C.P.; Ernst, B. Hydroxyl Groups in Synthetic and Natural-Product-Derived Therapeutics: A Perspective on a Common Functional Group. J. Med. Chem. 2019, 62, 8915–8930. [Google Scholar] [CrossRef]
- Aslan, H.E.; Beydemir, Ş. Phenolic compounds: The inhibition effect on polyol pathway enzymes. Chem.-Biol. Interact. 2017, 266, 47–55. [Google Scholar] [CrossRef]
- Türkeş, C.; Demir, Y.; Beydemir, Ş. In vitro inhibitory activity and molecular docking study of selected natural phenolic compounds as AR and SDH inhibitors. ChemistrySelect 2022, 7, e202204050. [Google Scholar] [CrossRef]
- Soares, J.X.; Santos, Á.; Fernandes, C.; Pinto, M.M.M. Liquid Chromatography on the Different Methods for the Determination of Lipophilicity: An Essential Analytical Tool in Medicinal Chemistry. Chemosensors 2022, 10, 340. [Google Scholar] [CrossRef]
- Echeverría, J.; Opazo, J.; Mendoza, L.; Urzúa, A.; Wilkens, M. Structure-Activity and Lipophilicity Relationships of Selected Antibacterial Natural Flavones and Flavanones of Chilean Flora. Molecules 2017, 22, 608. [Google Scholar] [CrossRef] [PubMed]
Compounds | EC50 (µg/mL) | MIC (µg/mL) |
---|---|---|
A | 72.09 ± 0.80 c | <10 a |
B | 72.65 ± 0.30 c | 150 c |
C | 206.24 ± 0.01 d | <10 a |
D | >250 e | <10 a |
E | >250 e | >250 d |
F | 20.61 ± 0.18 b | <10 a |
G | >250 e | 25 b |
Mystic 520® | 8.38 ± 2.44 a | <10 a |
BC-1000® | 10.55 ±1.74 a | <10 a |
Compound | Binding Energy (Kcal/mol) | Lipophilicity Log p |
---|---|---|
A | −6.05 | 3.17 |
B | −6.13 | 3.14 |
C | −5.52 | 3.15 |
F | −6.90 | 2.79 |
CBE | −7.2 | 2.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, C.; Silva, V.; Muñoz, E.; Valle, G.; Martínez-Lobos, M.; Valdés, F.; Díaz, K.; Montenegro, I.; Godoy, P.; Caro, N.; et al. The Effect of 3′,4′-Methylenedioxychalcone Derivatives on Mycelial Growth and Conidial Germination of Monilinia fructicola: An In Silico and In Vitro Study. Agriculture 2025, 15, 983. https://doi.org/10.3390/agriculture15090983
Ferreira C, Silva V, Muñoz E, Valle G, Martínez-Lobos M, Valdés F, Díaz K, Montenegro I, Godoy P, Caro N, et al. The Effect of 3′,4′-Methylenedioxychalcone Derivatives on Mycelial Growth and Conidial Germination of Monilinia fructicola: An In Silico and In Vitro Study. Agriculture. 2025; 15(9):983. https://doi.org/10.3390/agriculture15090983
Chicago/Turabian StyleFerreira, Catalina, Valentina Silva, Evelyn Muñoz, Gissella Valle, Manuel Martínez-Lobos, Francisca Valdés, Katy Díaz, Iván Montenegro, Patricio Godoy, Nelson Caro, and et al. 2025. "The Effect of 3′,4′-Methylenedioxychalcone Derivatives on Mycelial Growth and Conidial Germination of Monilinia fructicola: An In Silico and In Vitro Study" Agriculture 15, no. 9: 983. https://doi.org/10.3390/agriculture15090983
APA StyleFerreira, C., Silva, V., Muñoz, E., Valle, G., Martínez-Lobos, M., Valdés, F., Díaz, K., Montenegro, I., Godoy, P., Caro, N., & Madrid, A. (2025). The Effect of 3′,4′-Methylenedioxychalcone Derivatives on Mycelial Growth and Conidial Germination of Monilinia fructicola: An In Silico and In Vitro Study. Agriculture, 15(9), 983. https://doi.org/10.3390/agriculture15090983