Cereal and Rapeseed Yield Forecast in Poland at Regional Level Using Machine Learning and Classical Statistical Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Input Data
2.2. Statistical Data Analysis
3. Results
3.1. Basic Statistics of Input Data
3.2. Correlation Coefficients Between Predictors and Crop Yields
3.3. Results of Crop Yield Prediction Based on Linear Regression and Machine Learning Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CWB | climatic water balance |
DNNs | deep neural networks |
LASSO | least absolute shrinkage and selection operator |
MAE | mean absolute error |
MLP | multi-layer perceptron |
MODIS | Moderate Resolution Imaging Spectroradiometer |
MSE | mean squared error |
NDVI | normalized difference vegetation index |
NNs | neural networks |
RF | random forest |
RMSE | root mean squared error |
SVR | support vector regression |
References
- Schauberger, B.; Jägermeyr, J.; Gornott, C. A Systematic Review of Local to Regional Yield Forecasting Approaches and Frequently Used Data Resources. Eur. J. Agron. 2020, 120, 126153. [Google Scholar] [CrossRef]
- Lecerf, R.; Ceglar, A.; López-Lozano, R.; Van Der Velde, M.; Baruth, B. Assessing the Information in Crop Model and Meteorological Indicators to Forecast Crop Yield over Europe. Agric. Syst. 2019, 168, 191–202. [Google Scholar] [CrossRef]
- Zhao, Y.; Potgieter, A.B.; Zhang, M.; Wu, B.; Hammer, G.L. Predicting Wheat Yield at the Field Scale by Combining High-Resolution Sentinel-2 Satellite Imagery and Crop Modelling. Remote Sens. 2020, 12, 1024. [Google Scholar] [CrossRef]
- Lungu, O.N.; Chabala, L.M.; Shepande, C. Satellite-Based Crop Monitoring and Yield Estimation—A Review. J. Agric. Sci. 2020, 13, 180. [Google Scholar] [CrossRef]
- Clark, R.; Dahlhaus, P.; Robinson, N.; Larkins, J.; Morse-McNabb, E. Matching the Model to the Available Data to Predict Wheat, Barley, or Canola Yield: A Review of Recently Published Models and Data. Agric. Syst. 2023, 211, 103749. [Google Scholar] [CrossRef]
- Panek, E.; Gozdowski, D. Analysis of Relationship between Cereal Yield and NDVI for Selected Regions of Central Europe Based on MODIS Satellite Data. Remote Sens. Appl. Soc. Environ. 2020, 17, 100286. [Google Scholar] [CrossRef]
- Schut, A.G.T.; Stephens, D.J.; Stovold, R.G.H.; Adams, M.; Craig, R.L. Improved Wheat Yield and Production Forecasting with a Moisture Stress Index, AVHRR and MODIS Data. Crop Pasture Sci. 2009, 60, 60. [Google Scholar] [CrossRef]
- Franch, B.; Vermote, E.; Roger, J.-C.; Murphy, E.; Becker-Reshef, I.; Justice, C.; Claverie, M.; Nagol, J.; Csiszar, I.; Meyer, D.; et al. A 30+ Year AVHRR Land Surface Reflectance Climate Data Record and Its Application to Wheat Yield Monitoring. Remote Sens. 2017, 9, 296. [Google Scholar] [CrossRef]
- Manafifard, M.; Huang, J. A Comprehensive Review on Wheat Yield Prediction Based on Remote Sensing. Multimed. Tools Appl. 2024, 84, 1–74. [Google Scholar] [CrossRef]
- Bazzi, H.; Ciais, P.; Makowski, D.; Baghdadi, N. Advancing Winter Wheat Yield Anomaly Prediction with High-Resolution Satellite-Based Gross Primary Production. One Earth 2024, 8, 101146. [Google Scholar] [CrossRef]
- Pham, H.T.; Awange, J.; Kuhn, M.; Nguyen, B.V.; Bui, L.K. Enhancing Crop Yield Prediction Utilizing Machine Learning on Satellite-Based Vegetation Health Indices. Sensors 2022, 22, 719. [Google Scholar] [CrossRef] [PubMed]
- Gavasso-Rita, Y.L.; Papalexiou, S.M.; Li, Y.; Elshorbagy, A.; Li, Z.; Schuster-Wallace, C. Crop Models and Their Use in Assessing Crop Production and Food Security: A Review. Food Energy Secur. 2024, 13, e503. [Google Scholar] [CrossRef]
- Muruganantham, P.; Wibowo, S.; Grandhi, S.; Samrat, N.H.; Islam, N. A Systematic Literature Review on Crop Yield Prediction with Deep Learning and Remote Sensing. Remote Sens. 2022, 14, 1990. [Google Scholar] [CrossRef]
- Bharadiya, J.P.; Tzenios, N.T.; Reddy, M. Predicting Crop Yield Using Deep Learning and Remote Sensing. J. Eng. Res. Rep. 2023, 24, 29–44. [Google Scholar] [CrossRef]
- Panigrahi, B.; Kathala, K.C.R.; Sujatha, M. A Machine Learning-Based Comparative Approach to Predict the Crop Yield Using Supervised Learning With Regression Models. Procedia Comput. Sci. 2023, 218, 2684–2693. [Google Scholar] [CrossRef]
- Paudel, D.; Boogaard, H.; De Wit, A.; Van Der Velde, M.; Claverie, M.; Nisini, L.; Janssen, S.; Osinga, S.; Athanasiadis, I.N. Machine Learning for Regional Crop Yield Forecasting in Europe. Field Crop. Res. 2022, 276, 108377. [Google Scholar] [CrossRef]
- Paudel, D.; Boogaard, H.; De Wit, A.; Janssen, S.; Osinga, S.; Pylianidis, C.; Athanasiadis, I.N. Machine Learning for Large-Scale Crop Yield Forecasting. Agric. Syst. 2021, 187, 103016. [Google Scholar] [CrossRef]
- Hashemi, M.; Yost, M.; Holt, J. Field-Scale Evaluation of Low-Elevation and Mobile Drip Irrigation Systems. 2024. Available online: https://www.sciencedirect.com/science/article/pii/S0378377425002161?ssrnid=4937116&dgcid=SSRN_redirect_SD (accessed on 20 January 2025).
- Meroni, M.; Waldner, F.; Seguini, L.; Kerdiles, H.; Rembold, F. Yield Forecasting with Machine Learning and Small Data: What Gains for Grains? Agric. For. Meteorol. 2021, 308–309, 108555. [Google Scholar] [CrossRef]
- Morales, A.; Villalobos, F.J. Using Machine Learning for Crop Yield Prediction in the Past or the Future. Front. Plant Sci. 2023, 14, 1128388. [Google Scholar] [CrossRef]
- Islam, M.; Shehzad, F. A Prediction Model Optimization Critiques through Centroid Clustering by Reducing the Sample Size, Integrating Statistical and Machine Learning Techniques for Wheat Productivity. Scientifica 2022, 2022, 7271293. [Google Scholar] [CrossRef]
- Dang, C.; Liu, Y.; Yue, H.; Qian, J.; Zhu, R. Autumn Crop Yield Prediction Using Data-Driven Approaches:- Support Vector Machines, Random Forest, and Deep Neural Network Methods. Can. J. Remote Sens. 2021, 47, 162–181. [Google Scholar] [CrossRef]
- Jędrejek, A.; Koza, P.; Doroszewski, A.; Pudełko, R. Agricultural Drought Monitoring System in Poland—Farmers’ Assessments vs. Monitoring Results (2021). Agriculture 2022, 12, 536. [Google Scholar] [CrossRef]
- Olesen, J.E.; Børgesen, C.D.; Elsgaard, L.; Palosuo, T.; Rötter, R.P.; Skjelvåg, A.O.; Peltonen-Sainio, P.; Börjesson, T.; Trnka, M.; Ewert, F.; et al. Changes in Time of Sowing, Flowering and Maturity of Cereals in Europe under Climate Change. Food Addit. Contam. Part A 2012, 29, 1527–1542. [Google Scholar] [CrossRef] [PubMed]
- Thaler, S.; Eitzinger, J.; Trnka, M.; Dubrovsky, M. Impacts of Climate Change and Alternative Adaptation Options on Winter Wheat Yield and Water Productivity in a Dry Climate in Central Europe. J. Agric. Sci. 2012, 150, 537–555. [Google Scholar] [CrossRef]
- Pagani, V.; Guarneri, T.; Fumagalli, D.; Movedi, E.; Testi, L.; Klein, T.; Calanca, P.; Villalobos, F.; Lopez-Bernal, A.; Niemeyer, S.; et al. Improving Cereal Yield Forecasts in Europe—The Impact of Weather Extremes. Eur. J. Agron. 2017, 89, 97–106. [Google Scholar] [CrossRef]
- Kuśmierek-Tomaszewska, R.; Żarski, J. Assessment of Meteorological and Agricultural Drought Occurrence in Central Poland in 1961–2020 as an Element of the Climatic Risk to Crop Production. Agriculture 2021, 11, 855. [Google Scholar] [CrossRef]
- Wit, A.J.W.D.; Boogaard, H.L.; Diepen, C.A.V. Spatial Resolution of Precipitation and Radiation: The Effect on Regional Crop Yield Forecasts. Agric. For. Meteorol. 2005, 135, 156–168. [Google Scholar] [CrossRef]
- Folberth, C.; Yang, H.; Wang, X.; Abbaspour, K.C. Impact of Input Data Resolution and Extent of Harvested Areas on Crop Yield Estimates in Large-Scale Agricultural Modeling for Maize in the USA. Ecol. Model. 2012, 235–236, 8–18. [Google Scholar] [CrossRef]
- Ansarifar, J.; Wang, L.; Archontoulis, S.V. An Interaction Regression Model for Crop Yield Prediction. Sci. Rep. 2021, 11, 17754. [Google Scholar] [CrossRef]
- Lee, H.; Wang, J.; Leblon, B. Using Linear Regression, Random Forests, and Support Vector Machine with Unmanned Aerial Vehicle Multispectral Images to Predict Canopy Nitrogen Weight in Corn. Remote Sens. 2020, 12, 2071. [Google Scholar] [CrossRef]
- Killeen, P.; Kiringa, I.; Yeap, T.; Branco, P. Corn Grain Yield Prediction Using UAV-Based High Spatiotemporal Resolution Imagery, Machine Learning, and Spatial Cross-Validation. Remote Sens. 2024, 16, 683. [Google Scholar] [CrossRef]
- Schwalbert, R.A.; Amado, T.; Corassa, G.; Pott, L.P.; Prasad, P.V.V.; Ciampitti, I.A. Satellite-Based Soybean Yield Forecast: Integrating Machine Learning and Weather Data for Improving Crop Yield Prediction in Southern Brazil. Agric. For. Meteorol. 2020, 284, 107886. [Google Scholar] [CrossRef]
- Fajardo, M.; Whelan, B.M. Within-farm Wheat Yield Forecasting Incorporating Off-farm Information. Precis. Agric. 2021, 22, 569–585. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, Z.; Luo, Y.; Zhang, L.; Zhang, J.; Li, Z.; Tao, F. Wheat Yield Predictions at a County and Field Scale with Deep Learning, Machine Learning, and Google Earth Engine. Eur. J. Agron. 2021, 123, 126204. [Google Scholar] [CrossRef]
- Filippi, P.; Jones, E.J.; Wimalathunge, N.S.; Somarathna, P.D.S.N.; Pozza, L.E.; Ugbaje, S.U.; Jephcott, T.G.; Paterson, S.E.; Whelan, B.M.; Bishop, T.F.A. An Approach to Forecast Grain Crop Yield Using Multi-Layered, Multi-Farm Data Sets and Machine Learning. Precis. Agric. 2019, 20, 1015–1029. [Google Scholar] [CrossRef]
- Filippi, P.; Han, S.Y.; Bishop, T.F.A. On Crop Yield Modelling, Predicting, and Forecasting and Addressing the Common Issues in Published Studies. Precis. Agric. 2025, 26, 8. [Google Scholar] [CrossRef]
- Basso, B.; Liu, L. Seasonal Crop Yield Forecast: Methods, Applications, and Accuracies. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2019; Volume 154, pp. 201–255. ISBN 978-0-12-817406-7. [Google Scholar]
- Lehmann, J.; Kretschmer, M.; Schauberger, B.; Wechsung, F. Potential for Early Forecast of Moroccan Wheat Yields Based on Climatic Drivers. Geophys. Res. Lett. 2020, 47, e2020GL087516. [Google Scholar] [CrossRef]
- Leukel, J.; Zimpel, T.; Stumpe, C. Machine Learning Technology for Early Prediction of Grain Yield at the Field Scale: A Systematic Review. Comput. Electron. Agric. 2023, 207, 107721. [Google Scholar] [CrossRef]
- Peng, D.; Cheng, E.; Feng, X.; Hu, J.; Lou, Z.; Zhang, H.; Zhao, B.; Lv, Y.; Peng, H.; Zhang, B. A Deep–Learning Network for Wheat Yield Prediction Combining Weather Forecasts and Remote Sensing Data. Remote Sens. 2024, 16, 3613. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, Y.; Ata-Ul-Karim, S.T.; Ge, Q.; Li, X.; Xiao, J. Integrating Climate and Satellite Remote Sensing Data for Predicting County-Level Wheat Yield in China Using Machine Learning Methods. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102861. [Google Scholar] [CrossRef]
Year | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CWB_1 | 0.8 | −90.0 | 83.5 | −80.7 | −48.2 | −23.2 | −4.7 | −143.5 | −83.7 | 26.9 | −119.4 | −38.5 | −54.7 | 30.6 | −21.6 | −68.0 |
CWB_2 | −120.4 | 54.3 | −110.3 | −95.7 | −16.2 | −6.2 | −72.4 | −77.6 | −46.4 | −155.0 | −53.3 | −97.0 | −38.4 | −72.2 | −89.4 | −121.5 |
Basic cereals | 35.0 | 35.5 | 34.0 | 35.9 | 37.0 | 42.0 | 38.0 | 38.4 | 40.9 | 33.8 | 36.6 | 45.1 | 43.1 | 46.4 | 46.2 | 44.3 |
Wheat | 40.6 | 41.9 | 39.7 | 40.5 | 43.1 | 48.2 | 44.0 | 43.3 | 46.8 | 39.0 | 42.1 | 51.2 | 48.6 | 51.9 | 52.2 | 50.2 |
Rye | 27.4 | 27.5 | 25.6 | 28.7 | 29.1 | 32.2 | 29.1 | 30.0 | 31.5 | 26.0 | 28.4 | 35.2 | 33.9 | 35.3 | 35.5 | 35.0 |
Triticale | 35.1 | 33.6 | 33.0 | 34.3 | 35.9 | 39.9 | 35.4 | 36.7 | 39.0 | 32.3 | 35.0 | 44.0 | 42.3 | 44.5 | 44.6 | 43.1 |
Barley | 33.5 | 34.5 | 32.3 | 35.0 | 35.1 | 39.8 | 34.5 | 36.6 | 38.5 | 31.0 | 33.6 | 42.6 | 40.3 | 42.8 | 42.9 | 41.8 |
Rapeseed | 29.2 | 22.7 | 22.6 | 25.8 | 28.2 | 33.5 | 27.7 | 26.5 | 29.3 | 25.5 | 27.0 | 31.6 | 32.1 | 33.6 | 33.8 | 32.0 |
NDVI 10-19 | 0.54 | 0.36 | 0.50 | 0.57 | 0.56 | 0.51 | 0.55 | 0.32 | 0.36 | 0.55 | 0.51 | 0.55 | 0.52 | 0.46 | 0.51 | 0.59 |
NDVI 10-27 | 0.50 | 0.40 | 0.46 | 0.53 | 0.40 | 0.52 | 0.58 | 0.51 | 0.40 | 0.39 | 0.56 | 0.56 | 0.51 | 0.53 | 0.53 | 0.51 |
NDVI 11-04 | 0.46 | 0.51 | 0.32 | 0.51 | 0.41 | 0.33 | 0.54 | 0.43 | 0.37 | 0.52 | 0.54 | 0.49 | 0.50 | 0.52 | 0.56 | 0.58 |
NDVI 11-12 | 0.51 | 0.34 | 0.40 | 0.50 | 0.47 | 0.42 | 0.28 | 0.24 | 0.44 | 0.37 | 0.46 | 0.39 | 0.48 | 0.53 | 0.41 | 0.50 |
NDVI 11-20 | 0.50 | 0.45 | 0.28 | 0.43 | 0.42 | 0.34 | 0.35 | 0.41 | 0.45 | 0.46 | 0.52 | 0.53 | 0.48 | 0.35 | 0.40 | 0.35 |
NDVI 11-27 | 0.36 | 0.42 | 0.25 | 0.45 | 0.44 | 0.50 | 0.36 | 0.47 | 0.29 | 0.32 | 0.49 | 0.50 | 0.43 | 0.40 | 0.18 | 0.14 |
NDVI 03-09 | 0.18 | 0.17 | 0.29 | 0.33 | 0.33 | 0.43 | 0.40 | 0.18 | 0.25 | 0.28 | 0.39 | 0.49 | 0.37 | 0.40 | 0.33 | 0.50 |
NDVI 03-17 | 0.31 | 0.15 | 0.31 | 0.33 | 0.08 | 0.44 | 0.42 | 0.39 | 0.31 | 0.19 | 0.42 | 0.51 | 0.29 | 0.39 | 0.43 | 0.40 |
NDVI 03-25 | 0.21 | 0.35 | 0.33 | 0.35 | 0.05 | 0.51 | 0.41 | 0.41 | 0.42 | 0.33 | 0.46 | 0.50 | 0.41 | 0.39 | 0.44 | 0.51 |
NDVI 04-02 | 0.43 | 0.41 | 0.35 | 0.33 | 0.04 | 0.52 | 0.29 | 0.40 | 0.48 | 0.39 | 0.49 | 0.50 | 0.46 | 0.32 | 0.43 | 0.49 |
NDVI 04-10 | 0.48 | 0.45 | 0.38 | 0.40 | 0.17 | 0.51 | 0.47 | 0.40 | 0.55 | 0.41 | 0.54 | 0.52 | 0.44 | 0.45 | 0.49 | 0.57 |
NDVI 04-18 | 0.55 | 0.52 | 0.47 | 0.42 | 0.41 | 0.60 | 0.50 | 0.54 | 0.43 | 0.55 | 0.54 | 0.54 | 0.50 | 0.41 | 0.60 | 0.45 |
NDVI 04-26 | 0.58 | 0.52 | 0.56 | 0.52 | 0.47 | 0.63 | 0.57 | 0.53 | 0.44 | 0.60 | 0.58 | 0.55 | 0.55 | 0.51 | 0.63 | 0.64 |
NDVI 05-04 | 0.61 | 0.47 | 0.61 | 0.57 | 0.62 | 0.64 | 0.62 | 0.61 | 0.54 | 0.65 | 0.60 | 0.52 | 0.50 | 0.59 | 0.64 | 0.65 |
NDVI 05-12 | 0.65 | 0.49 | 0.63 | 0.63 | 0.67 | 0.57 | 0.65 | 0.64 | 0.65 | 0.68 | 0.54 | 0.63 | 0.62 | 0.63 | 0.64 | 0.67 |
NDVI 05-20 | 0.67 | 0.60 | 0.70 | 0.71 | 0.69 | 0.73 | 0.66 | 0.69 | 0.67 | 0.72 | 0.67 | 0.67 | 0.60 | 0.65 | 0.66 | 0.67 |
NDVI 05-28 | 0.73 | 0.68 | 0.73 | 0.70 | 0.63 | 0.71 | 0.68 | 0.70 | 0.71 | 0.71 | 0.74 | 0.66 | 0.62 | 0.63 | 0.69 | 0.69 |
Province | Lower Silesian | Kuyavian–Pomeranian | Lublin | Lubusz | Łódź | Lesser Poland | Masovian | Opole | Subcarpathian | Podlaskie | Pomeranian | Silesian | Holy Cross | Warmian–Masurian | Greater Poland | West Pomeranian |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CWB_1 | −27.8 | −63.6 | −51.3 | −57.9 | −56.4 | 9.6 | −51.0 | −36.4 | −28.5 | −41.3 | −31.7 | −10.2 | −34.6 | −41.4 | −68.8 | −43.3 |
CWB_2 | −67.6 | −98.3 | −71.4 | −92.6 | −82.3 | −2.2 | −77.7 | −5–8.1 | −31.8 | −78.5 | −94.1 | −32.2 | −56.2 | −86.3 | −97.1 | −91.2 |
Basic cereals | 46.6 | 42.6 | 40.2 | 38.2 | 34.3 | 37.2 | 31.1 | 54.7 | 35.0 | 31.1 | 42.9 | 38.7 | 32.3 | 41.9 | 41.3 | 44.2 |
Wheat | 50.4 | 48.5 | 46.8 | 44.1 | 40.8 | 40.3 | 37.5 | 60.4 | 38.3 | 35.6 | 53.4 | 45.1 | 35.4 | 47.8 | 48.6 | 50.5 |
Rye | 34.7 | 31.2 | 28.9 | 31.0 | 27.4 | 29.9 | 25.8 | 39.8 | 27.7 | 26.4 | 31.2 | 29.0 | 25.2 | 32.9 | 31.7 | 37.7 |
Triticale | 41.6 | 42.4 | 35.9 | 40.0 | 37.5 | 32.9 | 33.0 | 46.9 | 32.1 | 33.7 | 37.2 | 36.5 | 31.7 | 40.6 | 43.7 | 42.8 |
Barley | 43.1 | 37.8 | 37.3 | 36.4 | 33.4 | 36.5 | 31.8 | 49.0 | 33.9 | 32.0 | 36.5 | 36.6 | 31.8 | 35.9 | 40.8 | 41.9 |
Rapeseed | 28.8 | 29.4 | 28.3 | 27.9 | 27.5 | 30.1 | 27.9 | 32.1 | 27.1 | 30.1 | 30.4 | 28.9 | 26.0 | 27.8 | 29.8 | 28.9 |
NDVI 10-19 | 0.49 | 0.45 | 0.47 | 0.51 | 0.47 | 0.55 | 0.48 | 0.49 | 0.53 | 0.49 | 0.52 | 0.50 | 0.51 | 0.54 | 0.45 | 0.52 |
NDVI 10-27 | 0.48 | 0.50 | 0.45 | 0.53 | 0.50 | 0.51 | 0.49 | 0.46 | 0.48 | 0.46 | 0.52 | 0.48 | 0.48 | 0.52 | 0.50 | 0.53 |
NDVI 11-04 | 0.47 | 0.44 | 0.47 | 0.49 | 0.50 | 0.51 | 0.48 | 0.50 | 0.50 | 0.42 | 0.45 | 0.50 | 0.47 | 0.46 | 0.47 | 0.46 |
NDVI 11-12 | 0.49 | 0.35 | 0.39 | 0.46 | 0.43 | 0.46 | 0.36 | 0.50 | 0.46 | 0.32 | 0.38 | 0.47 | 0.41 | 0.39 | 0.44 | 0.44 |
NDVI 11-20 | 0.43 | 0.41 | 0.38 | 0.43 | 0.46 | 0.46 | 0.42 | 0.45 | 0.46 | 0.31 | 0.41 | 0.43 | 0.43 | 0.39 | 0.44 | 0.42 |
NDVI 11-27 | 0.42 | 0.37 | 0.39 | 0.47 | 0.38 | 0.36 | 0.39 | 0.40 | 0.38 | 0.30 | 0.32 | 0.35 | 0.39 | 0.27 | 0.41 | 0.38 |
NDVI 03-09 | 0.36 | 0.33 | 0.30 | 0.40 | 0.35 | 0.29 | 0.34 | 0.37 | 0.30 | 0.26 | 0.33 | 0.33 | 0.32 | 0.29 | 0.37 | 0.37 |
NDVI 03-17 | 0.35 | 0.33 | 0.29 | 0.39 | 0.33 | 0.31 | 0.33 | 0.38 | 0.31 | 0.32 | 0.34 | 0.34 | 0.32 | 0.33 | 0.35 | 0.37 |
NDVI 03-25 | 0.40 | 0.36 | 0.35 | 0.42 | 0.38 | 0.36 | 0.38 | 0.43 | 0.37 | 0.36 | 0.38 | 0.37 | 0.36 | 0.37 | 0.39 | 0.39 |
NDVI 04-02 | 0.43 | 0.37 | 0.36 | 0.45 | 0.39 | 0.36 | 0.38 | 0.45 | 0.37 | 0.37 | 0.41 | 0.38 | 0.37 | 0.38 | 0.42 | 0.43 |
NDVI 04-10 | 0.50 | 0.43 | 0.42 | 0.52 | 0.44 | 0.44 | 0.43 | 0.50 | 0.46 | 0.41 | 0.45 | 0.44 | 0.44 | 0.43 | 0.46 | 0.48 |
NDVI 04-18 | 0.55 | 0.48 | 0.47 | 0.57 | 0.49 | 0.47 | 0.50 | 0.55 | 0.48 | 0.48 | 0.49 | 0.48 | 0.47 | 0.50 | 0.52 | 0.53 |
NDVI 04-26 | 0.60 | 0.53 | 0.52 | 0.60 | 0.54 | 0.56 | 0.54 | 0.61 | 0.57 | 0.52 | 0.54 | 0.54 | 0.53 | 0.55 | 0.56 | 0.58 |
NDVI 05-04 | 0.60 | 0.56 | 0.58 | 0.60 | 0.59 | 0.59 | 0.59 | 0.61 | 0.60 | 0.57 | 0.58 | 0.58 | 0.58 | 0.61 | 0.58 | 0.60 |
NDVI 05-12 | 0.63 | 0.57 | 0.63 | 0.62 | 0.61 | 0.66 | 0.61 | 0.65 | 0.66 | 0.62 | 0.62 | 0.64 | 0.63 | 0.62 | 0.60 | 0.62 |
NDVI 05-20 | 0.67 | 0.63 | 0.67 | 0.66 | 0.67 | 0.71 | 0.67 | 0.68 | 0.70 | 0.67 | 0.66 | 0.69 | 0.69 | 0.70 | 0.64 | 0.67 |
NDVI 05-28 | 0.69 | 0.64 | 0.69 | 0.69 | 0.68 | 0.70 | 0.68 | 0.70 | 0.71 | 0.68 | 0.70 | 0.69 | 0.70 | 0.71 | 0.66 | 0.71 |
Crop Yield | Basic Cereals | Wheat | Rye | Triticale | Barley | Rapeseed |
---|---|---|---|---|---|---|
CWB_1 | −0.044 | −0.026 | −0.116 | −0.035 | −0.076 | 0.030 |
CWB_2 | 0.064 | 0.101 | 0.041 | 0.025 | 0.091 | −0.027 |
NDVI 10-19 | 0.055 | 0.050 | 0.089 | 0.098 | 0.042 | 0.238 |
NDVI 10-27 | 0.294 | 0.273 | 0.299 | 0.278 | 0.270 | 0.291 |
NDVI 11-04 | 0.213 | 0.186 | 0.242 | 0.219 | 0.175 | 0.092 |
NDVI 11-12 | 0.197 | 0.172 | 0.216 | 0.261 | 0.237 | 0.233 |
NDVI 11-20 | −0.062 | −0.072 | −0.006 | −0.020 | −0.068 | 0.000 |
NDVI 11-27 | −0.060 | −0.068 | −0.051 | −0.068 | −0.072 | −0.039 |
NDVI 03-09 | 0.491 * | 0.466 * | 0.503 * | 0.489 * | 0.458 * | 0.454 * |
NDVI 03-17 | 0.399 | 0.355 | 0.397 | 0.385 | 0.340 | 0.370 |
NDVI 03-25 | 0.481 * | 0.443 * | 0.480 * | 0.434 * | 0.452 * | 0.324 |
NDVI 04-02 | 0.275 | 0.258 | 0.279 | 0.281 | 0.278 | 0.247 |
NDVI 04-10 | 0.374 | 0.368 | 0.356 | 0.361 | 0.347 | 0.324 |
NDVI 04-18 | 0.112 | 0.129 | 0.087 | 0.111 | 0.060 | 0.198 |
NDVI 04-26 | 0.166 | 0.166 | 0.159 | 0.175 | 0.127 | 0.277 |
NDVI 05-04 | 0.022 | 0.032 | −0.007 | 0.023 | −0.035 | 0.213 |
NDVI 05-12 | 0.084 | 0.052 | 0.103 | 0.120 | 0.071 | 0.109 |
NDVI 05-20 | −0.241 | −0.245 | −0.248 | −0.238 | −0.189 | −0.104 |
NDVI 05-28 | −0.265 | −0.253 | −0.278 | −0.242 | −0.243 | −0.215 |
Linear Regression (80% Training Set, 20% Test Set) | Linear Regression (All Datasets) | Random Forest | Neural Networks | |
---|---|---|---|---|
Basic cereals | ||||
R2 | 0.712 | 0.777 | 0.570 | 0.711 |
MAE | 3.328 | 2.942 | 4.640 | 3.424 |
RMSE | 4.165 | 3.688 | 5.424 | 4.442 |
Wheat | ||||
R2 | 0.658 | 0.754 | 0.544 | 0.723 |
MAE | 3.994 | 3.449 | 5.208 | 4.049 |
RMSE | 5.032 | 4.318 | 6.021 | 4.871 |
Rye | ||||
R2 | 0.622 | 0.732 | 0.561 | 0.777 |
MAE | 2.667 | 2.273 | 3.279 | 2.070 |
RMSE | 3.336 | 2.854 | 4.006 | 2.731 |
Triticale | ||||
R2 | 0.584 | 0.692 | 0.524 | 0.533 |
MAE | 3.397 | 2.952 | 4.158 | 3.449 |
RMSE | 4.226 | 3.699 | 5.078 | 4.430 |
Barley | ||||
R2 | 0.551 | 0.664 | 0.554 | 0.617 |
MAE | 3.385 | 2.930 | 3.658 | 3.654 |
RMSE | 4.262 | 3.761 | 4.574 | 4.487 |
Rapeseed | ||||
R2 | 0.214 | 0.421 | 0.654 | 0.450 |
MAE | 3.234 | 2.804 | 2.287 | 2.891 |
RMSE | 4.009 | 3.496 | 2.696 | 3.677 |
Crop Yield (dt) of | Basic Cereals | Wheat | Rye | Triticale | Barley | Rapeseed |
---|---|---|---|---|---|---|
Intercept | 44.74 | 49.60 | 29.97 | 35.97 | 37.04 | 28.35 |
CWB_1 | −0.01 | |||||
CWB_2 | ||||||
NDVI 10-19 | −6.65 | −6.32 | −5.65 | −10.00 | ||
NDVI 10-27 | ||||||
NDVI 11-04 | −4.77 | |||||
NDVI 11-12 | 9.05 | 8.01 | 6.83 | 9.46 | 10.91 | 6.28 |
NDVI 11-20 | ||||||
NDVI 11-27 | ||||||
NDVI 03-09 | 12.37 | 14.03 | 8.31 | 13.31 | 12.64 | 9.38 |
NDVI 03-17 | 4.72 | |||||
NDVI 03-25 | 17.07 | 11.87 | 12.97 | 9.61 | 10.67 | |
NDVI 04-02 | −9.42 | |||||
NDVI 04-10 | 17.53 | 8.22 | 5.52 | 11.21 | ||
NDVI 04-18 | ||||||
NDVI 04-26 | ||||||
NDVI 05-04 | 11.48 | |||||
NDVI 05-12 | 14.55 | 12.84 | 15.91 | 7.72 | ||
NDVI 05-20 | −13.17 | −10.45 | −14.19 | |||
NDVI 05-28 | −17.71 | −21.14 | −14.91 | −16.99 | −19.89 | −24.66 |
Province (binomial dummy variable) | ||||||
Lower Silesian | ||||||
Kuyavian–Pomeranian | 5.13 | |||||
Lublin | −2.74 | −1.94 | ||||
Lubusz | −7.56 | −6.84 | −2.13 | −4.05 | −2.29 | |
Łódź | −10.15 | −8.36 | −4.53 | −5.78 | ||
Lesser Poland | −5.62 | −7.35 | −3.82 | 2.70 | ||
Masovian | −12.34 | −10.76 | −5.45 | −3.99 | −6.12 | |
Opole | 8.66 | 9.70 | 6.68 | 6.95 | 8.24 | 2.28 |
Subcarpathian | −8.03 | −9.74 | −3.29 | −4.88 | −3.99 | |
Podlaskie | −10.79 | −10.79 | −3.70 | −1.57 | −4.33 | 3.48 |
Pomeranian | 5.68 | 2.64 | ||||
Silesian | −5.53 | −3.67 | −2.66 | −2.36 | ||
Holy Cross | −10.71 | −12.65 | −5.64 | −5.05 | −6.05 | |
Warmian–Masurian | 2.79 | 5.35 | ||||
Greater Poland | −4.40 | 4.28 | ||||
West Pomeranian | 5.88 | 4.69 | 3.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okupska, E.; Gozdowski, D.; Pudełko, R.; Wójcik-Gront, E. Cereal and Rapeseed Yield Forecast in Poland at Regional Level Using Machine Learning and Classical Statistical Models. Agriculture 2025, 15, 984. https://doi.org/10.3390/agriculture15090984
Okupska E, Gozdowski D, Pudełko R, Wójcik-Gront E. Cereal and Rapeseed Yield Forecast in Poland at Regional Level Using Machine Learning and Classical Statistical Models. Agriculture. 2025; 15(9):984. https://doi.org/10.3390/agriculture15090984
Chicago/Turabian StyleOkupska, Edyta, Dariusz Gozdowski, Rafał Pudełko, and Elżbieta Wójcik-Gront. 2025. "Cereal and Rapeseed Yield Forecast in Poland at Regional Level Using Machine Learning and Classical Statistical Models" Agriculture 15, no. 9: 984. https://doi.org/10.3390/agriculture15090984
APA StyleOkupska, E., Gozdowski, D., Pudełko, R., & Wójcik-Gront, E. (2025). Cereal and Rapeseed Yield Forecast in Poland at Regional Level Using Machine Learning and Classical Statistical Models. Agriculture, 15(9), 984. https://doi.org/10.3390/agriculture15090984