Correction: Wang, M.; Li, T. Pest and Disease Prediction and Management for Sugarcane Using a Hybrid Autoregressive Integrated Moving Average—A Long Short-Term Memory Model. Agriculture 2025, 15, 500
- Xu, D.; Zhang, Q.; Ding, Y.; Zhang, D. Application of a hybrid ARIMA-LSTM model based on the SPEI for drought forecasting. Environ. Sci. Pollut. Res. 2021, 29, 4128–4144.
- Donatelli, M.; Magarey, R.D.; Bregaglio, S.; Willocquet, L.; Whish, J.; Savary, S. Modelling the impacts of pests and diseases on agricultural systems. Agric. Syst. 2017, 155, 213–224.
- Suresh, K.K.; Priya, S.R.K. Forecasting sugarcane yield of Tamilnadu using ARIMA models. Sugar Tech 2011, 13, 23–26.
- Materne, N.; Inoue, M. Potential of IoT System and Cloud Services for Predicting Agricultural Pests and Diseases. In Proceedings of the IEEE Region Ten Symposium (Tensymp), Sydney, NSW, Australia, 4–6 July 2018; pp. 298–299.
- Fan, D.; Sun, H.; Yao, J.; Zhang, K.; Yan, X.; Sun, Z.X. Well production forecasting based on ARIMA-LSTM model considering manual operations. Energy 2021, 220, 119708. https://doi.org/10.1016/j.energy.2020.119708.
- Grünig, M.; Razavi, E.; Calanca, P.; Mazzi, D.; Wegner, J.D.; Pellissier, L. Applying deep neural networks to predict incidence and phenology of plant pests and diseases. Ecosphere 2021, 12, e03791.
- Fenu, G.; Malloci, F. An Application of Machine Learning Technique in Forecasting Crop Disease. In Proceedings of the 3rd International Conference on Big Data Research, Paris, France, 20–22 November 2019.
- Temraz, M.; Kenny, E.; Ruelle, E.; Shalloo, L.; Smyth, B.; Keane, M. Handling Climate Change Using Counterfactuals: Using Counterfactuals in Data Augmentation to Predict Crop Growth in an Uncertain Climate Future. In Case-Based Reasoning Research and Development: 29th International Conference, ICCBR 2021, Salamanca, Spain, 13–16 September 2021; Proceedings 29; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 216–231.
- Jain, S.; Ramesh, D. AI based hybrid CNN-LSTM model for crop disease prediction: An ML advent for rice crop. In Proceedings of the 12th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kharagpur, India, 6–8 July 2021.
- Jin, Y.; Wang, R.; Zhuang, X.; Wang, K.; Wang, C. Prediction of COVID-19 data using an ARIMA-LSTM hybrid forecast model. Mathematics 2022, 10, 4001.
- Sara, D.; Maharani Mdd Amin, H.F.; Triana, Y.S. Application of Artificial Intelligence in Modern Ecology for Detecting Plant Pests and Animal Diseases. Int. J. Quant. Res. Model. 2021, 2, 83–90.
- Garrett, K.; Bebber, D.; Etherton, B.; Gold, K.; Sulá, A.I.P.; Selvaraj, M. Climate Change Effects on Pathogen Emergence: Artificial Intelligence to Translate Big Data for Mitigation. Annu. Rev. Phytopathol. 2022, 60, 357–378.
- Guo, Y.; Feng, Y.; Qu, F.; Zhang, L.; Yan, B.; Lv, J. Prediction of hepatitis E using machine learning models. PLoS ONE 2020, 15, e0237750.
- Dhawan, N.; Kukreja, V.; Sharma, R.; Vats, S.; Verma, A. Deep learning-based sugarcane downy mildew disease detection using CNN-LSTM ensemble model for severity level classification. In Proceedings of the 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), Delhi, India, 6–8 July 2023.
- Taylor, R.A.; Ryan, S.; Lippi, C.; Hall, D.; Narouei-Khandan, H.A.; Rohr, J.R.; Johnson, L. Predicting the fundamental thermal niche of crop pests and diseases in a changing world: A case study on citrus greening. J. Appl. Ecol. 2019, 56, 2057–2068.
- Peters, D.; McVey, D.S.; Elias, E.; Pelzel-McCluskey, A.; Derner, J.; Burruss, N.; Schrader, T.S.; Yao, J.; Pauszek, S.; Lombard, J.; et al. Big data–model integration and AI for vector-borne disease prediction. Ecosphere 2020, 11, e03157.
- Skendžić, S.; Zovko, M.; Živković, I.; Lešić, V.; Lemić, D. The Impact of Climate Change on Agricultural Insect Pests. Insects 2021, 12, 440.
- Hodson, D.; White, J.W.; Reynolds, M. GIS and crop simulation modelling applications in climate change research. Clim. Change Crop Prod. 2010, 245–262. Available online: https://www.cabidigitallibrary.org/doi/abs/10.1079/9781845936334.0245 (accessed on 12 February 2025).
- Chen, P.; Xiao, Q.; Zhang, J.; Xie, C.; Wang, B. Occurrence prediction of cotton pests and diseases by bidirectional long short-term memory networks with climate and atmosphere circulation. Comput. Electron. Agric. 2020, 176, 105612.
- Tonnang, H.; Hervé, B.; Biber-Freudenberger, L.; Salifu, D.; Subramanian, S.; Ngowi, V.; Guimapi, R.; Anani, B.; Kakmeni, F.; Affognon, H.; et al. Advances in crop insect modelling methods—Towards a whole system approach. Ecol. Model. 2017, 354, 88–103.
- Jung, J.; Maeda, M.; Chang, A.; Bhandari, M.; Ashapure, A.; Landivar-Bowles, J. The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Curr. Opin. Biotechnol. 2020, 70, 15–22.
- Bukhari, A.H.; Raja, M.; Sulaiman, M.; Islam, S.; Shoaib, M. Fractional neuro-sequential ARFIMA-LSTM for financial market forecasting. IEEE Access 2020, 8, 71326–71338.
- Sakshi, K.; Vijayalakshmi, A. An ARIMA-LSTM hybrid model for stock market prediction using live data. J. Eng. Sci. Technol. Rev. 2020, 13, 61–64.
- Vivek, S.; Jesma, V. The changing phase of agriculture: Artificial intelligence. AgricINTERNATIONAL 2019, 6, 33.
- Xiang, C.S.; Zhou, Z.Y.; Wu, L.N. Dendrolimus punctatus forecasting based on hybrid ARIMA and dynamic SVM model. J. Hunan Agric. Univ. 2010, 36, 430–433.
- Turkoglu, M.; Hanbay, D.; Şengur, A. Multi-model LSTM-based convolutional neural networks for detection of apple diseases and pests. J. Ambient Intell. Humaniz. Comput. 2019, 13, 3335–3345.
- Scherm, H. Climate change: Can we predict the impacts on plant pathology and pest management? Can. J. Plant Pathol. 2004, 26, 267–273.
- Rani, R.; Sahoo, J.; Bellamkonda, S.; Kumar, S.; Pippal, S. Role of Artificial Intelligence in Agriculture: An Analysis and Advancements With Focus on Plant Diseases. IEEE Access 2023, 11, 137999–138019.
Reference
- Wang, M.; Li, T. Pest and Disease Prediction and Management for Sugarcane Using a Hybrid Autoregressive Integrated Moving Average—A Long Short-Term Memory Model. Agriculture 2025, 15, 500. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Li, T. Correction: Wang, M.; Li, T. Pest and Disease Prediction and Management for Sugarcane Using a Hybrid Autoregressive Integrated Moving Average—A Long Short-Term Memory Model. Agriculture 2025, 15, 500. Agriculture 2025, 15, 774. https://doi.org/10.3390/agriculture15070774
Wang M, Li T. Correction: Wang, M.; Li, T. Pest and Disease Prediction and Management for Sugarcane Using a Hybrid Autoregressive Integrated Moving Average—A Long Short-Term Memory Model. Agriculture 2025, 15, 500. Agriculture. 2025; 15(7):774. https://doi.org/10.3390/agriculture15070774
Chicago/Turabian StyleWang, Minghui, and Tong Li. 2025. "Correction: Wang, M.; Li, T. Pest and Disease Prediction and Management for Sugarcane Using a Hybrid Autoregressive Integrated Moving Average—A Long Short-Term Memory Model. Agriculture 2025, 15, 500" Agriculture 15, no. 7: 774. https://doi.org/10.3390/agriculture15070774
APA StyleWang, M., & Li, T. (2025). Correction: Wang, M.; Li, T. Pest and Disease Prediction and Management for Sugarcane Using a Hybrid Autoregressive Integrated Moving Average—A Long Short-Term Memory Model. Agriculture 2025, 15, 500. Agriculture, 15(7), 774. https://doi.org/10.3390/agriculture15070774