Impact of High Nitrogen Doses and Living Mulch on Growth, Yield and Fruit Quality of Young Apple Trees (cv. ‘Sampion’)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
2.2. Agrotechnical Methods in Experiment
2.3. Evaluation of Tree Growth, Yield and Fruit Quality
2.4. Estimation of Nutritional Status of Trees
2.5. Weather Conditions
2.6. Statistical Processing of Data
3. Results and Discussion
3.1. Growth of Trees
Floor Management and Dose of N (kg ha−1) | Total Number of Annual Shoots | Total Length of Annual Shoots 2015–2016 (cm·Tree−1) | Trunk Cross Sectional Area (cm2) | % of Dead Trees Up to the End of 2020 ° | |||||
---|---|---|---|---|---|---|---|---|---|
2015 | 2016 | Total 2015–2016 | 2015 | 2020 | Incerase 2015–2020 | ||||
Means for interaction: N dose (D) × floor management (FM) | |||||||||
HF | 50 | 9 a | 18 a | 27 a | 242 a | 1.20 a | 7.91 a | 6.71 a | 58 |
80 | 9 a | 26 a | 35 a | 406 a | 1.37 a | 5.57 a | 4.20 a | 25 | |
110 | 10 a | 25 a | 35 a | 466 a | 1.39 a | 7.28 a | 5.90 a | 8 | |
140 | 10 a | 26 a | 36 a | 379 a | 1.27 a | 5.59 a | 4.32 a | 8 | |
LM 2 | 50 | 11 a | 26 a | 37 a | 424 a | 1.31 a | 4.60 a | 3.29 a | 25 |
80 | 10 a | 25 a | 35 a | 388 a | 1.33 a | 4.95 a | 3.61 a | – | |
110 | 11 a | 29 a | 40 a | 433 a | 1.35 a | 5.17 a | 3.82 a | 8 | |
140 | 9 a | 29 a | 38 a | 513 a | 1.50 a | 5.99 a | 4.49 a | – | |
LM 4 | 50 | – | – | – | – | 1.36 a | 5.02 a | 3.66 a | 25 |
80 | – | – | – | – | 1.18 a | 4.56 a | 3.38 a | 33 | |
110 | – | – | – | – | 1.35 a | 4.59 a | 3.24 a | – | |
140 | – | – | – | – | 1.34 a | 5.65 a | 4.31 a | – | |
Statistical significance D × FM | NS | NS | NS | NS | NS | NS | NS | – | |
Means for N doses (D) | |||||||||
50 | 10 a | 22 a | 32 a | 333 a | 1.29 a | 5.84 a | 4.55 a | 36 | |
80 | 10 a | 26 a | 36 a | 397 a | 1.29 a | 5.03 a | 3.73 a | 20 | |
110 | 11 a | 27 a | 38 a | 450 a | 1.36 a | 5.68 a | 4.32 a | 5 | |
140 | 10 a | 28 a | 38 a | 446 a | 1.37 a | 5.74 a | 4.37 a | 3 | |
Statistical significance | NS | NS | NS | NS | NS | NS | NS | – | |
Means for floor managements (FM) | |||||||||
HF | 10 a | 24 a | 34 a | 373 a | 1.31 a | 6.59 b | 5.28 b | 25 | |
LM 2 | 10 a | 27 a | 37 a | 440 a | 1.37 a | 5.18 a | 3.80 a | 8 | |
LM 4 | – | – | – | – | 1.31 a | 4.96 a | 3.65 a | 15 | |
Statistical significance | NS | NS | NS | NS | NS | * | ** | – |
3.2. N Status of Tree
3.3. Mg, K, and P Status of Tree
3.4. Yield of Tree and Crop Efficiency Coefficient
Floor Management and Dose of N (kg ha−1) | Total Yield 2016–2020 (kg·Tree−1) | Total Number of Fruit 2016–2020 (no·Tree−1) | Crop Efficiency Coefficient 2020 (kg·cm−2) | |
---|---|---|---|---|
Means for interaction: N dose (D) × floor management (FM) | ||||
HF | 50 | 11.64 ab | 131 ab | 1.48 abc |
80 | 13.92 ab | 161 ab | 2.56 de | |
110 | 20.77 b | 219 b | 2.77 e | |
140 | 14.92 ab | 174 ab | 2.54 cde | |
LM 2 | 50 | 6.26 a | 75 a | 1.38 ab |
80 | 6.42 a | 66 a | 1.24 ab | |
110 | 8.49 a | 89 ab | 1.63 abcd | |
140 | 5.32 a | 76 a | 0.89 a | |
LM 4 | 50 | 10.58 ab | 166 ab | 2.14 bcde |
80 | 6.27 a | 86 ab | 1.40 ab | |
110 | 9.54 ab | 136 ab | 2.00 bcde | |
140 | 12.83 ab | 163 ab | 2.24 bcde | |
Statistical significance D × FM | NS | NS | ** | |
Means for N doses (D) | ||||
50 | 9.49 a | 124 a | 1.66 a | |
80 | 8.87 a | 104 a | 1.73 a | |
110 | 12.93 a | 148 a | 2.13 a | |
140 | 11.02 a | 138 a | 1.89 a | |
Statistical significance | NS | NS | NS | |
Means for floor managements (FM) | ||||
HF | 15.31 b | 171 b | 2.34 c | |
LM 2 | 6.62 a | 77 a | 1.28 a | |
LM 4 | 9.81 a | 138 b | 1.94 b | |
Statistical significance | *** | *** | *** |
3.5. Red Blush, Mean Weight, and the Size of Fruit
Floor Management and Dose of N (kg ha−1) | % of Fruit with Blush on the Skin Surface | % of Fruit with Diameter (cm) | Mean Fruit Weight (g) | ||||||
---|---|---|---|---|---|---|---|---|---|
>¾ | ¼–¾ | <¼ ° | >8.5 ° | 7.5–8.5 | 6.5–7.5 | <6.5 | |||
Means for interaction: N dose (D) × floor management (FM) | |||||||||
HF | 50 | 77 a | 21 a | 2 | 2 | 18 a | 31 a | 50 a | 108 a |
80 | 69 a | 30 a | 1 | 6 | 17 a | 28 a | 49 a | 110 a | |
110 | 63 a | 36 a | 1 | 7 | 21 a | 32 a | 41 a | 124 a | |
140 | 59 a | 40 a | – | 4 | 13 a | 37 a | 45 a | 107 a | |
LM 2 | 50 | 83 a | 16 a | 1 | – | 18 a | 23 a | 60 a | 98 a |
80 | 73 a | 27 a | – | – | 14 a | 36 a | 49 a | 96 a | |
110 | 76 a | 23 a | 1 | 3 | 17 a | 31 a | 49 a | 105 a | |
140 | 68 a | 31 a | – | – | 30 a | 22 a | 48 a | 98 a | |
LM 4 | 50 | 70 a | 30 a | – | 8 | 6 a | 19 a | 66 a | 99 a |
80 | 73 a | 26 a | 1 | – | 11 a | 30 a | 59 a | 94 a | |
110 | 53 a | 46 a | 1 | 3 | 14 a | 29 a | 54 a | 93 a | |
140 | 56 a | 43 a | 1 | 4 | 24 a | 29 a | 43 a | 111 a | |
Statistical significance D × FM | NS | NS | – | – | NS | NS | NS | NS | |
Means for N doses (D) | |||||||||
50 | 77 b | 22 a | 1 | 3 | 14 a | 24 a | 58 a | 102 a | |
80 | 72 ab | 28 ab | 1 | 2 | 14 a | 31 a | 52 a | 100 a | |
110 | 64 ab | 35 ab | 1 | 4 | 17 a | 31 a | 48 a | 107 a | |
140 | 61 a | 38 b | 1 | 3 | 22 a | 30 a | 46 a | 105 a | |
Statistical significance | * | * | – | – | NS | NS | NS | NS | |
Means for floor managements (FM) | |||||||||
HF | 67 ab | 32 ab | 1 | 5 | 17 a | 32 a | 46 a | 112 a | |
LM 2 | 75 b | 24 a | 1 | 1 | 20 a | 28 a | 52 a | 99 a | |
LM 4 | 63 a | 36 b | 1 | 4 | 14 a | 27 a | 56 a | 99 a | |
Statistical significance | * | * | – | – | NS | NS | NS | NS |
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mia, M.J.; Furmanczyk, E.M.; Golian, J.; Kwiatkowska, J.; Malusá, E.; Neri, D. Living Mulch with Selected Herbs for Soil Management in Organic Apple Orchards. Horticulturae 2021, 7, 59. [Google Scholar] [CrossRef]
- Furmanczyk, E.M.; Malusà, E.; Kozacki, D.; Tartanus, M. Insights into the Belowground Biodiversity and Soil Nutrient Status of an Organic Apple Orchard as Affected by Living Mulches. Agriculture 2024, 14, 293. [Google Scholar] [CrossRef]
- Diyanat, M. Weed Management in Organic Horticulture by Cover Crop in Iran. Int. J. Adv. Biol. Biomed. Res. 2015, 3, 153–162. [Google Scholar]
- Muder, A.; Garming, H.; Dreisiebner-Lanz, S.; Kerngast, K.; Rosner, F.; Klickova, K.; Kurthy, G.; Cimer, K.; Bertazzoli, A.; Altamura, V.; et al. Apple Production and Apple Value Chains in Europe. Eur. J. Hortic. Sci. 2022, 87, 1–22. [Google Scholar]
- Lemessa, F.; Wakjira, M. Cover Crops as a Means of Ecological Weed Management in Agroecosystems. J. Crop Sci. Biotechnol. 2015, 18, 133–145. [Google Scholar] [CrossRef]
- Haring, S.; Gaudin, A.C.M.; Hanson, B.D. Functionally Diverse Cover Crops Support Ecological Weed Management in Orchard Cropping Systems. Renew. Agric. Food Syst. 2024, 38, e54. [Google Scholar] [CrossRef]
- Schappert, A.; Linn, A.I.; Sturm, D.J.; Gerhards, R. Weed Suppressive Ability of Cover Crops Under Water-Limited Conditions. Plant Soil Environ. 2019, 65, 541–548. [Google Scholar] [CrossRef]
- Smith, R.G.; Warren, N.D.; Cordeau, S. Are Cover Crop Mixtures Better at Suppressing Weeds than Cover Crop Monocultures? Weed Sci. 2020, 68, 186–194. [Google Scholar] [CrossRef]
- Żelazny, W.R.; Licznar-Małańczuk, M. Living Mulch Persistence in an Apple Orchard and Its Effect on the Weed Flora in Temperate Climatic Conditions. Weed Res. 2022, 62, 85–99. [Google Scholar] [CrossRef]
- Bałuszyńska, U.B.; Chaploutskyi, A.; Polunina, O.; Slobodianyk, L.; Licznar-Małańczuk, M. Grass Species as a Living Mulch—Impact of Sod and Its Weediness on Apple Trees. Acta Agrobot. 2023, 76, 172257. [Google Scholar] [CrossRef]
- Golian, J.; Anyszka, Z.; Kwiatkowska, J. Multifunctional Living Mulches for Weeds Control in Organic Apple Orchards. Acta Sci. Pol. Hortorum Cultus 2023, 22, 73–84. [Google Scholar] [CrossRef]
- Bałuszyńska, U.B.; Rowińska, M.; Licznar-Małańczuk, M. Grass Species as Living Mulches—Comparison of Weed Populations and Their Biodiversity in Apple Tree Rows and Tractor Alleys. Acta Agrobot. 2022, 75, 758. [Google Scholar] [CrossRef]
- Mulumba, L.N.; Lal, R. Mulching Effects on Selected Soil Physical Properties. Soil. Tillage Res. 2008, 98, 106–111. [Google Scholar] [CrossRef]
- Qian, X.; Gu, J.; Pan, H.J.; Zhang, K.Y.; Sun, W.; Wang, X.J.; Gao, H. Effects of Living Mulches on the Soil Nutrient Contents, Enzyme Activities, and Bacterial Community Diversities of Apple Orchard Soils. Eur. J. Soil. Biol. 2015, 70, 23–30. [Google Scholar] [CrossRef]
- Ramos, M.E.; Robles, A.B.; Sánchez-Navarro, A.; González-Rebollar, J.L. Soil Responses to Different Management Practices in Rainfed Orchards in Semiarid Environments. Soil Tillage Res. 2011, 112, 85–91. [Google Scholar] [CrossRef]
- Brewer, M.; Kanissery, R.G.; Strauss, S.L.; Kadyampakeni, D.M. Impact of Cover Cropping on Temporal Nutrient Distribution and Availability in the Soil. Horticulturae 2023, 9, 1160. [Google Scholar] [CrossRef]
- St. Laurent, A.; Merwin, I.A.; Thies, J.E. Long-Term Orchard Groundcover Management Systems Affect Soil Microbial Communities and Apple Replant Disease Severity. Plant Soil 2008, 304, 209–225. [Google Scholar] [CrossRef]
- Yang, J.; Duan, Y.; Zhang, R.; Liu, C.; Wang, Y.; Li, M.; Ding, Y.; Awasthi, M.K.; Li, H. Connecting Soil Dissolved Organic Matter to Soil Bacterial Community Structure in a Long-Term Grass-Mulching Apple Orchard. Ind. Crops Prod. 2020, 149, 112344. [Google Scholar] [CrossRef]
- Hoagland, L.; Carpenter-Boggs, L.; Granatstein, D.; Mazzola, M.; Smith, J.; Peryea, F.; Reganold, J.P. Orchard Floor Management Effects on Nitrogen Fertility and Soil Biological Activity in a Newly Established Organic Apple Orchard. Biol. Fertil Soils 2008, 45, 11–18. [Google Scholar] [CrossRef]
- Atucha, A.; Merwin, I.A.; Purohit, C.K.; Brown, M.G. Nitrogen Dynamics and Nutrient Budgets in Four Orchard Groundcover Management Systems. HortScience 2011, 46, 1184–1193. [Google Scholar] [CrossRef]
- Brunetto, G.; Oliveira, B.S.; Ambrosini, V.G.; Couto, R.d.R.; Sete, P.B.; dos Santos Junior, E.; Loss, A.; Stefanello da Silva, L.O.; Gatiboni, L.C. Nitrogen Availability in an Apple Orchard with Weed Management. Cienc. Rural 2018, 48, e20160895. [Google Scholar] [CrossRef]
- Rühmann, S.; Leser, C.; Bannert, M.; Treutter, D. Relationship Between Growth, Secondary Metabolism, and Resistance of Apple. Plant Biol. 2002, 4, 137–143. [Google Scholar] [CrossRef]
- Wrona, D. Effect of Nitrogen Fertilization on Growth, Cropping and Fruit Quality of “Šampion” Apple Trees During 9 Years After Planting. Folia Hortic. 2004, 16, 55–60. [Google Scholar]
- Wrona, D. The Influence of Nitrogen Fertilization on Growth, Yield and Fruit Size of “Jonagored” Apple Trees. Acta Sci. Pol. Hortorum Cultus 2011, 10, 3–10. [Google Scholar]
- Treutter, D. Biosynthesis of Phenolic Compounds and Its Regulation in Apple. Plant Growth Regul. 2001, 34, 71–89. [Google Scholar]
- Neilsen, G.H.; Neilsen, D.; Herbert, L. Nitrogen Fertigation Concentration and Timing of Application Affect Nitrogen Nutrition, Yield, Firmness, and Color of Apples Grown at High Density. HortScience 2009, 44, 1425–1431. [Google Scholar]
- Veberic, R. The Impact of Production Technology on Plant Phenolics. Horticulturae 2016, 2, 8. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Slatnar, A.; Stampar, F.; Veberic, R. The Influence of Organic/Integrated Production on the Content of Phenolic Compounds in Apple Leaves and Fruits in Four Different Varieties over a 2-Year Period. J. Sci. Food Agric. 2010, 90, 2366–2378. [Google Scholar] [CrossRef]
- Roussos, P.A.; Gasparatos, D. Apple Tree Growth and Overall Fruit Quality under Organic and Conventional Orchard Management. Sci. Hortic. 2009, 123, 247–252. [Google Scholar] [CrossRef]
- Le Bourvellec, C.; Bureau, S.; Renard, C.M.G.C.; Plenet, D.; Gautier, H.; Touloumet, L.; Girard, T.; Simon, S. Cultivar and Year Rather than Agricultural Practices Affect Primary and Secondary Metabolites in Apple Fruit. PLoS ONE 2015, 10, e0141916. [Google Scholar] [CrossRef]
- TerAvest, D.; Smith, J.L.; Carpenter-Boggs, L.; Hoagland, L.; Granatstein, D.; Reganold, J.P. Influence of Orchard Floor Management and Compost Application Timing on Nitrogen Partitioning in Apple Trees. HortScience 2010, 45, 637–642. [Google Scholar] [CrossRef]
- Slatnar, A.; Licznar-Malanczuk, M.; Mikulic-Petkovsek, M.; Stampar, F.; Veberic, R. Long-Term Experiment with Orchard Floor Management Systems: Influence on Apple Yield and Chemical Composition. J. Agric. Food Chem. 2014, 62, 4095–4103. [Google Scholar] [CrossRef] [PubMed]
- Slatnar, A.; Kwiecinska, I.; Licznar-Malanczuk, M.; Veberic, R. The Effect of Green Cover within Rows on the Qualitative and Quantitative Fruit Parameters of Full-Cropping Apple Trees. Hortic. Environ. Biotechnol. 2020, 61, 41–49. [Google Scholar] [CrossRef]
- Lee, J.; Steenwerth, K.L. “Cabernet Sauvignon” Grape Anthocyanin Increased by Soil Conservation Practices. Sci. Hortic. 2013, 159, 128–133. [Google Scholar] [CrossRef]
- Sosna, I.; Fudali, E. Usefulness of Living Mulch in Rows in a Dwarf Pear, Pyrus communis L., Orchard. Agriculture 2023, 13, 2145. [Google Scholar] [CrossRef]
- Kühn, B.F.; Lindhard Pedersen, H. Cover Crop and Mulching Effects on Yield and Fruit Quality in Unsprayed Organic Apple. Eur. J. Hortic. Sci. 2009, 74, 247–253. [Google Scholar] [CrossRef]
- Licznar-Małańczuk, M.; Kwiecińska, I. Application of Living Mulch in Rows of the Apple Trees on Several Rootstock—Long-Term Evaluation. Acta Sci. Pol. Hortorum Cultus 2023, 22, 79–90. [Google Scholar] [CrossRef]
- Andersen, L.; Kühn, B.F.; Bertelsen, M.; Bruus, M.; Larsen, S.E.; Strandberg, M. Alternatives to Herbicides in an Apple Orchard, Effects on Yield, Earthworms and Plant Diversity. Agric. Ecosyst. Environ. 2013, 172, 1–5. [Google Scholar] [CrossRef]
- Kopta, T.; Ragasová, L.N.; Sotolář, R.; Sedláček, J.; Ferby, V.; Hurajová, E.; Winkler, J. The Influence of Different Methods of Under-Vine Management on the Structure of Vegetation and the Qualitative Parameters of the Grapes in the Moravian Wine Region. Folia Hortic. 2024, 36, 235–257. [Google Scholar] [CrossRef]
- Hogue, E.J.; Cline, J.A.; Neilsen, G.; Neilsen, D. Growth and Yield Responses to Mulches and Cover Crops under Low Potassium Conditions in Drip-Irrigated Apple Orchards on Coarse Soils. HortScience 2010, 45, 1866–1871. [Google Scholar] [CrossRef]
- Granatstein, D.; Mullinix, K. Mulching Options for Northwest Organic and Conventional Orchards. HortScience 2008, 43, 45–50. [Google Scholar] [CrossRef]
- Tworkoski, T. Response of Potted Peach Trees to Pruning and Grass Competition. HortScience 2000, 35, 1209–1212. [Google Scholar] [CrossRef]
- Hoagland, L.; Carpenter-Boggs, L.; Granatstein, D.; Mazzola, M.; Peryea, F.; Smith, J.; Reganold, J. Nitrogen Cycling and Partitioning under Alternative Organic Orchard Floor Management Strategies. In Proceedings of the Western Nutrient Management Conference, Salt Lake City, UT, USA, 4–5 March 2007; pp. 117–123. [Google Scholar]
- Tahir, I.I.; Svensson, S.-E.; Hansson, D. Floor Management Systems in an Organic Apple Orchard Affect Fruit Quality and Storage Life. HortScience 2015, 50, 434–441. [Google Scholar] [CrossRef]
- Merwin, I.A.; Stiles, W.C. Orchard Groundcover Management Impacts on Apple Tree Growth and Yield, and Nutrient Availability and Uptake. J. Am. Soc. Hort. Sci. 1994, 119, 209–215. [Google Scholar] [CrossRef]
- Neilson, G.H.; Hogue, E.J. Comparison of White Clover and Mixed Sodgrass as Orchard Floor Vegetation. Can. J. Plant Sci. 2000, 80, 617–622. [Google Scholar] [CrossRef]
- Metodyka Integrowanej Produkcji Jabłek (Methodology of Integrated Apple Production); Sobiczewski, P., Ed.; Institute of Horticulture: Skierniewice, Poland, 2013. [Google Scholar]
- Metodyka Integrowanej Produkcji Jabłek (Methodology of Integrated Apple Production); Sobiczewski, P., Ed.; Institute of Horticulture: Skierniewice, Poland, 2020. [Google Scholar]
- Kowalczyk, W.; Wrona, D.; Przybyłko, S. Effect of Nitrogen Fertilization of Apple Orchard on Soil Mineral Nitrogen Content, Yielding of the Apple Trees and Nutritional Status of Leaves and Fruits. Agriculture 2022, 12, 169. [Google Scholar] [CrossRef]
- Mia, M.J.; Massetani, F.; Murri, G.; Neri, D. Sustainable Alternatives to Chemicals for Weed Control in the Orchard—A Review. Hortic. Sci. 2020, 47, 1–12. [Google Scholar] [CrossRef]
- Gautam, V.P.; Mishra, S.; Ahmed, H. Comparison of Total Nitrogen Estimation by Kjeldahl Method and CHNS Analyzer in Dry Tropical Grassland. Int. J. Plant Environ. 2023, 9, 180–182. [Google Scholar] [CrossRef]
- Sharma, I. ICP-OES: An Advance Tool in Biological Research. Open J. Environ. Biol. 2020, 5, 027–033. [Google Scholar] [CrossRef]
- Kowalczyk, W.; Wrona, D.; Przybyłko, S. Content of Minerals in Soil, Apple Tree Leaves and Fruits Depending on Nitrogen Fertilization. J. Elem. 2017, 22, 67–77. [Google Scholar] [CrossRef]
- Sánchez, E.E.; Giayetto, A.; Cichón, L.; Fernández, D.; Aruani, M.C.; Curetti, M. Cover Crops Influence Soil Properties and Tree Performance in an Organic Apple (Malus domestica Borkh) Orchard in Northern Patagonia. Plant Soil 2007, 292, 193–203. [Google Scholar] [CrossRef]
- Neilsen, G.H.; Neilsen, D. Nutritional Requirements of Apple. In Apples: Botany, Production, and Uses; Ferree, D.C., Warrington, I.J., Eds.; CABI Publishing: Wallingford, UK, 2015; pp. 267–302. [Google Scholar]
- Licznar-Malanczuk, M.; Baluszynska, U.B. Do Living Mulches or Environmental Conditions Have a Greater Impact on the External Quality of the Apple Fruit ‘Chopin’ Cultivar? Agriculture 2024, 14, 610. [Google Scholar] [CrossRef]
- Gudarowska, E.; Szewczuk, A. The Influence of Agro-Technical Methods Used in the Nursery on Quality of Planting Material and Precocity of Bearing in Young Apple Trees in the Orchard. J. Fruit Ornam. Plant Res. 2004, 12, 91–96. [Google Scholar]
- Musacchi, S.; Serra, S. Apple Fruit Quality: Overview on Pre-Harvest Factors. Sci. Hortic. 2017, 234, 409–430. [Google Scholar] [CrossRef]
- Atucha, A.; Merwin, I.A.; Brown, M.G. Long-Term Effects of Four Groundcover Management Systems in an Apple Orchard. HortScience 2011, 46, 1176–1183. [Google Scholar] [CrossRef]
Floor Management and Dose of N (kg ha−1) | Macronutrient (g kg−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
N | Mg | K | P | ||||||
2018 | 2020 | 2018 | 2020 | 2018 | 2020 | 2018 | 2020 | ||
Means for interaction: N dose (D) × floor management (FM) | |||||||||
HF | 50 | 28.0 a | 20.5 a | 2.0 a | 1.0 a | 7.3 ab | 4.6 a | 1.8 ab | 1.1 a |
80 | 28.0 a | 24.0 ab | 2.0 a | 1.6 bc | 6.4 a | 8.8 b | 1.4 a | 1.7 ab | |
110 | 29.0 a | 24.8 ab | 2.1 a | 1.8 c | 6.9 a | 8.6 b | 1.9 ab | 1.6 ab | |
140 | 30.5 a | 24.5 ab | 2.0 a | 1.6 bc | 6.8 a | 8.9 b | 1.4 a | 1.5 ab | |
LM 2 | 50 | 24.3 a | 24.3 ab | 1.9 a | 1.9 c | 9.6 c | 11.4 b | 4.1 c | 4.0 d |
80 | 24.8 a | 24.3 ab | 2.0 a | 1.8 c | 9.2 bc | 10.9 b | 3.4 bc | 3.0 cd | |
110 | 26.3 a | 27.0 b | 2.0 a | 1.9 c | 8.4 abc | 10.3 b | 2.3 abc | 2.6 bc | |
140 | 27.5 a | 23.5 ab | 2.0 a | 1.7 bc | 7.7 abc | 10.2 b | 3.1 abc | 2.6 bc | |
LM 4 | 50 | – | 21.0 ab | – | 1.2 ab | – | 8.8 b | – | 3.5 cd |
80 | – | 22.5 ab | – | 1.6 abc | – | 10.3 b | – | 3.6 cd | |
110 | – | 24.8 ab | – | 1.6 abc | – | 11.0 b | – | 3.4 cd | |
140 | – | 24.5 ab | – | 1.6 bc | – | 10.7 b | – | 2.6 bc | |
Statistical significance D × FM | NS | NS | NS | * | NS | ** | NS | ** | |
Means for N doses (D) | |||||||||
50 | 26.1 a | 21.9 a | 1.9 a | 1.4 a | 8.4 a | 8.3 a | 2.9 a | 2.9 b | |
80 | 26.4 a | 23.6 ab | 2.0 a | 1.7 b | 7.8 a | 10.0 b | 2.4 a | 2.8 b | |
110 | 27.6 a | 25.5 b | 2.0 a | 1.8 b | 7.6 a | 10.0 b | 2.1 a | 2.5 ab | |
140 | 29.0 a | 24.2 ab | 2.0 a | 1.7 b | 7.2 a | 10.0 b | 2.2 a | 2.2 a | |
Statistical significance | NS | ** | NS | ** | NS | ** | NS | * | |
Means for floor managements (FM) | |||||||||
HF | 28.9 b | 23.4 a | 2.0 a | 1.5 a | 6.8 a | 7.7 a | 1.6 a | 1.5 a | |
LM 2 | 25.7 a | 24.8 a | 2.0 a | 1.8 b | 8.7 b | 10.7 b | 3.2 b | 3.0 b | |
LM 4 | – | 23.2 a | – | 1.5 a | – | 10.2 b | – | 3.3 b | |
Statistical significance | ** | NS | NS | *** | *** | *** | *** | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Licznar-Małańczuk, M. Impact of High Nitrogen Doses and Living Mulch on Growth, Yield and Fruit Quality of Young Apple Trees (cv. ‘Sampion’). Agriculture 2025, 15, 724. https://doi.org/10.3390/agriculture15070724
Licznar-Małańczuk M. Impact of High Nitrogen Doses and Living Mulch on Growth, Yield and Fruit Quality of Young Apple Trees (cv. ‘Sampion’). Agriculture. 2025; 15(7):724. https://doi.org/10.3390/agriculture15070724
Chicago/Turabian StyleLicznar-Małańczuk, Maria. 2025. "Impact of High Nitrogen Doses and Living Mulch on Growth, Yield and Fruit Quality of Young Apple Trees (cv. ‘Sampion’)" Agriculture 15, no. 7: 724. https://doi.org/10.3390/agriculture15070724
APA StyleLicznar-Małańczuk, M. (2025). Impact of High Nitrogen Doses and Living Mulch on Growth, Yield and Fruit Quality of Young Apple Trees (cv. ‘Sampion’). Agriculture, 15(7), 724. https://doi.org/10.3390/agriculture15070724