Renewable Energy Consumption and the Ecological Footprint in Denmark: Assessing the Influence of Financial Development and Agricultural Contribution
Abstract
:1. Introduction
2. Literature Review
2.1. EF and Renewable Energy Consumption
2.2. EF and FD
2.3. EF and Economic Growth
2.4. EF and Agricultural Added Value
3. Empirical Analysis
3.1. Data and Empirical Methodology
3.2. FFF-ADF Unit Root Test
3.3. FFF Autoregressive Distributed Lag Cointegration Test
3.4. FFF Fourier Form Toda–Yamamoto Causality Test
4. Empirical Results
5. Conclusions and Discussion
5.1. Discussion
5.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Nan, Y.; Sun, R.; Mei, H.; Yue, S.; Yuliang, L. Does renewable energy consumption reduce energy EF: Evidence from China. Environ. Res. Ecol. 2023, 2, 015003. [Google Scholar] [CrossRef]
- Huang, Y.; Haseeb, M.; Usman, M.; Ozturk, I. Dynamic association between ICT, renewable energy, economic complexity and EF: Is there any difference between E-7 (developing) and G-7 (developed) countries? Technol. Soc. 2022, 68, 101853. [Google Scholar] [CrossRef]
- Wackernagel, M.; Rees, W.E. Our EF: Reducing Human Impact on the Earth; New Society Publishers: Gabriola Island, BC, Canada, 1996. [Google Scholar]
- Murshed, M.; Rahman, M.A.; Alam, M.S.; Ahmad, P.; Dagar, V. The nexus between environmental regulations, economic growth, and environmental sustainability: Linking environmental patents to EF reduction in South Asia. Environ. Sci. Pollut. Res. 2021, 28, 49967–49988. [Google Scholar] [CrossRef]
- Destek, M.A.; Sinha, A. Renewable, non-renewable energy consumption, economic growth, trade openness and EF: Evidence from organisation for economic Co-operation and development countries. J. Clean. Prod. 2020, 242, 118537. [Google Scholar] [CrossRef]
- Alola, A.A.; Adebayo, T.S.; Onifade, S.T. Examining the dynamics of EF in China with spectral Granger causality and quantile-on-quantile approaches. Int. J. Sustain. Dev. World Ecol. 2022, 29, 263–276. [Google Scholar] [CrossRef]
- Gyamfi, B.A.; Onifade, S.T.; Erdoğan, S.; Ali, E.B. Colligating EF and economic globalization after COP21: Insights from agricultural value-added and natural resources rents in the E7 economies. Int. J. Sustain. Dev. World Ecol. 2023, 30, 500–514. [Google Scholar] [CrossRef]
- Usman, M.; Makhdum, M.S.A. What abates EF in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development. Renew. Energy 2021, 179, 12–28. [Google Scholar] [CrossRef]
- Alvarado, R.; Ortiz, C.; Jiménez, N.; Ochoa-Jiménez, D.; Tillaguango, B. EF, air quality and research and development: The role of agriculture and international trade. J. Clean. Prod. 2021, 288, 125589. [Google Scholar] [CrossRef]
- Pata, U.K. Linking renewable energy, globalization, agriculture, CO2 emissions, and EF in BRIC countries: A sustainability perspective. Renew. Energy 2021, 173, 197–208. [Google Scholar] [CrossRef]
- Ali, Z.; Jianzhou, Y.; Ali, A.; Hussain, J. Determinants of the CO2 emissions, economic growth, and EF in Pakistan: Asymmetric and symmetric role of agricultural and financial inclusion. Environ. Sci. Pollut. Res. 2023, 30, 61945–61964. [Google Scholar] [CrossRef]
- Li, L.; Ali, A.; Li, S.; Zhang, T. A dynamic relationship between renewable energy, agriculture, globalization, and EF of the five most populous countries in Asia. Environ. Sci. Pollut. Res. 2023, 30, 1–14. [Google Scholar]
- Salari, T.E.; Roumiani, A.; Kazemzadeh, E. Globalization, renewable energy consumption, and agricultural production impacts on EF in emerging countries: Using quantile regression approach. Environ. Sci. Pollut. Res. 2021, 28, 49627–49641. [Google Scholar] [CrossRef]
- Yasin, I.; Ahmad, N.; Amin, S.; Sattar, N.; Hashmat, A. Does agriculture, forests, and energy consumption foster the carbon emissions and EF? Fresh evidence from BRICS economies. Environ. Dev. Sustain. 2024, 1–21. [Google Scholar] [CrossRef]
- Global Footprint Network. 2024. Available online: https://www.footprintnetwork.org/2024/07/21/earth_overshoot_day_2024/ (accessed on 13 January 2025).
- European Environment Agency. 2024. Available online: https://www.eea.europa.eu/en/analysis/publications/trends-and-projections-in-europe-2024 (accessed on 13 January 2025).
- Ang, J.B. CO2 emissions, energy consumption, and output in France. Energy Policy 2007, 35, 4772–4778. [Google Scholar] [CrossRef]
- Acaravci, A.; Ozturk, I. On the relationship between energy consumption, CO2 emissions and economic growth in Europe. Energy 2010, 35, 5412–5420. [Google Scholar] [CrossRef]
- Omri, A. CO2 emissions, energy consumption and economic growth nexus in MENA countries: Evidence from simultaneous equations models. Energy Econ. 2013, 40, 657–664. [Google Scholar] [CrossRef]
- Ajmi, A.N.; Hammoudeh, S.; Nguyen, D.K.; Sato, J.R. On the relationships between CO2 emissions, energy consumption and income: The importance of time variation. Energy Econ. 2013, 49, 629–638. [Google Scholar] [CrossRef]
- Acheampong, A.O. Economic growth, CO2 emissions and energy consumption: What causes what and where? Energy Econ. 2018, 74, 677–692. [Google Scholar] [CrossRef]
- Destek, M.A.; Ulucak, R.; Dogan, E. Analyzing the environmental Kuznets curve for the EU countries: The role of EF. Environ. Sci. Pollut. Res. 2018, 25, 29387–29396. [Google Scholar] [CrossRef]
- Danish; Ulucak, R.; Khan, S.U.D. Determinants of the EF: Role of renewable energy, natural resources, and urbanization. Sustain. Cities Soc. 2020, 54, 101996. [Google Scholar] [CrossRef]
- Sharma, R.; Sinha, A.; Kautish, P. Does renewable energy consumption reduce EF? Evidence from eight developing countries of Asia. J. Clean. Prod. 2021, 285, 124867. [Google Scholar] [CrossRef]
- Usman, M.; Balsalobre-Lorente, D.; Jahanger, A.; Ahmad, P. Pollution concern during globalization mode in financially resource-rich countries: Do financial development, natural resources, and renewable energy consumption matter? Renew. Energy 2022, 183, 90–102. [Google Scholar] [CrossRef]
- Zhang, Q.; Shah, S.A.R.; Yang, L. Modeling the effect of disaggregated renewable energies on EF in E5 economies: Do economic growth and R&D matter? Appl. Energy 2022, 310, 118522. [Google Scholar] [CrossRef]
- Li, R.; Wang, Q.; Li, L. Does renewable energy reduce per capita carbon emissions and per capita EF? New evidence from 130 countries. Energy Strategy Rev. 2023, 49, 101121. [Google Scholar] [CrossRef]
- Akpanke, T.A.; Deka, A.; Ozdeser, H.; Seraj, M. EF in the OECD countries: Do energy efficiency and renewable energy matter? Environ. Sci. Pollut. Res. 2024, 31, 15289–15301. [Google Scholar] [CrossRef]
- Almond, R.E.A.; Grooten, M.; Bignoli, J.; Petersen, T. Living Planet Report 2022—Building a Nature-Positive Society; WWF: Gland, Switzerland, 2022. [Google Scholar]
- Usman, O.; Akadiri, S.S.; Adeshola, I. Role of renewable energy and globalization on ecological footprint in the USA: Implications for environmental sustainability. Environ. Sci. Pollut. Res. 2020, 27, 30681–30693. [Google Scholar] [CrossRef]
- Ahmad, M.; Ahmed, Z.; Yang, X.; Hussain, N.; Sinha, A. Financial development and environmental degradation: Do human capital and institutional quality make a difference? Gondwana Res. 2022, 105, 299–310. [Google Scholar] [CrossRef]
- Acar, S.; Altıntaş, N.; Haziyev, V. The effect of financial development and economic growth on EF in Azerbaijan: An ARDL bound test approach with structural breaks. Environ. Ecol. Stat. 2023, 30, 41–59. [Google Scholar] [CrossRef]
- Agboola, M.O.; Bekun, F.V. Does agricultural value added induce environmental degradation? Empirical evidence from an agrarian country. Environ. Sci. Pollut. Res. 2019, 26, 27660–27676. [Google Scholar] [CrossRef]
- Usman, M.; Jahanger, A.; Radulescu, M.; Balsalobre-Lorente, D. Do Nuclear Energy, Renewable Energy, and Environmental-Related Technologies Asymmetrically Reduce EF? Evidence from Pakistan. Energies 2022, 15, 3448. [Google Scholar] [CrossRef]
- Beton Kalmaz, D.; Awosusi, A.A. Investigation of the driving factors of EF in Malaysia. Environ. Sci. Pollut. Res. 2022, 29, 56814–56827. [Google Scholar] [CrossRef] [PubMed]
- Pata, U.K.; Destek, M.A. A Sustainable Development Assessment for the Load Capacity Factor and Carbon Footprint in India: The Role of Information and Communication Technologies, Renewable Energy, and Structural Changes. J. Environ. Dev. 2023, 32, 392–412. [Google Scholar] [CrossRef]
- Bekhet, H.A.; Othman, N.S. The role of renewable energy to validate dynamic interaction between CO2 emissions and GDP toward sustainable development in Malaysia. Energy Econ. 2018, 72, 47–61. [Google Scholar] [CrossRef]
- Zhang, Y.J. The impact of financial development on carbon emissions: An empirical analysis in China. Energy Policy 2011, 39, 2197–2203. [Google Scholar] [CrossRef]
- Destek, M.A.; Sarkodie, S.A. Investigation of environmental Kuznets curve for EF: The role of energy and financial development. Sci. Total Environ. 2019, 650, 2483–2489. [Google Scholar] [CrossRef] [PubMed]
- Pata, U.K.; Yilanci, V. Financial development, globalization and EF in G7: Further evidence from threshold cointegration and fractional frequency causality tests. Environ. Ecol. Stat. 2020, 27, 803–825. [Google Scholar] [CrossRef]
- Ibrahim, M.; Vo, X.V. Exploring the relationships among innovation, financial sector development and environmental pollution in selected industrialized countries. J. Environ. Manage. 2021, 284, 112057. [Google Scholar] [CrossRef]
- Ngoc, B.H.; Awan, A. Does financial development reinforce EF in Singapore? Evidence from ARDL and Bayesian analysis. Environ. Sci. Pollut. Res. 2022, 29, 24219–24233. [Google Scholar] [CrossRef]
- Kihombo, S.; Ahmed, Z.; Chen, S.; Adebayo, T.S.; Kirikkaleli, D. Linking financial development, economic growth, and EF: What is the role of technological innovation? Environ. Sci. Pollut. Res. 2021, 28, 61235–61245. [Google Scholar] [CrossRef]
- Ozturk, I.; Farooq, S.; Majeed, M.T.; Skare, M. An empirical investigation of financial development and EF in South Asia: Bridging the EKC and pollution haven hypotheses. Geosci. Front. 2024, 15, 101588. [Google Scholar] [CrossRef]
- Mehraaein, M.; Afroz, R.; Rahman, M.Z.; Muhibbullah, M. Dynamic Impact of Macroeconomic Variables on the EF in Malaysia: Testing EKC and PHH. J. Asian Finance 2021, 8, 583–593. [Google Scholar]
- Idrees, M.; Majeed, M.T. Income inequality, financial development, and EF: Fresh evidence from an asymmetric analysis. Environ. Sci. Pollut. Res. 2022, 29, 27924–27938. [Google Scholar] [CrossRef]
- Akinsola, G.D.; Awosusi, A.A.; Kirikkaleli, D.; Umarbeyli, S.; Adeshola, I.; Adebayo, T.S. EF, public-private partnership investment in energy, and financial development in Brazil: A gradual shift causality approach. Environ. Sci. Pollut. Res. 2022, 29, 10077–10090. [Google Scholar] [CrossRef] [PubMed]
- Majeed, M.T.; Mazhar, M. Reexamination of environmental Kuznets curve for EF: The role of biocapacity, human capital, and trade. Pak. J. Commer. Soc. Sci. 2020, 14, 202–254. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Environmental Impacts of a North American Free Trade Agreement; National Bureau of Economic Research: Cambridge, MA, USA, 1991. [Google Scholar]
- Grossman, G.M.; Krueger, A.B. Economic growth and the environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef]
- Bagliani, M.; Bravo, G.; Dalmazzone, S. A consumption-based approach to environmental Kuznets curves using the EF indicator. Ecol. Econ. 2008, 65, 650–661. [Google Scholar] [CrossRef]
- Caviglia-Harris, J.L.; Chambers, D.; Kahn, J.R. Taking the “U” out of Kuznets. A comprehensive analysis of the EKC and environmental degradation. Ecol. Econ. 2009, 68, 1149–1159. [Google Scholar] [CrossRef]
- Wang, Y.; Kang, L.; Wu, X.; Xiao, Y. Estimating the environmental Kuznets curve for EF at the global level: A spatial econometric approach. Ecol. Indic. 2013, 34, 15–21. [Google Scholar] [CrossRef]
- Al-mulali, U.; Solarin, S.A.; Sheau-Ting, L.; Ozturk, I. Does moving towards renewable energy causes water and land inefficiency? An empirical investigation. Energy Policy 2016, 93, 303–314. [Google Scholar] [CrossRef]
- Ulucak, R.; Bilgili, F. A reinvestigation of EKC model by EF measurement for high, middle and low income countries. J. Clean. Prod. 2018, 188, 144–157. [Google Scholar] [CrossRef]
- Baloch, M.A.; Zhang, J.; Iqbal, K.; Iqbal, Z. The effect of financial development on EF in BRI countries: Evidence from panel data estimation. Environ. Sci. Pollut. Res. 2019, 26, 6199–6208. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Z.; Zafar, M.W.; Ali, S.; Danish. Linking urbanization, human capital, and the EF in G7 countries: An empirical analysis. Sustain. Cities Soc. 2020, 55, 102064. [Google Scholar] [CrossRef]
- Ahmed, Z.; Zhang, B.; Cary, M. Linking economic globalization, economic growth, financial development, and EF: Evidence from symmetric and asymmetric ARDL. Ecol. Indic. 2021, 121, 107060. [Google Scholar] [CrossRef]
- Kongbuamai, N.; Bui, Q.; Nimsai, S. The effects of renewable and nonrenewable energy consumption on the EF: The role of environmental policy in BRICS countries. Environ. Sci. Pollut. Res. 2021, 28, 27885–27899. [Google Scholar] [CrossRef] [PubMed]
- Çakmak, E.E.; Acar, S. The nexus between economic growth, renewable energy and EF: An empirical evidence from most oil-producing countries. J. Clean. Prod. 2022, 352, 131548. [Google Scholar] [CrossRef]
- Satrovic, E.; Cetindas, A.; Akben, I.; Damrah, S. Do natural resource dependence, economic growth and transport energy consumption accelerate EF in the most innovative countries? The moderating role of technological innovation. Gondwana Res. 2024, 127, 116–130. [Google Scholar] [CrossRef]
- Ansari, M.A.; Ahmad, M.R.; Siddique, S.; Mansoor, K. An environment Kuznets curve for EF: Evidence from GCC countries. Carbon Manag. 2020, 11, 355–368. [Google Scholar] [CrossRef]
- Uddin, G.A.; Alam, K.; Gow, J. Does EF Impede Economic Growth? An Empirical Analysis Based on the Environmental Kuznets Curve Hypothesis. Aust. Econ. Pap. 2016, 55, 301–316. [Google Scholar] [CrossRef]
- Cui, L.; Weng, S.; Nadeem, A.M.; Rafique, M.Z.; Shahzad, U. Exploring the role of renewable energy, urbanization and structural change for environmental sustainability: Comparative analysis for practical implications. Renew. Energy 2022, 184, 215–224. [Google Scholar] [CrossRef]
- Khan, M.T.I.; Ali, Q.; Ashfaq, M. The nexus between greenhouse gas emission, electricity production, renewable energy and agriculture in Pakistan. Renew. Energy 2018, 118, 437–451. [Google Scholar] [CrossRef]
- Gokmenoglu, K.K.; Taspinar, N.; Kaakeh, M. Agriculture-induced environmental Kuznets curve: The case of China. Environ. Sci. Pollut. Res. 2019, 26, 37137–37151. [Google Scholar] [CrossRef] [PubMed]
- Prastiyo, S.E.; Irham; Hardyastuti, S.; Jamhari, F. How agriculture, manufacture, and urbanization induced carbon emission? The case of Indonesia. Environ. Sci. Pollut. Res. 2020, 27, 42092–42103. [Google Scholar] [CrossRef] [PubMed]
- Ridzuan, N.H.A.M.; Marwan, N.F.; Khalid, N.; Ali, M.H.; Tseng, M.L. Effects of agriculture, renewable energy, and economic growth on carbon dioxide emissions: Evidence of the environmental Kuznets curve. Resour. Conserv. Recycl. 2020, 160, 104879. [Google Scholar] [CrossRef]
- Olanipekun, I.O.; Olasehinde-Williams, G.O.; Alao, R.O. Agriculture and environmental degradation in Africa: The role of income. Sci. Total Environ. 2019, 692, 60–67. [Google Scholar] [CrossRef]
- Udemba, E.N. Mediation of foreign direct investment and agriculture towards EF: A shift from single perspective to a more inclusive perspective for India. Environ. Sci. Pollut. Res. 2020, 27, 26817–26834. [Google Scholar] [CrossRef]
- Rafiq, S.; Salim, R.; Apergis, N. Agriculture, trade openness and emissions: An empirical analysis and policy options. Aust. J. Agric. Resour. Econ. 2016, 60, 348–365. [Google Scholar] [CrossRef]
- Ben Jebli, M.; Ben Youssef, S. Renewable energy consumption and agriculture: Evidence for cointegration and Granger causality for Tunisian economy. Int. J. Sustain. Dev. World Ecol. 2017, 24, 149–158. [Google Scholar] [CrossRef]
- Gyamfi, S.; Derkyi, N.S.A.; Asuamah, E.Y.; Aduako, I.J.A. Renewable energy and sustainable development. In Sustainable Hydropower in West Africa: Planning, Operation, and Challenges; Elsevier: Amsterdam, The Netherlands, 2018; pp. 75–94. [Google Scholar] [CrossRef]
- Boluk, G.; Karaman, S. The impact of agriculture, energy consumption and economic growth on EF: Testing the agriculture-induced EKC for Türkiye. Environ. Dev. Sustain. 2024, 26, 31817–31837. [Google Scholar] [CrossRef]
- Dogan, N. Agriculture and environmental kuznets curves in the case of Turkey: Evidence from the ARDL and bounds test. Agric. Econ. 2016, 62, 566–574. [Google Scholar] [CrossRef]
- Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Liu, M.; Huang, Y.; Ma, Z.; Jin, Z.; Liu, X.; Wang, H.; Liu, Y.; Wang, J.; Jantunen, M.; Bi, J.; et al. Spatial and temporal trends in the mortality burden of air pollution in China: 2004–2012. Environ. Int. 2017, 98, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Tekbaş, M.; Doğan, M. The impact of economic growth, natural resources, urbanization and biocapacity on the EF: The case of Turkey. Sustainability 2023, 15, 12855. [Google Scholar] [CrossRef]
- Valencia, Y.; Zhang, E.S. Assessing the Impact of GDP, Agriculture, Forestry, and Fishing Value Added, and Livestock Production Index on CO2 Emissions in the Philippines. J. Econ. Finance Account. Stud. 2022, 4, 516–535. [Google Scholar] [CrossRef]
- Mrabet, Z.; AlSamara, M.; Jarallah, S.H. The impact of economic development on environmental degradation in Qatar. Environ. Ecol. Stat. 2017, 24, 7–38. [Google Scholar] [CrossRef]
- Shahbaz, M.; Dogan, M.; Akkus, H.T.; Gursoy, S. The effect of financial development and economic growth on EF: Evidence from top 10 emitter countries. Environ. Sci. Pollut. Res. 2023, 30, 73518–73533. [Google Scholar] [CrossRef]
- Shahbaz, M.; Topcu, B.A.; Sarıgül, S.S.; Doğan, M. Energy imports as inhibitor of economic growth: The role of impact of renewable and non-renewable energy consumption. J. Int. Trade Econ. Dev. 2024, 33, 497–522. [Google Scholar] [CrossRef]
- Georgescu, I.; Kinnunen, J. Effects of FDI, GDP and energy use on EF in Finland: An ARDL approach. World Dev. Sustain. 2024, 4, 100157. [Google Scholar] [CrossRef]
- Shahbaz, M.; Hye, Q.M.A.; Tiwari, A.K.; Leitão, N.C. Economic growth, energy consumption, financial development, international trade and CO2 emissions in Indonesia. Renew. Sustain. Energy Rev. 2013, 25, 109–121. [Google Scholar] [CrossRef]
- Ullah, A.; Dogan, M.; Topcu, B.A.; Saadaoui, H. Modeling the impacts of technological innovation and financial development on environmental sustainability: New evidence from the world’s top 14 financially developed countries. Energy Strategy Rev. 2023, 50, 101229. [Google Scholar] [CrossRef]
- Ullah, A.; Topcu, B.A.; Dogan, M.; Imran, M. Exploring the nexus among hydroelectric power generation, financial development, and economic growth: Evidence from the largest 10 hydroelectric power-generating countries. Energy Strategy Rev. 2024, 52, 101339. [Google Scholar] [CrossRef]
- Liu, P.; Ur Rahman, Z.; Jóźwik, B.; Doğan, M. Determining the environmental effect of Chinese FDI on the Belt and Road countries CO2 emissions: An EKC-based assessment in the context of pollution haven and halo hypotheses. Environ. Sci. Eur. 2024, 36, 48. [Google Scholar] [CrossRef]
- Imran, M.; Alam, M.S.; Jijian, Z.; Ozturk, I.; Wahab, S.; Doğan, M. From resource curse to green growth: Exploring the role of energy utilization and natural resource abundance in economic development. In Natural Resources Forum; Blackwell Publishing Ltd.: Oxford, UK, 2024. [Google Scholar]
- Dogan, M.; Sahin, S.; Ullah, A.; Safi, A. Promoting environmental sustainability: A policy perspective on hydroelectric power generation, foreign direct investments, and financial development. Energy 2024, 312, 133576. [Google Scholar] [CrossRef]
- Saadaoui, H.; Dogan, M.; Omri, E. The impacts of hydroelectricity generation, financial development, geopolitical risk, income, and foreign direct investment on carbon emissions in Turkey. Environ. Econ. Policy Stud. 2024, 26, 239–261. [Google Scholar] [CrossRef]
- Jóźwik, B.; Doğan, M.; Gürsoy, S. The impact of renewable energy consumption on environmental quality in Central European countries: The mediating role of digitalization and financial development. Energies 2023, 16, 7041. [Google Scholar] [CrossRef]
- Jóźwik, B.; Sarıgül, S.S.; Topcu, B.A.; Çetin, M.; Doğan, M. Trade Openness, Economic Growth, Capital, and Financial Globalization: Unveiling Their Impact on Renewable Energy Consumption. Energies 2025, 18, 1244. [Google Scholar] [CrossRef]
- Boutabba, M.A. The impact of financial development, income, energy and trade on carbon emissions: Evidence from the Indian economy. Econ. Model. 2014, 40, 33–41. [Google Scholar] [CrossRef]
- Jiang, C.; Ma, X. The impact of financial development on carbon emissions: A global perspective. Sustainability 2019, 11, 5241. [Google Scholar] [CrossRef]
- Tamazian, A.; Chousa, J.P.; Vadlamannati, K.C. Does higher economic and financial development lead to environmental degradation: Evidence from BRIC countries. Energy Policy 2009, 37, 246–253. [Google Scholar] [CrossRef]
- Omay, T.; Shahbaz, M.; Stewart, C. Is there really hysteresis in the OECD unemployment rates? New evidence using a Fourier panel unit root test. Empirica 2021, 48, 875–901. [Google Scholar] [CrossRef]
- Enders, W.; Lee, J. A unit root test using a fourier series to approximate smooth breaks. Oxf. Bull. Econ. Stat. 2012, 74, 574–599. [Google Scholar] [CrossRef]
- Engle, R.; Granger, C. Long-Run Economic Relationships: Readings in Cointegration; Oxford University Press: Oxford, UK, 1991. [Google Scholar]
- Christopoulos, D.K.; Leon-Ledesma, M.A. International output convergence, breaks, and asymmetric adjustment. Stud. Nonlinear Dyn. Econom. 2011, 15. [Google Scholar] [CrossRef]
- Omay, T. Fractional Frequency Flexible Fourier Form to approximate smooth breaks in unit root testing. Econ. Lett. 2015, 134, 123–126. [Google Scholar] [CrossRef]
- Bozoklu, S.; Yilanci, V.; Gorus, M.S. Persistence in per capita energy consumption: A fractional integration approach with a Fourier function. Energy Econ. 2020, 91, 104926. [Google Scholar] [CrossRef]
- Johansen, S. Cointegration in partial systems and the efficiency of single-equation analysis. J. Econom. 1992, 52, 389–402. [Google Scholar] [CrossRef]
- Allen, D.E.; McAleer, M. A nonlinear autoregressive distributed lag (NARDL) analysis of the FTSE and S&P500 indexes. Risks 2021, 9, 195. [Google Scholar] [CrossRef]
- Hatemi-J, A. Tests for cointegration with two unknown regime shifts with an application to financial market integration. Empir. Econ. 2008, 35, 497–505. [Google Scholar] [CrossRef]
- Banerjee, A.; Carrion-i-Silvestre, J.L. Testing for Panel Cointegration Using Common Correlated Effects Estimators. J. Time Ser. Anal. 2017, 38, 610–636. [Google Scholar] [CrossRef]
- Ilkay, S.C.; Yilanci, V.; Ulucak, R.; Jones, K. Technology spillovers and sustainable environment: Evidence from time-series analyses with Fourier extension. J. Environ. Manage. 2021, 294, 113033. [Google Scholar] [CrossRef]
- Enders, W.; Jones, P. Grain prices, oil prices, and multiple smooth breaks in a VAR. Stud. Nonlinear Dyn. Econom. 2016, 20, 399–419. [Google Scholar] [CrossRef]
- Nazlioglu, S.; Gormus, N.A.; Soytas, U. Oil prices and real estate investment trusts (REITs): Gradual-shift causality and volatility transmission analysis. Energy Econ. 2016, 60, 168–175. [Google Scholar] [CrossRef]
- Çamkaya, S.; Karaaslan, A.; Uçan, F. Investigation of the effect of human capital on environmental pollution: Empirical evidence from Turkey. Environ. Sci. Pollut. Res. 2023, 30, 23925–23937. [Google Scholar] [CrossRef] [PubMed]
- Omay, T.; Baleanu, D. Fractional unit-root tests allowing for a fractional frequency flexible Fourier form trend: Predictability of COVID-19. Adv. Differ. Equ. 2021, 2021, 167. [Google Scholar] [CrossRef] [PubMed]
- Uche, E.; Yağiş, O.; Al-Faryan, M.A.S. Exploring Saudi Arabia’s 2060 net zero-emission paths via fractional frequency Fourier procedures: The imperatives of resource efficiency, energy efficiency, and digitalization. Int. J. Green Energy 2025, 22, 168–182. [Google Scholar] [CrossRef]
- Bayraktar, Y.; Koc, K.; Toprak, M.; Ozyılmaz, A.; Olgun, M.F.; Balsalobre-Lorente, D.; Soylu, O.B. Convergence of per capita EF among BRICS-T countries: Evidence from Fourier unit root test. Environ. Sci. Pollut. Res. 2023, 30, 63022–63035. [Google Scholar] [CrossRef]
- Muoneke, O.B.; Okere, K.I.; Nwaeze, C.N. Agriculture, globalization, and EF: The role of agriculture beyond the tipping point in the Philippines. Environ. Sci. Pollut. Res. 2022, 29, 54652–54676. [Google Scholar] [CrossRef]
- Sahoo, M.; Sethi, N. The intermittent effects of renewable energy on EF: Evidence from developing countries. Environ. Sci. Pollut. Res. 2021, 28, 56401–56417. [Google Scholar] [CrossRef]
- Denmark Country Commercial Guide. 2024. Available online: https://www.trade.gov/country-commercial-guides/denmark-renewable-energy-products (accessed on 12 January 2025).
Abbreviations for Variables | Variables | Data Source |
---|---|---|
EF | EF | Global Footprint Network |
AGR | Agriculture, forestry, and fishing value-added (% of GDP) | WB |
GDP | Gross domestic product (constant 2015 USD) | WB |
FD | Domestic credit to private sector (% of GDP) | WB |
RENEW | Renewable energy consumption (% of total final energy consumption) | WB |
Variables | Frequency | Minimum Sum of Squared Residuals | F Test | Optimal Lag | Fourier ADF Test Statistic |
---|---|---|---|---|---|
EF | 0.9 | 9.06 × 10−5 | 10.746 * | 2 | −3.298 |
ΔEF | 1.2 | 0.0001 | 3.823 | 2 | −4.826 |
AGR | 0.7 | 0.656 | 3.958 | 1 | −3.010 |
GDP | 3.2 | 0.007 | 2.768 | 1 | −1.919 |
FD | 0.4 | 1.330 | 4.252 | 1 | −2.875 |
RENEW | 0.5 | 0.056 | 3.477 | 6 | −1.264 |
Variables | I(0) | I(1) |
---|---|---|
AGR | −1.811 (0.368) | −5.992 (0.000) |
GDP | −1.910 (0.323) | −3.575 (0.012) |
FD | −1.034 (0.727) | −5.089 (0.000) |
RENEW | 0.513 (0.984) | −6.297 (0.000) |
Model | () | 1% | 5% | 10% | Cointegration Relationship | |
---|---|---|---|---|---|---|
lnEF = f (lnAGR, lnGDP, InFD, lnRENEW) | −5.028 ** | 1 | −5.383 | −4.698 | −4.333 | ✓ |
Intercept | 2.126 (0.000) *** |
LAGR | 0.003 (0.019) ** |
LGDP | 0.028 (0.007) *** |
LFD | 0.002 (0.012) ** |
LRENEW | −0.011 (0.002) *** |
Sin | −0.0001 (0.883) |
Cos | −0.001 (0.033) ** |
Hypothesis | Wald Test Statistic | Asymptotic Probability Value | Bootstrap Probability Value | Appropriate Delay Length | Appropriate Frequency Value |
---|---|---|---|---|---|
lnEF = f (lnAGR, lnGDP, InFD, lnRENEW) | |||||
AGR∕→EF | 0.793 | 0.373 | 0.379 | 1 | 0.7 |
GDP∕→EF | 1.265 | 0.531 | 0.543 | 2 | 0.7 |
FD∕→EF | 0.002 | 0.957 | 0.958 | 1 | 0.6 |
RENEW∕→EF | 7.396 | 0.024 ** | 0.042 ** | 2 | 0.6 |
EF∕→AGR | 0.997 | 0.317 | 0.327 | 1 | 0.7 |
EF∕→GDP | 1.381 | 0.501 | 0.515 | 2 | 0.7 |
EF∕→FD | 4.053 | 0.044 ** | 0.058 * | 1 | 0.6 |
EF∕→RENEW | 0.257 | 0.876 | 0.885 | 2 | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dogan, M.; Georgescu, I.; Çeştepe, H.; Sarıgül, S.S.; Tatar, H.E. Renewable Energy Consumption and the Ecological Footprint in Denmark: Assessing the Influence of Financial Development and Agricultural Contribution. Agriculture 2025, 15, 835. https://doi.org/10.3390/agriculture15080835
Dogan M, Georgescu I, Çeştepe H, Sarıgül SS, Tatar HE. Renewable Energy Consumption and the Ecological Footprint in Denmark: Assessing the Influence of Financial Development and Agricultural Contribution. Agriculture. 2025; 15(8):835. https://doi.org/10.3390/agriculture15080835
Chicago/Turabian StyleDogan, Mesut, Irina Georgescu, Hamza Çeştepe, Sevgi Sümerli Sarıgül, and Havanur Ergün Tatar. 2025. "Renewable Energy Consumption and the Ecological Footprint in Denmark: Assessing the Influence of Financial Development and Agricultural Contribution" Agriculture 15, no. 8: 835. https://doi.org/10.3390/agriculture15080835
APA StyleDogan, M., Georgescu, I., Çeştepe, H., Sarıgül, S. S., & Tatar, H. E. (2025). Renewable Energy Consumption and the Ecological Footprint in Denmark: Assessing the Influence of Financial Development and Agricultural Contribution. Agriculture, 15(8), 835. https://doi.org/10.3390/agriculture15080835