CEFW-YOLO: A High-Precision Model for Plant Leaf Disease Detection in Natural Environments
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Data Annotation
2.3. Data Partitioning and Data Enhancement
2.4. General Technical Route
2.5. The Proposed CEFW-YOLO
2.5.1. CWSConv
2.5.2. C2PSA_ECCAttention
2.5.3. FMLAttention
2.5.4. WIoU Loss Function
3. Results and Discussion
3.1. Model Evaluation
3.2. Comparison of YOLO11n and CEFW-YOLO
3.3. Ablation Experiment
3.4. Comparison Experiment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dutot, M.; Nelson, L.M.; Tyson, R.C. Predicting the Spread of Postharvest Disease in Stored Fruit, with Application to Apples. Postharvest Biol. Technol. 2013, 85, 45–56. [Google Scholar] [CrossRef]
- Yang, R.; He, Y.; Hu, Z.; Gao, R.; Yang, H. CA-YOLOv5: A YOLO Model for Apple Detection in the Natural Environment. Syst. Sci. Control Eng. 2024, 12, 2278905. [Google Scholar] [CrossRef]
- Lv, M.; Su, W.-H. YOLOV5-CBAM-C3TR: An Optimized Model Based on Transformer Module and Attention Mechanism for Apple Leaf Disease Detection. Front. Plant Sci. 2024, 14, 1323301. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Ma, W.; Wang, J.; Yang, M.; Wang, Y.; Wang, C. EADD-YOLO: An Efficient and Accurate Disease Detector for Apple Leaf Using Improved Lightweight YOLOv5. Front. Plant Sci. 2023, 14, 1120724. [Google Scholar] [CrossRef]
- Pavate, A.; Kukreja, S.; Janrao, S.; Bankar, S.; Patil, R.; Bidve, V. Efficient Model for Cotton Plant Health Monitoring via YOLO-Based Disease Prediction. Indones. J. Electr. Eng. Comput. Sci. 2025, 37, 164. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Vijayakumar, A.; Vairavasundaram, S. YOLO-Based Object Detection Models: A Review and Its Applications. Multimed. Tools Appl. 2024, 83, 83535–83574. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot Multibox Detector. Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016, Proceedings, Part I; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar]
- Gong, X.; Zhang, S. A High-Precision Detection Method of Apple Leaf Diseases Using Improved Faster R-CNN. Agriculture 2023, 13, 240. [Google Scholar] [CrossRef]
- Li, X.; Yang, C. Maize Leaf Disease Identification Method Based on Improved Faster R-CNN. In Proceedings of the 2023 IEEE 5th International Conference on Civil Aviation Safety and Information Technology (ICCASIT), Dali, China, 11 October 2023; pp. 961–964. [Google Scholar]
- Bondre, S.; Patil, D. Crop Disease Identification Segmentation Algorithm Based on Mask-RCNN. Agron. J. 2024, 116, 1088–1098. [Google Scholar] [CrossRef]
- Luo, W.; Cai, L.; Yang, Y. Apple Leaf Disease Recognition in Natural Scenes Based on Re-Parameterized SSD Algorithm. In Proceedings of the International Conference on Computer Graphics, Artificial Intelligence, and Data Processing (ICCAID 2022), Guangzhou, China, 23–25 December 2023; Liang, R., Wang, J., Eds.; SPIE: Guangzhou, China, 2023; p. 137. [Google Scholar]
- Yao, X.; Yang, F.; Yao, J. YOLO-Wheat: A Wheat Disease Detection Algorithm Improved by YOLOv8s. IEEE Access 2024, 12, 133877–133888. [Google Scholar] [CrossRef]
- Trinh, T.; Bui, X.; Tran, T.; Nguyen, H.; Ninh, K. Mangosteen Fruit Detection Using Improved Faster R-CNN. Intelligence of Things: Technologies and Applications: The First International Conference on Intelligence of Things (ICIT 2022), Hanoi, Vietnam, 17–19 August 2022, Proceedings; Lecture Notes on Data Engineering and Communications Technologies; Springer International Publishing: Cham, Switzerland, 2022; pp. 366–375. [Google Scholar]
- Du, L.; Sun, Y.; Chen, S.; Feng, J.; Zhao, Y.; Yan, Z.; Zhang, X.; Bian, Y. A Novel Object Detection Model Based on Faster R-CNN for Spodoptera frugiperda According to Feeding Trace of Corn Leaves. Agriculture 2022, 12, 248. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, S.; Wang, C.; Wang, L.; Zhang, Y.; Song, H. Segmentation Method of Zanthoxylum bungeanum Cluster Based on Improved Mask R-CNN. Agriculture 2024, 14, 1585. [Google Scholar] [CrossRef]
- Huang, F.; Li, Y.; Liu, Z.; Gong, L.; Liu, C. A Method for Calculating the Leaf Area of Pak Choi Based on an Improved Mask R-CNN. Agriculture 2024, 14, 101. [Google Scholar] [CrossRef]
- Wang, C.; Yang, G.; Huang, Y.; Liu, Y.; Zhang, Y. A Transformer-Based Mask R-CNN for Tomato Detection and Segmentation. IFS 2023, 44, 8585–8595. [Google Scholar] [CrossRef]
- Guo, W.; Feng, S.; Feng, Q.; Li, X.; Gao, X. Cotton Leaf Disease Detection Method Based on Improved SSD. Int. J. Agric. Biol. Eng. 2024, 17, 211–220. [Google Scholar]
- Zhang, W.; Huang, H.; Sun, Y.; Wu, X. AgriPest-YOLO: A Rapid Light-Trap Agricultural Pest Detection Method Based on Deep Learning. Front. Plant Sci. 2022, 13, 1079384. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, S.; Li, E.; Yang, G.; Liang, Z.; Tan, M. MD-YOLO: Multi-Scale Dense YOLO for Small Target Pest Detection. Comput. Electron. Agric. 2023, 213, 108233. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, T.; Liu, W.; Yuan, C.; Seng, X.; Guo, T.; Wang, X. YOLO-CRD: A Lightweight Model for the Detection of Rice Diseases in Natural Environments. Phyton 2024, 93, 1275–1296. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Y.; Xu, X.; Liu, L.; Yue, J.; Ding, R.; Lu, Y.; Liu, J.; Qiao, H. GVC-YOLO: A Lightweight Real-Time Detection Method for Cotton Aphid-Damaged Leaves Based on Edge Computing. Remote Sens. 2024, 16, 3046. [Google Scholar] [CrossRef]
- Zhao, C.; Bai, C.; Yan, L.; Xiong, H.; Suthisut, D.; Pobsuk, P.; Wang, D. AC-YOLO: Multi-Category and High-Precision Detection Model for Stored Grain Pests Based on Integrated Multiple Attention Mechanisms. Expert Syst. Appl. 2024, 255, 124659. [Google Scholar] [CrossRef]
- Boudaa, B.; Abada, K.; Aichouche, W.A.; Nabil Belakermi, A. Advancing Plant Diseases Detection with Pre-Trained YOLO Models. In Proceedings of the 2024 6th International Conference on Pattern Analysis and Intelligent Systems (PAIS), El Oued, Algeria, 24–25 April 2024; pp. 1–6. [Google Scholar]
- Liu, B.; Huang, X.; Sun, L.; Wei, X.; Ji, Z.; Zhang, H. MCDCNet: Multi-Scale Constrained Deformable Convolution Network for Apple Leaf Disease Detection. Comput. Electron. Agric. 2024, 222, 109028. [Google Scholar] [CrossRef]
- Zeng, W.; Pang, J.; Ni, K.; Peng, P.; Hu, R. Apple Leaf Disease Detection Based on Lightweight YOLOv8-GSSW. Appl. Eng. Agric. 2024, 40, 589–598. [Google Scholar] [CrossRef]
- Zhou, S.; Yin, W.; He, Y.; Kan, X.; Li, X. Detection of Apple Leaf Gray Spot Disease Based on Improved YOLOv8 Network. Mathematics 2025, 13, 840. [Google Scholar] [CrossRef]
- Yan, C.; Yang, K. FSM-YOLO: Apple Leaf Disease Detection Network Based on Adaptive Feature Capture and Spatial Context Awareness. Digit. Signal Process. 2024, 155, 104770. [Google Scholar] [CrossRef]
- Qiu, Z.; Xu, Y.; Chen, C.; Zhou, W.; Yu, G. Enhanced Disease Detection for Apple Leaves with Rotating Feature Extraction. Agronomy 2024, 14, 2602. [Google Scholar] [CrossRef]
- Huo, S.; Duan, N.; Xu, Z. An Improved Multi-scale YOLOv8 for Apple Leaf Dense Lesion Detection and Recognition. IET Image Proc. 2024, 18, 4913–4927. [Google Scholar] [CrossRef]
- Tong, Z.; Chen, Y.; Xu, Z.; Yu, R. Wise-IoU: Bounding Box Regression Loss with Dynamic Focusing Mechanism. arXiv 2023, arXiv:2301.10051. [Google Scholar]
- Zhu, X.; Lyu, S.; Wang, X.; Zhao, Q. TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 11–17 October 2021; pp. 2778–2788. [Google Scholar]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A single-stage object detection framework for industrial applications. arXiv 2022, arXiv:2209.02976. [Google Scholar]
- Wang, C.-Y.; Yeh, I.-H.; Mark Liao, H.-Y. YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. In Proceedings of the Computer Vision—ECCV 2024, Milan, Italy, 29 September–4 October 2024; Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G., Eds.; Lecture Notes in Computer Science. Springer Nature: Cham, Switzerland, 2025; Volume 15089, pp. 1–21, ISBN 978-3-031-72750-4. [Google Scholar]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J. Guiguang Ding Yolov10: Real-time end-to-end object detection. Adv. Neural Inf. Process. Syst. 2024, 37, 107984–108011. [Google Scholar]
Model | P | R | mAP@0.5 | mAP@0.5:0.95 | FPS | FLOPs(G) |
---|---|---|---|---|---|---|
YOLO11n | 0.818 | 0.779 | 0.797 | 0.519 | 103.3 | 6.3 |
CEFW-YOLO | 0.855 | 0.812 | 0.873 | 0.571 | 136.4 | 5.0 |
CWSConv | C2PSA_ECCAttention | FMLAttention | WIoU | P | R | mAP@0.5 | mAP@0.5:0.95 |
---|---|---|---|---|---|---|---|
× | × | × | × | 0.818 | 0.779 | 0.797 | 0.519 |
√ | × | × | × | 0.823 | 0.784 | 0.805 | 0.524 |
× | √ | × | × | 0.820 | 0.787 | 0.802 | 0.522 |
× | × | √ | × | 0.835 | 0.791 | 0.835 | 0.531 |
× | × | × | √ | 0.830 | 0.795 | 0.827 | 0.528 |
√ | √ | × | × | 0.837 | 0.797 | 0.841 | 0.539 |
√ | × | √ | × | 0.839 | 0.799 | 0.847 | 0.545 |
√ | √ | √ | × | 0.842 | 0.800 | 0.855 | 0.556 |
× | √ | √ | √ | 0.845 | 0.804 | 0.865 | 0.562 |
√ | √ | √ | √ | 0.855 | 0.812 | 0.873 | 0.571 |
Model | P | R | mAP@0.5 | mAP@0.5:0.95 | FPS | FLOPs(G) |
---|---|---|---|---|---|---|
FasterRCNN | 0.753 | 0.732 | 0.720 | 0.441 | 25.3 | - |
YOLOv5n | 0.787 | 0.794 | 0.794 | 0.518 | 98.2 | 7.1 |
YOLOv6n | 0.813 | 0.774 | 0.795 | 0.520 | 54.5 | 11.8 |
YOLOv8n | 0.798 | 0.785 | 0.804 | 0.526 | 76.2 | 8.1 |
YOLOv9t | 0.809 | 0.775 | 0.802 | 0.536 | 90.1 | 7.6 |
YOLOv10n | 0.817 | 0.766 | 0.790 | 0.515 | 78.7 | 8.2 |
YOLO11n | 0.818 | 0.779 | 0.797 | 0.519 | 103.3 | 6.3 |
CEFW-YOLO | 0.855 | 0.812 | 0.873 | 0.571 | 136.4 | 5.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, J.; Li, X.; He, Y.; Islam, M.A. CEFW-YOLO: A High-Precision Model for Plant Leaf Disease Detection in Natural Environments. Agriculture 2025, 15, 833. https://doi.org/10.3390/agriculture15080833
Tao J, Li X, He Y, Islam MA. CEFW-YOLO: A High-Precision Model for Plant Leaf Disease Detection in Natural Environments. Agriculture. 2025; 15(8):833. https://doi.org/10.3390/agriculture15080833
Chicago/Turabian StyleTao, Jinxian, Xiaoli Li, Yong He, and Muhammad Adnan Islam. 2025. "CEFW-YOLO: A High-Precision Model for Plant Leaf Disease Detection in Natural Environments" Agriculture 15, no. 8: 833. https://doi.org/10.3390/agriculture15080833
APA StyleTao, J., Li, X., He, Y., & Islam, M. A. (2025). CEFW-YOLO: A High-Precision Model for Plant Leaf Disease Detection in Natural Environments. Agriculture, 15(8), 833. https://doi.org/10.3390/agriculture15080833