Effects of Water-Saving and Controlled Drainage Water Management on Growth Indices of Mechanically Transplanted Rice Under Side Deep Fertilization Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Experimental Area
2.2. Experimental Materials
2.3. Experimental Design
2.4. Observation Index and Methods
2.5. Statistical Analysis
3. Results
3.1. Growth and Physiological Indices
3.1.1. Root Volume and Root-to-Shoot Ratio
3.1.2. Stem Node Spacing Length
3.1.3. Stem Diameter
3.1.4. Plant Height and Tillering Dynamics
3.1.5. Leaf Area Index and Dry Matter Accumulation
3.2. Correlation Analysis Between Soil Temperature and Various Growth Indices
3.2.1. Soil Temperature
3.2.2. Correlation Between Soil Temperature and Various Indices
3.3. Yield and Water Productivity
4. Discussion
4.1. Effects of Water-Saving and Controlled Drainage on Growth Indices of Rice Under Side Deep Fertilization Conditions
4.2. Effects of Water-Saving and Controlled Drainage on Water Resource Utilization Under Side Deep Fertilization Conditions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, Q.; Dai, Y.; Wei, J.; Wang, J.; Liao, B.; Cui, Y. Rice yield and water productivity in response to water-saving irrigation practices in China: A meta-analysis. Agric. Water Manag. 2024, 302, 109006. [Google Scholar] [CrossRef]
- Li, S.-h.; Yang, C.-h.; Yi, X.-x.; Zheng, F.-x.; Du, X.-z.; Sheng, F. Influence of γ-PGA on greenhouse gas emissions and grain yield from paddy rice under different rice varieties. Sci. Total Environ. 2024, 948, 174649. [Google Scholar] [CrossRef]
- Liu, W.; Yao, B.; Xu, Y.; Dai, S.; Wang, M.; Ma, J.; Ye, Z.; Liu, D. Biogas digestate as a potential nitrogen source enhances soil fertility, rice nitrogen metabolism and yield. Field Crops Res. 2024, 318, 109568. [Google Scholar] [CrossRef]
- Zou, T.; Meng, F.; Zhou, J.; Ying, H.; Liu, X.; Hou, Y.; Zhao, Z.; Zhang, F.; Xu, W. Quantifying nitrogen and phosphorus losses from crop and livestock production and mitigation potentials in Erhai Lake Basin, China. Agric. Syst. 2023, 211, 103745. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Y.; Dong, Y.; He, Z.; Wang, P.; Zheng, H.; He, J.; Zeng, W. Modeling the response of agricultural non-point source pollution to planting structure and fertilization level in Erhai Lake Basin under low-latitude plateau climate. Ecol. Indic. 2023, 154, 110829. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Zhang, Y.; McDaniel, M.D.; Sun, L.; Su, W.; Fan, X.; Liu, S.; Xiao, X. Water-saving irrigation is a ‘win-win’ management strategy in rice paddies–With both reduced greenhouse gas emissions and enhanced water use efficiency. Agric. Water Manag. 2020, 228, 105889. [Google Scholar] [CrossRef]
- Cheng, H.; Shu, K.; Zhu, T.; Wang, L.; Liu, X.; Cai, W.; Qi, Z.; Feng, S. Effects of alternate wetting and drying irrigation on yield, water and nitrogen use, and greenhouse gas emissions in rice paddy fields. J. Clean. Prod. 2022, 349, 131487. [Google Scholar] [CrossRef]
- Jiang, Z.; Yang, S.; Smith, P.; Abdalla, M.; Pang, Q.; Xu, Y.; Qi, S.; Hu, J. Development of DNDC-BC model to estimate greenhouse gas emissions from rice paddy fields under combination of biochar and controlled irrigation management. Geoderma 2023, 433, 116450. [Google Scholar] [CrossRef]
- Zhu, K.; Zhou, T.; Li, Z.; Zhang, W.; Wang, Z.; Gu, J.; Yang, J. Controlled irrigation can mitigate the greenhouse effects of rice paddy fields with long-term straw return and stimulate microbial necromass carbon accumulation. Field Crops Res. 2024, 317, 109571. [Google Scholar] [CrossRef]
- Zhuang, Y.; Zhang, L.; Li, S.; Liu, H.; Zhai, L.; Zhou, F.; Ye, Y.; Ruan, S.; Wen, W. Effects and potential of water-saving irrigation for rice production in China. Agric. Water Manag. 2019, 217, 374–382. [Google Scholar] [CrossRef]
- Chen, P.; Xu, J.; Zhang, Z.; Nie, T. ‘Preferential’ ammonium uptake by rice does not always turn into higher N recovery of fertilizer sources under water-saving irrigation. Agric. Water Manag. 2022, 272, 107867. [Google Scholar] [CrossRef]
- Ali, M.A.; Hassan, M.R.; Islam, Z.A.; Barman, S.C.; Khan, B.; Khatun, R.; Hiya, H.J.; Islam, M.T. Development of Environment Friendly Paddy Ecosystem for Sustainable Rice Farming through Soil Amendments with Biochar and Alternate Wetting-Drying Irrigations. Am. J. Clim. Chang. 2021, 10, 581–596. [Google Scholar] [CrossRef]
- Li, T.; Feng, Y.; Zhu, A.; Huang, J.; Wang, H.; Li, S.; Liu, K.; Peng, R.; Zhang, H.; Liu, L. Effects of Main Water-saving Irrigation Methods on Morphological and Physiological Traits of Rice Roots. Chin. J. Rice Sci. 2019, 33, 293–302. (In Chinese) [Google Scholar] [CrossRef]
- Cao, X.C.; Wu, L.L.; Lu, R.H.; Zhu, L.F.; Zhang, J.H.; Jin, Q.Y. Irrigation and fertilization management to optimize rice yield, water productivity and nitrogen recovery efficiency. Irrig. Sci. 2021, 39, 235–249. [Google Scholar] [CrossRef]
- Wang, Z.; Shao, G.; Lu, J.; Zhang, K.; Gao, Y.; Ding, J. Effects of controlled drainage on crop yield, drainage water quantity and quality: A meta-analysis. Agric. Water Manag. 2020, 239, 106253. [Google Scholar] [CrossRef]
- Yu, S.; Li, S.; Gao, S.; Wang, M.; Meng, J.; Tang, S. Effect of controlled irrigation and drainage on water saving, nitrogen and phosphorus loss reduction with high yield in paddy field. Trans. Chin. Soc. Agric. Eng. 2018, 34, 128–136. (In Chinese) [Google Scholar]
- Xiao, M.H.; Hu, X.J.; Chu, L.L. Experimental study on water-saving and emission-reduction effects of controlled drainage technology. Water Sci. Eng. 2015, 8, 7. [Google Scholar] [CrossRef]
- He, Y.; Jianyun, Z.; Shihong, Y.; Dalin, H.; Junzeng, X. Effect of controlled drainage on nitrogen losses from controlled irrigation paddy fields through subsurface drainage and ammonia volatilization after fertilization. Agric. Water Manag. 2019, 221, 231–237. [Google Scholar] [CrossRef]
- Wang, K.; Yuan, X.; Cao, X.; Gao, Z.; Jiang, S.; Li, J.; Wang, Y. Variation in Paddy Soil Nitrogen as Impacted by Combination of Deep Rainfall Storage and Controlled Drainage. J. Irrig. Drain. 2022, 41, 40–48. (In Chinese) [Google Scholar] [CrossRef]
- Li, L.; Wang, Y.; Nie, L.; Ashraf, U.; Wang, Z.; Zhang, Z.; Wu, T.; Tian, H.; Hamoud, Y.A.; Tang, X.; et al. Deep placement of nitrogen fertilizer increases rice yield and energy production efficiency under different mechanical rice production systems. Field Crops Res. 2022, 276, 108359. [Google Scholar] [CrossRef]
- Chen, L.; Yi, Y.; Wang, W.; Zeng, Y.; Tan, X.; Wu, Z.; Chen, X.; Pan, X.; Shi, Q.; Zeng, Y. Innovative furrow ridging fertilization under a mechanical direct seeding system improves the grain yield and lodging resistance of early indica rice in South China. Field Crops Res. 2021, 270, 108184. [Google Scholar] [CrossRef]
- Shan, S.; Jiang, P.; Fang, S.; Cao, F.; Zhang, H.; Chen, J.; Yin, X.; Tao, Z.; Lei, T.; Huang, M.; et al. Printed sowing improves grain yield with reduced seed rate in machine-transplanted hybrid rice. Field Crops Res. 2020, 245, 107676. [Google Scholar] [CrossRef]
- Cheng, S.; Xing, Z.; Tian, C.; Liu, M.; Feng, Y.; Zhang, H. Optimized tillage methods increase mechanically transplanted rice yield and reduce the greenhouse gas emissions. J. Integr. Agric. 2024, 23, 1150–1163. [Google Scholar] [CrossRef]
- Zhong, X.; Peng, J.; Kang, X.; Wu, Y.; Luo, G.; Hu, W.; Zhou, X. Optimizing agronomic traits and increasing economic returns of machine-transplanted rice with side-deep fertilization of double-cropping rice system in southern China. Field Crops Res. 2021, 270, 108191. [Google Scholar] [CrossRef]
- Zhao, C.; Huang, H.; Qian, Z.-h.; Jiang, H.-x.; Liu, G.-m.; Xu, K.; Hu, Y.-j.; Dai, Q.-g.; Huo, Z.-y. Effect of side deep placement of nitrogen on yield and nitrogen use efficiency of single season late japonica rice. J. Integr. Agric. 2021, 20, 1487–1502. [Google Scholar] [CrossRef]
- Liu, T.Q.; Fan, D.J.; Zhang, X.X.; Chen, J.; Li, C.F.; Cao, C.G. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China. Field Crops Res. 2015, 184, 80–90. [Google Scholar] [CrossRef]
- Zhong, X.; Zhou, X.; Fei, J.; Huang, Y.; Wang, G.; Kang, X.; Hu, W.; Zhang, H.; Rong, X.; Peng, J. Reducing ammonia volatilization and increasing nitrogen use efficiency in machine-transplanted rice with side-deep fertilization in a double-cropping rice system in Southern China. Agric. Ecosyst. Environ. 2021, 306, 107183. [Google Scholar] [CrossRef]
- Gui, R.; Wang, Z.; Pan, S.; Zhang, M.; Tang, X.; Mo, Z. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice. Sci. Agric. Sin. 2022, 55, 1529–1545. (In Chinese) [Google Scholar]
- Ding, H.; Jiang, Y.; Cao, C. Deep rice root systems reduce methane emissions in rice paddies. Plant Soil 2021, 468, 337–352. [Google Scholar] [CrossRef]
- Liao, S.; Deng, F.; Zhou, W.; Wang, L.; Li, W.; Hu, H.; Pu, S.-l.; Li, S.-x.; Chen, Y.; Tao, Y.-f.; et al. Polypeptide urea increases rice yield and nitrogen use efficiency through root growth improvement. Field Crops Res. 2024, 313, 109415. [Google Scholar] [CrossRef]
- Xu, G.-w.; Lu, D.-K.; Wang, H.-Z.; Li, Y. Morphological and physiological traits of rice roots and their relationships to yield and nitrogen utilization as influenced by irrigation regime and nitrogen rate. Agric. Water Manag. 2018, 203, 385–394. [Google Scholar] [CrossRef]
- Lan, C.; Zou, J.; Xu, H.; Qin, B.; Li, J.; Chen, T.; Weng, P.; Lin, W.; Shen, L.; Wang, W.; et al. Enhanced strategies for water and fertilizer management to optimize yields and promote environmental sustainability in the mechanized harvesting of ratoon rice in Southeast China. Agric. Water Manag. 2024, 302, 108956. [Google Scholar] [CrossRef]
- Shao, Z.; Gu, J.; He, L.; Xu, Y.; Shang, B.; Feng, Z. Effects of elevated ozone, warming, and their interactions on the stem lodging resistance of rice under fully open-field conditions. Agric. Ecosyst. Environ. 2024, 376, 109249. [Google Scholar] [CrossRef]
- Sasi, M.; Awana, M.; Samota, M.K.; Tyagi, A.; Kumar, S.; Sathee, L.; Krishnan, V.; Praveen, S.; Singh, A. Plant growth regulator induced mitigation of oxidative burst helps in the management of drought stress in rice (Oryza sativa L.). Environ. Exp. Bot. 2021, 185, 104413. [Google Scholar] [CrossRef]
- Zhang, X.; Xing, R.; Ding, Y.; Yu, J.; Wang, R.; Li, X.; Yang, Z.; Zhuang, L. Overexpression of gibberellin 2-oxidase 4 from tall fescue affected plant height, tillering and drought tolerance in rice. Environ. Exp. Bot. 2023, 205, 105118. [Google Scholar] [CrossRef]
- Fukuda, S.; Koba, K.; Okamura, M.; Watanabe, Y.; Hosoi, J.; Nakagomi, K.; Maeda, H.; Kondo, M.; Sugiura, D. Novel technique for non-destructive LAI estimation by continuous measurement of NIR and PAR in rice canopy. Field Crops Res. 2021, 263, 108070. [Google Scholar] [CrossRef]
- Huang, M.; Tao, Z.; Lei, T.; Cao, F.; Chen, J.; Yin, X.; Zou, Y.; Liang, T. Improving lodging resistance while maintaining high grain yield by promoting pre-heading growth in rice. Field Crops Res. 2021, 270, 108212. [Google Scholar] [CrossRef]
- Shao, G.C.; Deng, S.; Liu, N.; Yu, S.E.; Wang, M.H.; She, D.L. Effects of controlled irrigation and drainage on growth, grain yield and water use in paddy rice. Eur. J. Agron. 2014, 53, 1–9. [Google Scholar] [CrossRef]
- Hou, R.-j.; Li, T.-x.; Fu, Q.; Liu, D.; Li, M.; Zhou, Z.-q.; Yan, J.-w.; Zhang, S. Research on the distribution of soil water, heat, salt and their response mechanisms under freezing conditions. Soil Tillage Res. 2020, 196, 104486. [Google Scholar] [CrossRef]
- Tian, Y.; Shi, C.; Malo, C.U.; Kengdo, S.K.; Heinzle, J.; Inselsbacher, E.; Ottner, F.; Borken, W.; Michel, K.; Schindlbacher, A. Long-term soil warming decreases microbial phosphorus utilization by increasing abiotic phosphorus sorption and phosphorus losses. Nat. Commun. 2023, 14, 864. [Google Scholar] [CrossRef]
- Munir, R.; Jan, M.; Muhammad, S.; Afzal, M.; Jan, N.; Yasin, M.U.; Munir, I.; Iqbal, A.; Yang, S.; Zhou, W.; et al. Detrimental effects of Cd and temperature on rice and functions of microbial community in paddy soils. Environ. Pollut. 2023, 324, 121371. [Google Scholar] [CrossRef]
- Yin, Z.; Ma, L.; Li, Z.; Feng, H.; Jiang, X. Impact of high temperature on soil water, heat and salt in purple paddy fields under different tillage patterns. Acta Prataculturae Sin. 2024, 33, 80–91. (In Chinese) [Google Scholar]
- Johnson, J.-M.; Becker, M.; Dossou-Yovo, E.R.; Saito, K. Improving rice yield and water productivity in dry climatic zones of West Africa: Season-specific strategies. Field Crops Res. 2024, 316, 109519. [Google Scholar] [CrossRef]
- Pang, G.; Xu, Z.; Yang, S.; Xu, J. Influence Factors Analysis of Rice Leaf Water Use Efficiency under Controlled Irrigation. Trans. Chin. Soc. Agric. Mach. 2017, 48, 233–241. (In Chinese) [Google Scholar]
- Zhang, Z.; Chen, P.; Zheng, E.; Nie, T.; Chen, S.; Li, W. Effect of Different Water and Nitrogen Managements on Rice Leaf Water Use Efficiency Based on Δ13C. Trans. Chin. Soc. Agric. Mach. 2018, 49, 303–312. (In Chinese) [Google Scholar]
- Yan, J.; Wu, Q.; Qi, D.; Zhu, J. Rice yield, water productivity, and nitrogen use efficiency responses to nitrogen management strategies under supplementary irrigation for rain-fed rice cultivation. Agric. Water Manag. 2022, 263, 107486. [Google Scholar] [CrossRef]
- Majumdar, A.; Dubey, P.K.; Giri, B.; Moulick, D.; Srivastava, A.K.; Roychowdhury, T.; Bose, S.; Jaiswal, M.K. Combined effects of dry-wet irrigation, redox changes and microbial diversity on soil nutrient bioavailability in the rice field. Soil Tillage Res. 2023, 232, 105752. [Google Scholar] [CrossRef]
- Alhaj Hamoud, Y.; Shaghaleh, H.; Guo, X.; Zhang, K. pH-responsive/sustained release nitrogen fertilizer hydrogel improves yield, nitrogen metabolism, and nitrogen use efficiency of rice under alternative wetting and moderate drying irrigation. Environ. Exp. Bot. 2023, 211, 105376. [Google Scholar] [CrossRef]
- Akter, J.; Islam, M.T.; Jahan, N.; Rahman, M.M.; Amin, M.G.M.; Hossain, M.T.; Adham, A.K.M. Impact of dairy wastewater on paddy rice cultivation, leachate microbes, and soil health under alternate wetting and drying irrigation. Paddy Water Environ. 2025, 23, 179–195. [Google Scholar] [CrossRef]
- Lyu, T.; Shen, J.; Ma, J.; Ma, P.; Yang, Z.; Dai, Z.; Zheng, C.; Li, M. Hybrid rice yield response to potted-seedling machine transplanting and slow-release nitrogen fertilizer application combined with urea topdressing. Crop J. 2021, 9, 915–923. [Google Scholar] [CrossRef]
- Hossen, M.A.; Hossain, M.M.; Haque, M.E.; Bell, R.W. Transplanting into non-puddled soils with a small-scale mechanical transplanter reduced fuel, labour and irrigation water requirements for rice (Oryza sativa L.) establishment and increased yield. Field Crops Res. 2018, 225, 141–151. [Google Scholar] [CrossRef]
- Zhang, M.; Yao, Y.; Zhao, M.; Zhang, B.; Tian, Y.; Yin, B.; Zhu, Z. Integration of urea deep placement and organic addition for improving yield and soil properties and decreasing N loss in paddy field. Agric. Ecosyst. Environ. 2017, 247, 236–245. [Google Scholar] [CrossRef]
- Chatterjee, D.; Mohanty, S.; Guru, P.K.; Swain, C.K.; Tripathi, R.; Shahid, M.; Kumar, U.; Kumar, A.; Bhattacharyya, P.; Gautam, P. Comparative assessment of urea briquette applicators on greenhouse gas emission, nitrogen loss and soil enzymatic activities in tropical lowland rice. Agric. Ecosyst. Environ. 2017, 252, 178–190. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, X.; Li, J.; Zhao, H.; Jin, F.; Zhou, B. Analysis and evaluation of the treatment and reuse of tailwater: A case study in Erhai Lake. J. Clean. Prod. 2021, 327, 129435. [Google Scholar] [CrossRef]
- Crézé, C.M.; Madramootoo, C.A. Water table management and fertilizer application impacts on CO2, N2O and CH4 fluxes in a corn agro-ecosystem. Sci. Rep. 2019, 9, 2692. [Google Scholar] [CrossRef]
- Chaurasiya, A.; Dutta, S.K.; Singh, A.K.; Kumar, S.; Kohli, A.; Homa, F.; Kumar, A.; Gathala, M.K.; Laing, A.M. Layering smart management practices to sustainably maintain rice yields and improve water use efficiency in eastern India. Field Crops Res. 2022, 275, 108341. [Google Scholar] [CrossRef]
Fertilization Date (MM/DD) | Fertilization Type | Fertilizers and Application Amounts | Nutrient Inputs/(kg ha−1) | ||
---|---|---|---|---|---|
N | P2O5 | K2O | |||
9 May 2023 | Base fertilizer | (1) Green source organic fertilizer (N-P2O5-K2O = 2.84%-4.96%-2.02%), 1200 kg ha−1; (2) Jiuyuan organic bio-fertilizer (N-P2O5-K2O = 3%-1%-1.7%), 1500 kg ha−1; | 39.54 | 74.52 | 49.74 |
20 May 2023 | Base fertilizer | Green intelligent rice special fertilizer (compound fertilizer: N-P2O5-K2O = 15%-11%-14%), 525 kg/ha; | 78.75 | 57.75 | 73.5 |
31 May 2023 | Tillering fertilizer | Urea (TN ≥ 46.5%), 225 kg ha−1; | 104.54 | / | / |
20 July 2023 | Panicle fertilizer | Potassium chloride (K2O ≥ 60%), 45 kg ha−1; | / | / | 27 |
19 May 2024 | Base fertilizer | (1) Green intelligent rice special fertilizer (compound fertilizer: N-P2O5-K2O = 15%-11%-14%), 600 kg ha−1; (2) Yuyuanwo biological bacterial fertilizer (N-P2O5-K2O = 3.22%-3.67%-3.05%), 600 kg ha−1 | 109.32 | 88 | 102.3 |
9 June 2024 | Tillering fertilizer | Urea (TN ≥ 46.5%), 225 kg ha−1; | 104.54 | / | / |
25 July 2024 | Panicle fertilizer | Potassium chloride (K2O ≥ 60%), 75 kg ha−1; | / | / | 45 |
Treatment | Depth of Water | Rice Growth Stages | |||||||
---|---|---|---|---|---|---|---|---|---|
Recovery Stage | Pre-Tillering Stage | Mid-Tillering Stage | Post-Tillering Stage | Panicle Initiation Stage | Heading and Flowering Stage | Milk-Ripe Stage | Ripening Stage | ||
CKCD | Upper limit (mm) | 25 | 50 | 50 | 50 | 50 | 50 | 50 | Natural drying |
Lower limit (mm) | 5 | 100% θs | 100% θs | 100% θs | 100% θs | 100% θs | 100% θs | ||
Storage depth (mm) | 25 | 1/3 H | 1/3 H | 50 | 1/4 H | 1/4 H | 1/4 H | ||
CCD | Upper limit (mm) | 25 | 100% θs | 100% θs | 100% θs | 100% θs | 100% θs | 100% θs | |
Lower limit (mm) | 5 | 80% θs | 70% θs | 65% θs | 80% θs | 85% θs | 75% θs | ||
Storage depth (mm) | 25 | 1/3 H | 1/3 H | 50 | 1/3 H | 1/3 H | 1/3 H | ||
Storage duration/d | 2 | 2 | 2 | 3 | 3 | 3 | |||
Root observation depth (mm) | 0–200 | 0–200 | 0–200 | 0–300 | 0–400 | 0–400 |
Year | Treatments | Irrigation Amounts (mm) | Yields (kg ha−1) | Irrigation Productivity (kg m−3) |
---|---|---|---|---|
2023 | CKCD | 773.3 | 11,574.2 | 1.5 |
CCD | 562.2 | 12,322.7 | 2.2 | |
2024 | CKCD | 889.6 | 11,121.2 | 1.3 |
CCD | 422.1 | 11,542.2 | 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liu, Q.; Chen, L.; Lu, Q.; Li, S.; Hu, N.; Qiu, S.; Wang, S. Effects of Water-Saving and Controlled Drainage Water Management on Growth Indices of Mechanically Transplanted Rice Under Side Deep Fertilization Conditions. Agriculture 2025, 15, 803. https://doi.org/10.3390/agriculture15080803
Wang Y, Liu Q, Chen L, Lu Q, Li S, Hu N, Qiu S, Wang S. Effects of Water-Saving and Controlled Drainage Water Management on Growth Indices of Mechanically Transplanted Rice Under Side Deep Fertilization Conditions. Agriculture. 2025; 15(8):803. https://doi.org/10.3390/agriculture15080803
Chicago/Turabian StyleWang, Ying, Qingsheng Liu, Lihong Chen, Qilin Lu, Shiwei Li, Neng Hu, Shitong Qiu, and Shufang Wang. 2025. "Effects of Water-Saving and Controlled Drainage Water Management on Growth Indices of Mechanically Transplanted Rice Under Side Deep Fertilization Conditions" Agriculture 15, no. 8: 803. https://doi.org/10.3390/agriculture15080803
APA StyleWang, Y., Liu, Q., Chen, L., Lu, Q., Li, S., Hu, N., Qiu, S., & Wang, S. (2025). Effects of Water-Saving and Controlled Drainage Water Management on Growth Indices of Mechanically Transplanted Rice Under Side Deep Fertilization Conditions. Agriculture, 15(8), 803. https://doi.org/10.3390/agriculture15080803