Analysis of the Relationship Between Assimilate Production and Allocation and the Formation of Rice Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Experimental Design
2.2. Net Photosynthetic Rate
2.3. Dry Matter Weight
2.4. Non-Structural Carbohydrate Content
2.5. Determination of Yield and Quality
2.6. Data Analysis
3. Results
3.1. Yield and Yield Components
3.2. Rice Quality
3.3. Dry Matter Accumulation and Distribution
3.3.1. Dry Matter Accumulation at Flowering Stage
3.3.2. Dry Matter Accumulation at Maturity Stage
3.4. Carbohydrates
3.4.1. Soluble Sugar
3.4.2. Starch
3.4.3. Non-Structural Carbohydrates
3.5. Net Photosynthetic Rate
3.6. Correlation Analysis Between Net Photosynthetic Rate and Rice Yield Quality
3.7. Correlation Analysis Between Dry Matter Content, Carbohydrates, Yield, and Rice Quality
3.8. Membership Comprehensive Function
GY | HR | CD | EQ | Comprehensive Value | |
---|---|---|---|---|---|
ZZY 8 | 0.69 | 0.74 | 0.73 | 1.00 | 0.76 |
HZY 261 | 0.96 | 0.39 | 0.73 | 0.37 | 0.73 |
QYSM | 0.98 | 0.20 | 0.00 | 0.52 | 0.61 |
TYXZ | 1.00 | 0.00 | 0.62 | 0.00 | 0.60 |
YXY 2115 | 0.79 | 0.10 | 0.28 | 0.56 | 0.55 |
CLG | 0.43 | 0.65 | 1.00 | 0.26 | 0.53 |
MXZ 2 | 0.32 | 0.25 | 0.77 | 0.22 | 0.37 |
NG 46 | 0.21 | 0.49 | 0.57 | 0.48 | 0.36 |
SXG 1018 | 0.21 | 0.61 | 0.27 | 0.56 | 0.35 |
XS 134 | 0.00 | 1.00 | 0.70 | 0.15 | 0.31 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NSC | Non-structural carbohydrates |
BR | Brown Rice Ratio |
MR | Milled rice rate |
HR | Head rice rate |
CD | Chalkiness degree |
EQ | Eating quality |
DAF | Day After Flowering |
GY | Grain yield |
References
- Prasad, R.; Shivay, Y.S.; Kumar, D. Current status, challenges, and opportunities in rice production. In Rice Production Worldwide; Springer: Cham, Switzerland, 2017; Chapter 1; pp. 1–32. [Google Scholar]
- Liu, X.; Liu, C.Q.; Wang, Y.X.; Ning, M.Y.; Jing, Q.; Zhang, C.Y. Current status and suggestions for the brand development of high-quality rice in china. China Rice 2022, 28, 12–15. [Google Scholar]
- Zeng, B.; Zhong, Y.H.; Guo, L.L.; Zhang, X.Q.; Zhang, Y. Current status and prospects of high-quality rice varieties development in china. Seed 2019, 38, 53–56. [Google Scholar]
- Wang, W.T.; Ma, J.Y.; Li, G.Y.; Fu, W.M.; Li, H.B.; Lin, J.; Chen, T.T.; Feng, B.H.; Tao, L.X.; Fu, G.F. Effects of different fertilization rates on rice yield and quality formation under high temperature and its relationship with energy metabolism. Chin. J. Rice Sci. 2023, 37, 253–264. [Google Scholar]
- Braun, D.M. Phloem loading and unloading of sucrose: What a long, strange trip from source to sink. Annu. Rev. Plant Biol. 2022, 73, 553–584. [Google Scholar] [CrossRef]
- Cao, P.P.; Yang, K.; Lv, C.H.; Huang, Y.; Yu, L.F.; Hu, Z.H.; Sun, W.J. Effects of different CO2 concentrations and nitrogen fertilizer levels on the content and accumulation of non-structural carbohydrates in the stems and sheaths of japonica rice. Chin. J. Ecol. 2020, 39, 1474–1483. [Google Scholar]
- Zhou, C.Y.; Li, G.H.; Xu, K.; Guo, B.W.; Dai, Q.G.; Huo, Z.Y.; Wei, H.Y.; Zhang, H.C. Research progress on the translocation mechanism and cultivation regulation of non-structural carbohydrates in rice stem sheaths. Chin. Bull. Life Sci. 2021, 33, 111–120. [Google Scholar]
- Zhou, X.; Cheng, H.; Ren, W.J.; Deng, F.; Li, B.; Zhu, X.Y.; Li, Q.P.; He, C.D.; Yuan, Y.J.; Huang, X.F. Effects of weak light stress after full heading on the accumulation and translocation of non-structural carbohydrates in internodes of hybrid indica rice. Chinese J. Eco-Agric. (Chin. Engl.) 2022, 30, 1610–1619. [Google Scholar]
- Li, Y.F.; Yin, M.Q.; Li, L.L.; Zheng, J.G.; Yuan, X.Y.; Wen, Y.Y. Optimized potassium application rate increases foxtail millet grain yield by improving photosynthetic carbohydrate metabolism. Front. Plant Sci. 2022, 13, 1044065. [Google Scholar] [CrossRef]
- Nakano, H.; Tanaka, R.; Hakata, M. Nonstructural carbohydrate content in the stubble per unit area regulates grain yield of the second crop in rice ratooning. Crop Sci. 2022, 62, 1603–1613. [Google Scholar] [CrossRef]
- Samonte, S.O.; Wilson, L.T.; McClung, A.M.; Tarpley, L. Seasonal dynamics of nonstructural carbohydrate partitioning in 15 diverse rice genotypes. Crop Sci. 2001, 41, 902–909. [Google Scholar] [CrossRef]
- Zakari, S.A.; Asad, M.A.U.; Han, Z.; Guan, X.Y.; Zaidi, S.H.R.; Gang, P.; Cheng, F.M. Senescence-related translocation of nonstructural carbohydrate in rice leaf sheaths under different nitrogen supply. Agron. J. 2020, 112, 1601–1616. [Google Scholar] [CrossRef]
- Jiang, Y.D.; Luo, J.T.; He, R.W.; Yang, Y.; He, X.C.; Fu, J.; Zhen, J.; Zeng, Z.M. Relationship between dry matter accumulation, translocation after full heading and yield and quality in hybrid rice varieties of the Deyou series. Bull. Agric. Sci. Technol. 2023, 11, 52–55. [Google Scholar]
- Wang, Y.H.; Chen, L.J.; Cui, L.L.; Dan, S.W.; Song, Y.; Chen, S.A.; Xie, Z.X.; Jiang, Z.W.; Wu, F.X.; Zhuo, C.Y. Effects of nitrogen application rate on photosynthetic characteristics, yield, and quality of high-quality rice ‘fuxiangzhan’. Chin. J. Rice Sci. 2023, 37, 89–101. [Google Scholar]
- Chen, T.T.; Ma, J.Y.; Xu, C.M.; Jiang, N.; Li, G.Y.; Fu, W.M.; Feng, B.H.; Wang, D.Y.; Wu, Z.H.; Tao, L.X.; et al. Increased ATPase activity promotes heat-resistance, high-yield, and high-quality traits in rice by improving energy status. Front. Plant Sci. 2022, 13, 1035027. [Google Scholar] [CrossRef]
- Yu, S.M.; Lo, S.F.; Ho, T.H.D. Source–sink communication: Regulated by hormone, nutrient, and stress cross-signaling. Trends Plant Sci. 2015, 20, 844–857. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Zhang, Y.J. Determination of glucose, fructose, sucrose and starch in fruit and vegetable with anthrone colorimetric method. Chinal J. Anal. Chem. 1977, 5, 167–171. [Google Scholar]
- GB/T 15682-2008; Inspection of grain and oils—Method for sensory evaluation of paddy or rice cooking and eating quality. Standard Press of China: Beijing, China, 2008.
- Guo, C.C.; Wuza, R.Q.; Tao, Z.L.; Yuan, X.J.; Luo, Y.H.; Li, F.J.; Yang, G.T.; Chen, Z.K.; Yang, Z.Y.; Sun, Y.J.; et al. Effects of elevated nitrogen fertilizer on the multi-level structure and thermal properties of rice starch granules and their relationship with chalkiness traits. J. Sci. Food Agric. 2023, 103, 7302–7313. [Google Scholar] [CrossRef]
- Ma, J.Y. Crop Cultivation and Farming Systems. Energy Metabolism Analysis of Rice Yield, Quality and Heat Tolerance Formation. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2022. [Google Scholar]
- Li, G.Y.; Chen, T.T.; Feng, B.H.; Peng, S.B.; Tao, L.X.; Fu, G.F. Respiration, rather than photosynthesis, determines rice yield loss under moderate high-temperature conditions. Front. Plant Sci. 2021, 12, 678653. [Google Scholar] [CrossRef]
- Wen, F.T.; Gao, Y.; Zeng, Y.X.; Li, G.Y.; Feng, B.H.; Li, H.B.; Chen, T.T.; Wang, D.Y.; Tao, L.X.; Xiong, J.; et al. Mir408 balances plant growth and heat response in rice. Environ. Exp. Bot. 2024, 221, 105717. [Google Scholar] [CrossRef]
- Long, S.P.; Zhu, X.G.; Naidu, S.L.; Ort, D.R. Can improvement in photosynthesis increase crop yields? Plant Cell Environ. 2006, 29, 315–330. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; Hammer, G.L.; Doherty, A.; von Caemmerer, S.; Farquhar, G.D. Quantifying impacts of enhancing photosynthesis on crop yield. Nat. Plants 2019, 5, 380–388. [Google Scholar] [CrossRef]
- Wei, S.B.; Li, X.; Lu, Z.F.; Zhang, H.; Ye, X.Y.; Zhou, Y.J.; Li, J.; Yan, Y.Y.; Pei, H.C.; Duan, F.Y.; et al. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. Science 2022, 377, eabi8455. [Google Scholar] [CrossRef]
- Chen, J.X.; Zhang, B.J.; Zhang, Z.M.; Han, X.B.; Ma, J.J.; Wu, Z. Effects of different cultivation patterns on dry matter accumulation and grain filling characteristics of winter wheat. Acta Agric. Boreali-Occident. Sin. 2017, 26, 1776–1786. [Google Scholar]
- Yin, C.Y.; Wang, S.Y.; Liu, H.M.; Sun, J.Q.; Hu, X.M.; Wang, H.L.; Tian, F.H.; Ma, Z.Y.; Zhang, X.; Zhang, R.P. Correlation analysis of rice eating quality traits and their relationship with leaf photosynthesis. J. Agric. Sci. Technol. 2021, 23, 119–127. [Google Scholar]
- He, J.Q.; Yin, S.F.; Zhang, S.Q. Safe and high-yield seed production techniques for high-quality hybrid indica rice zhongzheyou 8. Hybrid Rice 2008, 4, 25–26. [Google Scholar]
- Min, J.; Zhu, Z.W.; Chen, N.; Xu, L.; Zhang, L.P. Study on the rice quality and high-quality compliance rate of conventional indica rice varieties in china. China Rice 2012, 18, 4–7. [Google Scholar]
- Jin, Z.X.; Yang, J.; Qian, C.R.; Liu, H.Y.; Jin, X.Y.; Qiu, T.Q. Effects of temperature during grain filling and ripening period on the activities of key enzymes involved in starch synthesis and grain quality in rice. Chin. J. Rice Sci. 2005, 4, 377–380. [Google Scholar]
- Yan, H.; Yi, C.H.; Yang, T.; Tan, J.G.; Zhang, K.Q. Adaptability analysis of different japonica rice varieties under high temperature and drought conditions. J. Anhui Agric. Sci. 2016, 44, 27–29+33. [Google Scholar]
Type | Cultivars | Effective Panicle Number (/m2) | Grains Per Panicle | Seed-Setting Rate (%) | Kernel Weight (g) | Theoretical Yield (t/ha) | Practical Yield (t/ha) |
---|---|---|---|---|---|---|---|
Indica | MXZ 2 | 358.3 ± 8.2 a | 190.6 ± 5.4 b | 69.8 ± 9.8 d | 17.1 ± 1.0 f | 8.1 ± 0.2 d | 6.6 ± 0.2 e |
TYXZ | 274.4 ± 13.6 b | 198.9 ± 13.6 b | 72.8 ± 8.5 d | 24.2 ± 2.1 c | 9.2 ± 0.3 c | 9.6 ± 0.3 a | |
QYSM | 256. ± 12.3 bc | 225.6 ± 9.5 a | 78.9 ± 9.1 bc | 24.3 ± 1.8 c | 10.4 ± 0.4 a | 9.5 ± 0.1 a | |
YXY 2115 | 257.9 ± 7.8 bc | 152.8 ± 7.9 c | 73.2 ± 4.0 d | 32.4 ± 1.9 a | 9.5 ± 0.2 c | 8.7 ± 0.1 b | |
ZZY 8 | 233.9 ± 18.3 d | 243.2 ± 10.9 a | 74.9 ± 5.3 cd | 24.9 ± 4.7 c | 9.8 ± 0.2 b | 8.2 ± 0.3 c | |
HZY 261 | 262.4 ± 10.5 bc | 232.6 ± 7.3 a | 82.9 ± 3.7 ab | 19.1 ± 0.2 e | 9.7 ± 0.3 bc | 9.4 ± 0.1 a | |
Average | 273.9 | 205.5 | 75.4 | 23.7 | 9.5 | 8.7 | |
Japonica | NG 46 | 268.4 ± 11.9 b | 117.1 ± 3.1 d | 80.7 ± 5.6 b | 26.8 ± 0.9 b | 6.8 ± 0.2 e | 6.1 ± 0.2 f |
SXG 1018 | 268.4 ± 9.3 b | 114.9 ± 3.3 d | 86.9 ± 4.0 a | 26.5 ± 0.6 b | 7.1 ± 0.1 e | 6.1 ± 0.1 f | |
XS 134 | 215.9 ± 10.5 d | 112.4 ± 4.0 d | 83.2 ± 3.9 ab | 24.5 ± 2.6 c | 4.9 ± 0.2 f | 5.1 ± 0.1 g | |
CLG | 361.3 ± 17.1 a | 154.7 ± 6.4 c | 74.5 ± 8.4 cd | 21.7 ± 2.3 d | 9.2 ± 0.4 c | 7.0 ± 0.2 d | |
Average | 278.5 | 124.8 | 81.3 | 24.9 | 7.0 | 6.1 |
Types | Cultivars | Brown Rice Ratio (%) BR | Milled Rice Rate (%) MR | Head Rice Rate (%) HR | Chalkiness Degree CD | Eating Quality EQ |
---|---|---|---|---|---|---|
Indica | MXZ 2 | 74.1 ± 0.6 e | 62.9 ± 3.0 c | 34.4 ± 3.2 e | 2.0 ± 0.3 bc | 73.4 ± 1.1 cd |
TYXZ | 77.6 ± 0.2 d | 66.1 ± 2.4 abc | 25.8 ± 3.7 f | 2.6 ± 1.1 b | 72.3 ± 0.8 d | |
QYSM | 78.6 ± 0.1 c | 66.3 ± 0.7 abc | 32.6 ± 1.7 e | 5.1 ± 0.4 a | 74.9 ± 0.8 c | |
YXY 2115 | 78.0 ± 0.5 cd | 65.1 ± 1.4 bc | 29.2 ± 1.4 ef | 4.0 ± 0.4 a | 75.1 ± 2.9 cd | |
ZZY 8 | 78.7 ± 0.3 c | 70.5 ± 4.8 ab | 51.6 ± 2.5 b | 2.2 ± 1.0 bc | 77.3 ± 1.0 b | |
HZY 261 | 78.7 ± 0.1 c | 70.5 ± 3.2 bc | 39.3 ± 2.0 d | 2.2 ± 0.6 c | 74.1 ± 0.8 cd | |
Average | 77.6 | 66.9 | 35.5 | 3.0 | 74.5 | |
Japonica | NG 46 | 82.0 ± 0.5 a | 71.9 ± 4.6 a | 42.9 ± 3.0 cd | 2.8 ± 0.6 b | 74.7 ± 1.2 cd |
SXG 1018 | 80.7 ± 0.2 b | 70.2 ± 5.1 ab | 47.1 ± 3.4 bc | 4.0 ± 0.3 a | 80.3 ± 1.8 a | |
XS 134 | 78.7 ± 0.5 c | 67.8 ± 0.7 abc | 60.5 ± 2.2 a | 2.3 ± 0.4 b | 78.4 ± 1.7 ab | |
CLG | 78.2 ± 0.5 cd | 68.2 ± 0.3 abc | 48.3 ± 1.3 b | 1.1 ± 0.3 c | 73.6 ± 2.4 cd | |
Average | 79.9 | 69.5 | 49.7 | 2.6 | 76.7 |
Types | Cultivars | Stem (g/hill) | Leaf (g/hill) | Panical (g/hill) | Sum (g/hill) | Stem Ratio (%) | Leaf Ratio (%) | Panical Ratio (%) |
---|---|---|---|---|---|---|---|---|
Indica | MXZ 2 | 45.1 ± 1.3 de | 18.7 ± 1.4 c | 11.2 ± 2.4 d | 75.0 ± 1.5 c | 60.1 | 24.9 | 14.9 |
TYXZ | 52.2 ± 5.0 c | 20.1 ± 4.3 b | 17.6 ± 1.2 a | 89.6 ± 4.0 b | 58.3 | 22.4 | 19.4 | |
QYSM | 43.8 ± 4.2 e | 16.5 ± 0.1 d | 11.2 ± 0.8 d | 71.5 ± 4.9 cd | 61.2 | 23.1 | 15.6 | |
YXY 2115 | 43.8 ± 5.7 e | 21.4 ± 7.7 ab | 13.4 ± 4.0 bc | 78.5 ± 6.7 c | 55.7 | 27.3 | 17.0 | |
ZZY 8 | 40.7 ± 8.1 ef | 18.7 ± 3.0 bc | 11.3 ± 0.4 d | 70.6 ± 9.7 cd | 57.7 | 26.4 | 15.9 | |
HZY 261 | 68.0 ± 0.8 a | 22.8 ± 3.8 a | 15.9 ± 1.8 b | 106.6 ± 1.6 a | 63.8 | 21.3 | 14.9 | |
Average | 48.9 | 19.7 | 13.4 | 82.0 | 59.5 | 24.3 | 16.3 | |
Japonica | NG 46 | 43.8 ± 5.5 e | 19.0 ± 0.7 bc | 12.3 ± 1.8 cd | 75.0 ± 7.8 c | 58.3 | 25.3 | 16.4 |
SXG 1018 | 55.9 ± 0.5 b | 20.9 ± 0.8 ab | 14.1 ± 0.3 bc | 90.8 ± 1.3 b | 61.5 | 23.0 | 15.5 | |
XS 134 | 49.8 ± 4.6 d | 19.9 ± 0.6 bc | 13.18 ± 0.6 c | 82.9 ± 4.9 bc | 60.1 | 24.0 | 15.9 | |
CLG | 34.7 ± 2.8 f | 15.6 ± 1.8 e | 8.1 ± 0.8 e | 58.4 ± 3.7 d | 59.5 | 26.7 | 13.8 | |
Average | 39.4 | 16.6 | 11.5 | 67.5 | 58.5 | 24.7 | 16.9 |
Types | Cultivars | Stem (g/hill) | Leaf (g/hill) | Panical (g/hill) | Sum (g/hill) | Stem Ratio (%) | Leaf Ratio (%) | Panical Ratio (%) |
---|---|---|---|---|---|---|---|---|
Indica | MXZ 2 | 27.8 ± 3.9 c | 9.1 ± 1.7 d | 29.1 ± 3.8 e | 66.0 ± 9.4 e | 42.1 | 13.8 | 44.1 |
TYXZ | 28.3 ± 4.4 c | 14.3 ± 2.2 b | 60.0 ± 6.9 a | 104.6 ± 13.3 b | 27.0 | 13.7 | 57.3 | |
QYSM | 20.5 ± 1.8 d | 11.4 ± 1.2 c | 46.4 ± 1.2 c | 78.4 ± 4.2 d | 26.2 | 14.6 | 59.2 | |
YXY 2115 | 37.3 ± 4.4 a | 15.6 ± 3.5 ab | 52.6 ± 4.2 b | 113.1 ± 8.4 ab | 33.0 | 13.7 | 46.5 | |
ZZY 8 | 37.9 ± 6.5 ab | 15.4 ± 4.5 ab | 52.4 ± 6.5 bc | 118.3 ± 12.3 a | 32.0 | 13.1 | 44.3 | |
HZY 261 | 34.2 ± 4.3 b | 14.0 ± 2.4 ab | 51.0 ± 3.25 b | 99.2 ± 15.6 c | 34.48 | 14.1 | 51.4 | |
Average | 31.0 | 13.3 | 48.6 | 96.6 | 32.5 | 13.8 | 50.5 | |
Japonica | NG 46 | 26.9 ± 2.9 cd | 10.8 ± 1.3 cd | 33.7 ± 3.0 de | 71.3 ± 6.1 de | 37.7 | 15.1 | 47.2 |
SXG 1018 | 27.9 ± 3.8 cd | 11.8 ± 0.7 c | 35.3 ± 2.9 d | 75.0 ± 6.7 de | 37.2 | 15.8 | 47.1 | |
XS 134 | 29.3 ± 3.1 c | 9.7 ± 1.2 d | 26.8 ± 3.1 e | 65.8 ± 6.9 e | 44.5 | 14.8 | 40.7 | |
CLG | 39.8 ± 7.6 a | 15.9 ± 3.9 a | 51.8 ± 7.3 b | 126.2 ± 13.7 a | 31.5 | 12.3 | 41.0 | |
Average | 30.9 | 12.0 | 36.9 | 84.6 | 37.7 | 14.6 | 44.0 |
Stage | Types | Cultivars | Stem (mg/g) | Leaf (mg/g) | Panicle (mg/g) |
---|---|---|---|---|---|
Flowering stage | Indica | MXZ 2 | 172.4 ± 4.6 c | 34.7 ± 0.9 e | 47.0 ± 4.5 f |
TYXZ | 166.7 ± 15.2 cd | 27.3 ± 0.6 f | 99.7 ± 11.2 a | ||
QYSM | 128.5 ± 3.4 e | 42.1 ± 0.3 c | 60.4 ± 0.6 d | ||
YXY 2115 | 158.5 ± 9.9 cd | 38.0 ± 1.2 d | 77.7 ± 2.8 b | ||
ZZY 8 | 162.3 ± 0.6 c | 60.3 ± 0.9 a | 40.2 ± 0.9 g | ||
HZY 261 | 207.4 ± 15.7 a | 39.6 ± 0.4 d | 73.7 ± 15.6 bc | ||
Average | 166.0 | 40.3 | 66.5 | ||
Japonica | NG 46 | 128.0 ± 22.6 e | 45.18 ± 8.3 bc | 31.2 ± 11.1 g | |
SXG 1018 | 101.1 ± 22.3 f | 34.3 ± 11.5 ef | 39.4 ± 10.7 fg | ||
XS 134 | 183.9 ± 10.8 b | 48.5 ± 12.5 b | 64.0 ± 3.7 c | ||
CLG | 166.6 ± 6.2 c | 37.80 ± 8.4 de | 57.2 ± 5.7 e | ||
Average | 124.2 | 37.9 | 41.78 | ||
Maturity stage | Indica | MXZ 2 | 141.5 ± 3.7 b | 47.2 ± 0.1 c | 87.7 ± 4.4 f |
TYXZ | 19.0 ± 0.9 g | 31.0 ± 0.9 f | 106.7 ± 3.1 e | ||
QYSM | 26.5 ± 1.8 f | 36.8 ± 1.9 e | 106.5 ± 8.8 e | ||
YXY 2115 | 99.4 ± 4.9 de | 46.1 ± 3.4 c | 277.7 ± 41.0 a | ||
ZZY 8 | 108.6 ± 1.9 d | 56.3 ± 0.9 a | 231.1 ± 17.1 bc | ||
HZY 261 | 85.8 ± 0.9 e | 31.4 ± 4.8 f | 193.6 ± 35.8 c | ||
Average | 80.1 | 41.5 | 167.2 | ||
Japonica | NG 46 | 81.7 ± 7.0 e | 54.3 ± 1.2 a | 245.1 ± 37.1 ab | |
SXG 1018 | 125.4 ± 22.7 c | 55.5 ± 14.0 ab | 157.3 ± 25.5 d | ||
XS 134 | 196.4 ± 20.7 a | 49.3 ± 6.3 bc | 171.0 ± 21.0 cd | ||
CLG | 95.1 ± 9.5 de | 41.1 ± 8.2 d | 187.4 ± 23.2 cd | ||
Average | 106.9 | 51.6 | 186.8 |
Stage | Types | Cultivars | Stem (mg/g) | Leaf (mg/g) | Panicle (mg/g) |
---|---|---|---|---|---|
Flowering stage | Indica | MXZ 2 | 179.5 ± 16.0 de | 94.7 ± 4.8 b | 151.4 ± 17.9 bc |
TYXZ | 163.4 ± 5.6 f | 71.5 ± 4.4 cd | 157.4 ± 19.9 bc | ||
QYSM | 208.9 ± 13.3 bc | 87.2 ± 11.4 bc | 104.6 ± 3.4 e | ||
YXY 2115 | 163.4 ± 13.7 f | 89.4 ± 6.4 bc | 193.5 ± 19.6 a | ||
ZZY 8 | 219.1 ± 15.7 bc | 103.9 ± 3.5 a | 119.8 ± 17.2 d | ||
HZY 261 | 171.2 ± 4.3 e | 85.5 ± 2.7 bc | 132.9 ± 19.6 cd | ||
Average | 184.2 | 88.7 | 143.3 | ||
Japonica | NG 46 | 239.4 ± 14.7 ab | 96.4 ± 13.1 bc | 136.8 ± 11.1 c | |
SXG 1018 | 156.5 ± 12.8 f | 120.2 ± 24.6 ab | 117.6 ± 23.8 d | ||
XS 134 | 254.2 ± 3.5 a | 124.6 ± 20.4 a | 153.6 ± 16.1 bc | ||
CLG | 204.2 ± 14.5 bc | 90.7 ± 27.5 bcd | 139.1 ± 10.9 c | ||
Average | 213.5 | 107.9 | 136.8 | ||
Maturity stage | Indica | MXZ 2 | 176.3 ± 7.6 b | 97.4 ± 1.3 cd | 295.2 ± 22.2 e |
TYXZ | 110.6 ± 27.2 de | 92.7 ± 6.4 d | 301.2 ± 24.8 e | ||
QYSM | 95.2 ± 4.7 e | 98.2 ± 3.4 bcd | 261.2 ± 6.7 f | ||
YXY 2115 | 140.0 ± 10.4 c | 96.9 ± 1.5 cd | 185.0 ± 13.2 h | ||
ZZY 8 | 140.5 ± 15.3 c | 97.4 ± 6.0 cd | 221.6 ± 20.1 g | ||
HZY 261 | 88.8 ± 4.7 f | 82.9 ± 16.3 de | 452.2 ± 25.8 b | ||
Average | 125.2 | 94.2 | 286.1 | ||
Japonica | NG 46 | 147.1 ± 27.2 c | 109.6 ± 14.4 bc | 373.4 ± 57.8 cd | |
SXG 1018 | 161.9 ± 31.1 bc | 130.0 ± 3.1 a | 459.9 ± 35.8 b | ||
XS 134 | 235.0 ± 26.0 a | 112.2 ± 17.4 bc | 540.8 ± 50.8 a | ||
CLG | 138.9 ± 3.1 c | 74.8 ± 20.6 e | 400.6 ± 78.3 cd | ||
Average | 170.7 | 106.7 | 443.7 |
Stage | Types | Cultivars | Stem (mg/g) | Leaf (mg/g) | Panicle (mg/g) |
---|---|---|---|---|---|
Flowering stage | Indica | MXZ 2 | 352.0 ± 29.4 abc | 129.3 ± 9.9 bc | 198.4 ± 20.2 b |
TYXZ | 330.1 ± 19.4 bc | 98.9 ± 4.5 d | 257.0 ± 22.3 a | ||
QYSM | 337.4 ± 21.9 bc | 129.3 ± 13.1 bc | 165.0 ± 12.0 c | ||
YXY 2115 | 321.9 ± 19.6 c | 127.5 ± 20.7 bc | 271.2 ± 39.2 a | ||
ZZY 8 | 381.4 ± 14.2 a | 164.2 ± 11.7 a | 160.0 ± 31.1 c | ||
HZY 261 | 378.7 ± 10.0 ab | 125.0 ± 2.7 c | 206.6 ± 30.4 b | ||
Average | 350.2 | 129.0 | 209.7 | ||
Japonica | NG 46 | 367.4 ± 32.8 b | 141.5 ± 31.2 abc | 168.0 ± 20.3 c | |
SXG 1018 | 257.6 ± 17.4 d | 154.5 ± 29.6 ab | 157.0 ± 29.5 cd | ||
XS 134 | 355.3 ± 12.4 b | 158.9 ± 8.3 a | 193.0 ± 3.6 b | ||
CLG | 370.8 ± 16.3 ab | 128.4 ± 19.3 bc | 196.3 ± 6.5 b | ||
Average | 337.8 | 145.8 | 178.6 | ||
Maturity stage | Indica | MXZ 2 | 317.8 ± 6.9 b | 144.6 ± 1.29 c | 382.9 ± 35.2 de |
TYXZ | 129.6 ± 26.6 e | 123.7 ± 6.42 de | 407.9 ± 58.4 cde | ||
QYSM | 121.6 ± 5.9 e | 134.9 ± 12.73 cd | 367.7 ± 9.7 e | ||
YXY 2115 | 239.3 ± 13.9 cd | 143.0 ± 15.24 d | 462.7 ± 20.5 c | ||
ZZY 8 | 249.1 ± 34.6 bcd | 153.7 ± 11.12 bc | 452.7 ± 36.7 c | ||
HZY 261 | 174.6 ± 5.0 f | 114.3 ± 10.51 de | 645.8 ± 53.8 a | ||
Average | 205.3 | 135.7 | 453.3 | ||
Japonica | NG 46 | 228.9 ± 22.3 cd | 163.9 ± 15.0 bc | 618.5 ± 30.4 ab | |
SXG 1018 | 287.3 ± 41.6 bc | 185.5 ± 13.7 a | 617.2 ± 37.5 ab | ||
XS 134 | 360.4 ± 42.3 a | 167.6 ± 26.7 ab | 698.1 ± 3.8 a | ||
CLG | 234.0 ± 12.5 d | 115.9 ± 29.5 de | 588.0 ± 37.2 b | ||
Average | 277.6 | 158.2 | 630.4 |
Types | Cultivars | Jointing Stage | Flowering Stage | DAF10 | DAF20 |
---|---|---|---|---|---|
Indica | MXZ 2 | 29.7 ± 1.2 ab | 19.6 ± 0.5 de | 21.0 ± 0.6 c | 12.2 ± 0.1 e |
TYXZ | 29.7 ± 1.3 ab | 25.4 ± 1.0 a | 18.1 ± 0.3 e | 16.4 ± 1.0 bc | |
QYSM | 30.9 ± 1.1 a | 23.2 ± 0.7 b | 23.3 ± 0.1 b | 22.2 ± 0.3 a | |
YXY 2115 | 25.5 ± 1.5 cd | 22.3 ± 0.4 bc | 25.2 ± 0.7 a | 15.0 ± 1.0 c | |
ZZY 8 | 26.5 ± 1.1 c | 21.6 ± 0.2 c | 21.9 ± 0.4 c | 16.9 ± 0.8 b | |
HZY 261 | 27.3 ± 0.5 b | 23.9 ± 0.5 b | 20.1 ± 0.9 cd | 21.5 ± 1.3 a | |
Average | 28.3 | 22.7 | 21.6 | 17.4 | |
Japonica | NG 46 | 27.2 ± 0.3 b | 20.1 ± 0.4 d | 19.4 ± 0.9 d | 15.6 ± 0.8 bc |
SXG 1018 | 22.6 ± 0.9 d | 20.8 ± 0.7 d | 17.4 ± 0.4 ef | 13.6 ± 1.1 d | |
XS 134 | 22.4 ± 0.7 d | 18.5 ± 0.6 e | 18.3 ± 0.7de | 13.2 ± 1.8 d | |
CLG | 26.6 ± 1.4 c | 16.8 ± 0.5 f | 16.5 ± 0.6 f | 12.5 ± 1.4 e | |
Average | 24.7 | 19.0 | 17.9 | 13.7 |
Jointing Stage | Flowering Stage | DAF10 | DAF20 | |
---|---|---|---|---|
GY | 0.489 ** | 0.817 ** | 0.458 | 0.823 ** |
BR | −0.521 ** | −0.324 | −0.105 | −0.123 |
MR | −0.527 ** | −0.293 | −0.217 | −0.034 |
HR | −0.424 * | −0.601 ** | −0.365 * | −0.239 |
CD | 0.004 | 0.091 | 0.318 | 0.023 |
EQ | −0.659 * | −0.517 | −0.08 | −0.197 |
Soluble Sugar | Starch | NSC | Panicle Dry Matter Weight | Panicle/Sum | ||
---|---|---|---|---|---|---|
Flowering stage | GY | 0.562 ** | 0.479 * | 0.123 | −0.18 | 0.374 * |
HR | −0.405 * | −0.446 * | −0.33 | −0.238 | −0.415 * | |
CD | −0.069 | 0.082 | −0.088 | −0.121 | 0.111 | |
EQ | 0.032 | −0.423 * | −0.482 ** | −0.247 | −0.055 | |
Maturity stage | GY | −0.15 | −0.58 ** | −0.532 ** | 0.561 ** | 0.374 * |
HR | 0.213 | 0.679 ** | 0.58 ** | −0.111 | −0.415 | |
CD | −0.137 | −0.294 | −0.268 | −0.114 | 0.111 | |
EQ | 0.521 ** | 0.039 | 0.161 | 0.411 * | −0.055 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, J.; Wen, F.; Li, F.; Chen, T.; Feng, B.; Xiong, J.; Fu, G.; Qin, Y.; Wang, W. Analysis of the Relationship Between Assimilate Production and Allocation and the Formation of Rice Quality. Agriculture 2025, 15, 1011. https://doi.org/10.3390/agriculture15091011
Tu J, Wen F, Li F, Chen T, Feng B, Xiong J, Fu G, Qin Y, Wang W. Analysis of the Relationship Between Assimilate Production and Allocation and the Formation of Rice Quality. Agriculture. 2025; 15(9):1011. https://doi.org/10.3390/agriculture15091011
Chicago/Turabian StyleTu, Jianming, Fengting Wen, Feitong Li, Tingting Chen, Baohua Feng, Jie Xiong, Guanfu Fu, Yebo Qin, and Wenting Wang. 2025. "Analysis of the Relationship Between Assimilate Production and Allocation and the Formation of Rice Quality" Agriculture 15, no. 9: 1011. https://doi.org/10.3390/agriculture15091011
APA StyleTu, J., Wen, F., Li, F., Chen, T., Feng, B., Xiong, J., Fu, G., Qin, Y., & Wang, W. (2025). Analysis of the Relationship Between Assimilate Production and Allocation and the Formation of Rice Quality. Agriculture, 15(9), 1011. https://doi.org/10.3390/agriculture15091011