Effects of Phosphorus Addition on Inorganic Phosphorus Fractions and Phosphorus Accumulation in Alfalfa in Alkaline Soils
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Sites
2.2. Experimental Design
2.3. Measurement Items and Methods
2.4. Statistical Analysis
2.4.1. Calculation Methods for Output Contribution Rate, Storage Contribution Rate and Soil Phosphorus Surplus/Deficit of Soil Inorganic Phosphorus Components
2.4.2. Statistical Models and Mean Tests
3. Results
3.1. Effect of Phosphorus Addition on the Content of Inorganic Phosphorus Fractions in Alkaline Soils
3.2. Magnitude of Output Contribution and Storage Contribution of Different Inorganic Phosphorus Fractions in Soil
3.3. Correlation Analysis Between Soil Inorganic Phosphorus Fractions and Phosphorus Uptake and Pasture Yield
3.4. Multiple Linear Regression Analysis of the Relationship Between Soil Inorganic Phosphorus Fractions and Phosphorus Uptake and Forage Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gilbert, N. Environment: The disappearing nutrient. Nature 2009, 461, 716–718. [Google Scholar] [CrossRef] [PubMed]
- He, H.F.; Wu, N.; Liu, J.L.; Xu, X. Effects of Phosphorus Application Levels on the Ecological Stoichiometric Characteristics of Carbon, Nitrogen and Phosphorus of Switchgrass (Panicum virgatum) in alkaline-Alkali Land. Acta Agrestia Sin. 2024, 32, 148–157. [Google Scholar]
- Ye, G.K.; Sheng, E.; Chen, Z.Y.; Yuan, J.H.; Lu, G.B.; Zhang, P.; Liu, Y.N.; Zhao, T.X.; Wang, Y.X. The Forms and Classification Methods of Phosphorus in Soil: Research Progress. Chin. Agric. Sci. Bull. 2023, 39, 96–102. [Google Scholar]
- Tang, J.Y. Effect of Biochar on Iron Reduction Process in Flooded Soil and Its Contribution to Attenuate Soil Salinization. Master’s Thesis, Northwest A&F University, Xianyang, China, 2017. [Google Scholar]
- Sabine, A.R.; Olivier, H.E.; Michael, A.K.; Emmanuel, F.; Else, K.B. Total and active microbial communities and phoD as affected by phosphate depletion and pH in soil. Plant Soil 2016, 408, 15–30. [Google Scholar]
- Kishor, B.; Shanmugam, R.; Richard, A.D.; Maria, J.M. Agronomic Performance and Lignin Content of HCT Down-Regulated Alfalfa (Medicago sativa L.). BioEnergy Res. 2018, 11, 505–515. [Google Scholar]
- Tu, X.B.; Zhao, H.L.; Zhang, Z.H. Transcriptome approach to understand the potential mechanisms of resistant and susceptible alfalfa (Medicago sativa L.) cultivars in response to aphid feeding. J. Integr. Agric. 2018, 17, 2518–2527. [Google Scholar] [CrossRef]
- Cao, N.; Zhi, M.L.; Zhao, W.Q.; Pang, J.Y.; Hu, W.; Zhou, Z.G.; Meng, Y.L. Straw retention combined with phosphorus fertilizer promotes soil phosphorus availability by enhancing soil P-related enzymes and the abundance of phoC and phoD genes. Soil Tillage Res. 2022, 220, 105390. [Google Scholar] [CrossRef]
- Achat, D.L.; Bakker, M.R.; Augusto, L.; Saur, E.; Dousseron, L.; Morel, C. Evaluation of the phosphorus status of P-deficient podzols in temperate pine stands: Combining isotopic dilution and extraction methods. Biogeochemistry 2009, 92, 183–200. [Google Scholar] [CrossRef]
- Wang, J.; Liu, W.Z.; Mu, H.F.; Dang, T.H. Inorganic Phosphorus Fractions and Phosphorus Availability in a Calcareous Soil Receiving 21-Year Superphosphate Application. Pedosphere 2010, 20, 304–310. [Google Scholar] [CrossRef]
- Graf, D.L. Chemical Equilibria in Soil. Clays Clay Miner. 1979, 28, 319. [Google Scholar] [CrossRef]
- Nicolas, D.; Edith, L.C.; Philippe, H.; Benoît, J.; Frédéric, G. Soil pH controls the environmental availability of phosphorus: Experimental and mechanistic modelling approaches. Appl. Geochem. 2009, 24, 2163–2174. [Google Scholar]
- Alan, E.R.; Peter, J.H.; Richard, J.S.; Timothy, S.G. Plant mechanisms to optimise access to soil phosphorus. Crop Pasture Sci. 2009, 60, 124–143. [Google Scholar]
- Shen, J.B.; Yuan, L.X.; Zhang, J.L.; Li, H.G.; Bai, Z.H.; Chen, X.P.; Zhang, W.F.; Zhang, F.S. Phosphorus Dynamics: From Soil to Plant. Plant Physiol. 2011, 156, 997–1005. [Google Scholar] [CrossRef]
- Jia, X.Y.; Wang, P.J.; Tian, Z.J.; Tian, Z.J.; Yin, H.X.; Jia, W.R. Inorganic phosphorus fractions and the influencing factors in alkaline-alkali soils under different land use types. Chin. J. Ecol. 2023, 42, 2972–2978. [Google Scholar]
- Feng, G.; Yang, M.Q.; Bai, D.S.; Huang, Q.S. Study on changes in fractions and availability of phosphorus in calcareous soil by 32P tracer method. Acta Pedol. Sin. 1996, 3, 301–307. [Google Scholar]
- Liu, W.G.; Li, Z.Y. Phosphorus Transformation and Fertilizer Efficiency in Calcareous Soils as Influenced by Application Timing. Chin. J. Soil Sci. 1993, 4, 154–157. [Google Scholar]
- Liu, S.L.; Jie, X.L.; Zhai, D.M.; Li, Y.T.; Ding, K.Q. Study on transformation and availability of different P in rhizosphere of maize. J. Yangzhou Univ. (Agric. Life Sci. Ed.) 2003, 24, 54–58. [Google Scholar]
- Jiang, B.F.; Gu, Y.C. A Suggested Fractionation Scheme of Inorganic Phosphorus in Calcareous Soils. Sci. Agric. Sin. 1989, 3, 58–66. [Google Scholar] [CrossRef]
- Gu, Y.C.; Jiang, B.F. Methods for Determining Inorganic Phosphorus Fractionation in Calcareous Soils. Soils 1990, 2, 101–102+110. [Google Scholar]
- Bao, S.D. Agrochemical Soil Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000; pp. 93–96. [Google Scholar]
- Xu, X.F.; Mi, Q.; Liu, D.; Fu, S.L.; Wang, X.G.; Guo, D.Y.; Zhou, W.L. Effect of phosphorus fertilizer rate on phosphorus fractions contents in calcareous soil and phosphorus accumulation amount in crop. Chin. J. Eco-Agric. 2021, 29, 1857–1866. [Google Scholar]
- Wang, H.L.; Zhang, M.; Liu, Z.G.; Yu, X.J.; Zhao, H.M.; Chen, H.N. Effects of different phosphorus application levels on the inorganic phosphorus fraction under multi-year location experiment. J. Soil Water Conserv. 2018, 32, 318–324. [Google Scholar]
- Liu, J.L.; Zhang, F.S. Dynamics of soil P pool in a long-term fertilizing experiment of wheat-maize rotation II. Dynamics of soil Olsen-P and inorganic P. Chin. J. Appl. Ecol. 2000, 11, 360–364. [Google Scholar]
- Cai, Q.Y.; Zhang, X.Z.; Li, T.X.; Chen, G.D. Effects of phosphorus sources on phosphorus fractions in rhizosphere soil of wild barley genotype with high phosphorus utilization efficiency. Chin. J. Appl. Ecol. 2014, 25, 3207–3214. [Google Scholar]
- Li, Z.Y.; Li, J.M.; Xu, M.G.; Lv, J.L.; Sun, N. Change and availability of soil inorganic phosphorus components influenced by phosphorus fertilizer application. Soil Fertil. Sci. China 2007, 3, 32–35+62. [Google Scholar]
- Shao, L.Y.; Peng, Y.; Liu, H.Y.; Zhao, R.N.; Jiang, L.C.; Li, Y.; Han, P.; Jiang, Y.; Wei, C.Z.; Han, X.G.; et al. Applied phosphorus is maintained in labile and moderately occluded fractions in a typical meadow steppe with the addition of multiple nutrients. J. Environ. Manag. 2023, 345, 118807. [Google Scholar] [CrossRef]
- Liu, H.Y.; Li, C.B.; Zhang, J.Y.; Ji, H.; Liao, Y.H.; Ma, X.M.; Li, Q.H.; Zhang, Y.X.; Jiang, L.C.; Wang, R.Z.; et al. Differential responses of soil phosphorus fractions to varied nitrogen compound additions in a meadow steppe. J. Environ. Manag. 2024, 369, 122337. [Google Scholar] [CrossRef]
- Ke, W.C.; Ding, W.R.; Xu, D.M.; Ding, L.M.; Zhang, P.; Li, F.D.; Guo, X.S. Effects of addition of malic or citric acids on fermentation quality and chemical characteristics of alfalfa silage. J. Dairy Sci. 2017, 100, 8958–8966. [Google Scholar] [CrossRef] [PubMed]
- Santoyo, G.; Orozco-Mosqueda, M.C.; Govindappa, M. Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: A review. Biocontrol Sci. Technol. 2012, 22, 855–872. [Google Scholar] [CrossRef]
- Ding, X.Q. Effects of Root System Architecture on Nitrogen and Phosphorus Absorption Utilization Efficiency in Alfalfa. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2017. [Google Scholar]
- Wang, X.; Wang, H.F.; Chen, Y.; Sun, M.M.; Wang, Y.; Chen, Y.F. The Transcription Factor NIGT1.2 Modulates Both Phosphate Uptake and Nitrate Influx during Phosphate Starvation in Arabidopsis and Maize. Plant Cell 2020, 32, 3519–3534. [Google Scholar] [CrossRef]
- Liu, C.L.; Wang, R.; Li, Y.; Wang, L.M.; He, C.M. Changes in soil phosphorus contents induced by milk vetch green manure. Soil Fertil. Sci. China 2019, 6, 44–48+70. [Google Scholar]
- Guo, D.Y.; Yuan, Y.Y.; Zeng, X.; Chen, B.; Wei, W.J.; Cui, Y.; Yuan, M.; Sun, L.R. Effect of Phosphorus Fertilizer on Maize Growth and Inorganic Phosphorus Fractions in a Calcareous Soil. J. Soil Water Conserv. 2021, 35, 243–249. [Google Scholar]
- Qi, R.S.; Dang, T.H.; Yang, S.Q.; Ma, R.P.; Zhou, L.P. Forms of Soil Phosphorus and P Adsorption in Soils under Long-term Crop Rotation and Fertilization Systems. Acta Pedol. Sin. 2012, 49, 1137–1146. [Google Scholar]
- Yang, K.X.; Zhao, J.T.; Wang, X.Z.; Ma, C.H.; Zhang, Q.B. Effects of different irrigation methods and phosphorus application on alfalfa yield, quality and water and phosphorus use efficiency. Trans. Chin. Soc. Agric. Eng. 2023, 39, 130–138. [Google Scholar]
- Han, X.R.; Ma, L.L.; Wang, Y.Q.; Wang, Y.; Zhan, X.M. Effects of Long-term Fertilization on Inorganic Phosphorus Forms and Profile Distribution in Brown soil. J. Soil Water Conserv. 2007, 21, 51–55. [Google Scholar]
- Xiao, H.; Liu, Y.L.; Liu, Z.K.; Li, P.Z.; Rong, Y.P. Responses of soil nitrogen and phosphorus transformation functional genes abundances to nitrogen and/or phosphorus additions in a meadow steppe. Acta Ecol. Sin. 2023, 43, 313–326. [Google Scholar]
pH | Total Salt (g/kg) | Organic Matter (g/kg) | Available Phosphorus (mg/kg) | Total Phosphorus (mg/kg) | Available Potassium (mg/kg) | Total Nitrogen (g/kg) |
---|---|---|---|---|---|---|
9.12 | 2.82 | 8.14 | 15.76 | 0.37 | 120.77 | 0.49 |
Phosphorus Rate (kg/hm2) | NH4H2PO4 (kg/hm2) | NH4H2PO4 (kg/hm2) | CH4N2O (kg/hm2) |
---|---|---|---|
0 (P0) | 0 | 0 | 0 |
50 (P50) | 81.96 | 9.84 | 42.78 |
100 (P100) | 163.93 | 19.68 | 21.39 |
150 (P150) | 245.88 | 29.52 | 0 |
Soil | pH 7.5, 0.25 mol/L NaHCO3 | |||||
S1 | ppt1 | pH 4.2, 0.5 mol/L NH4Ac | ||||
S2 | ppt2 | pH 8.2, 0.5 mol/L NH4F | ||||
S3 | ppt3 | 0.1 mol/L NaOH-0.1 mol/L Na2CO3 | ||||
S4 | ppt4 | 0.3 mol/L Na3C6H5O7-Na2S2O4 | ||||
S5 | ppt5 | 0.5 mol/L H2SO4 | ||||
S6 | ppt6 | |||||
Ca2-Pi | Ca8-Pi | Al-Pi | Fe-Pi | O-Pi | Ca10-Pi |
Phosphorus Rate (kg/hm2) | Ca2-Pi (mg/kg) | Ca8-Pi (mg/kg) | Al-Pi (mg/kg) | Fe-Pi (mg/kg) | O-Pi (mg/kg) | Ca10-Pi (mg/kg) |
---|---|---|---|---|---|---|
0 (P0) | 11.14 ± 0.11 b | 61.10 ± 1.57 b | 26.75 ± 1.29 b | 30.23 ± 1.28 b | 16.67 ± 1.75 a | 71.19 ± 5.40 b |
50 (P50) | 11.31 ± 0.27 b | 63.53 ± 3.10 b | 29.12 ± 1.45 ab | 37.52 ± 1.10 a | 17.62 ± 1.17 a | 81.11 ± 1.45 ab |
100 (P100) | 11.47 ± 0.13 b | 72.18 ± 2.71 ab | 29.39 ± 1.16 ab | 43.53 ± 1.15 a | 18.09 ± 1.49 a | 102.86 ± 3.58 ab |
150 (P150) | 12.63 ± 0.08 a | 77.56 ± 4.17 a | 44.40 ± 0.87 a | 43.69 ± 1.13 a | 19.41 ± 1.18 a | 112.46 ± 5.39 a |
F | 4.558 | 4.294 | 3.194 | 2.510 | 1.006 | 3.335 |
P | 0.038 | 0.044 | 0.084 | 0.133 | 0.439 | 0.077 |
Phosphorus Rate (kg/hm2) | Item | Ca2-Pi | Ca8-Pi | Al-Pi | Fe-Pi | O-Pi | Ca10-Pi |
---|---|---|---|---|---|---|---|
50 (P50) | Output contribution rate | 0.74 | 10.51 | 10.25 | 31.53 | 4.11 | 42.91 |
Storage contribution rate | 1.89 | 20.05 | 21.84 | 8.82 | 2.56 | 44.80 | |
100 (P100) | Output contribution rate | 0.55 | 18.33 | 4.37 | 22.00 | 2.35 | 52.39 |
Storage contribution rate | 3.55 | 16.48 | 45.99 | 0.49 | 4.04 | 29.41 |
Model | Non-Standardized Coefficient | Standardized Coefficient | t | p | Covariance Diagnostics | ||
---|---|---|---|---|---|---|---|
B | Standard Deviation | Beta | Allowances | VIF | |||
Constant | 2382.51 | 5.11 | / | −0.62 | 0.567 | / | / |
Ca2-Pi | 44.01 | 1.41 | 0.07 | 0.72 | 0.510 | 0.22 | 4.56 |
Ca8-Pi | 37.89 | 7.70 | 0.07 | 0.48 | 0.036 * | 0.10 | 9.92 |
Al-Pi | 7.39 | 4.55 | 0.02 | 0.15 | 0.886 | 0.21 | 4.78 |
Fe-Pi | 66.01 | 4.15 | 0.12 | 1.57 | 0.192 | 0.40 | 2.51 |
O-Pi | −20.08 | 1.24 | −0.09 | −1.08 | 0.342 | 0.33 | 2.99 |
Ca10-Pi | −9.75 | 2.57 | −0.05 | −0.38 | 0.722 | 0.14 | 7.22 |
Pi-Uptake | 47.92 | 2.67 | 0.93 | 11.99 | 0.000 ** | 0.38 | 2.65 |
R2 | 0.991 | ||||||
Adjustments R2 | 0.975 | ||||||
F | F = 63.095, p = 0.001 ** | ||||||
D-W | 1.889 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, H.; Xu, X. Effects of Phosphorus Addition on Inorganic Phosphorus Fractions and Phosphorus Accumulation in Alfalfa in Alkaline Soils. Agriculture 2025, 15, 973. https://doi.org/10.3390/agriculture15090973
He H, Xu X. Effects of Phosphorus Addition on Inorganic Phosphorus Fractions and Phosphorus Accumulation in Alfalfa in Alkaline Soils. Agriculture. 2025; 15(9):973. https://doi.org/10.3390/agriculture15090973
Chicago/Turabian StyleHe, Haifeng, and Xing Xu. 2025. "Effects of Phosphorus Addition on Inorganic Phosphorus Fractions and Phosphorus Accumulation in Alfalfa in Alkaline Soils" Agriculture 15, no. 9: 973. https://doi.org/10.3390/agriculture15090973
APA StyleHe, H., & Xu, X. (2025). Effects of Phosphorus Addition on Inorganic Phosphorus Fractions and Phosphorus Accumulation in Alfalfa in Alkaline Soils. Agriculture, 15(9), 973. https://doi.org/10.3390/agriculture15090973