Production Agglomeration and Spatiotemporal Evolution of China’s Fruit Industry over the Last 40 Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Study Area
2.2. Research Methods
2.3. The Locational Gini Coefficient
2.4. Industrial Concentration Ratio
2.5. Spatial Autocorrelation Index
2.6. Regional Specialization Index
2.7. Industrial Center of Gravity Model
3. Results
3.1. Spatiotemporal Evolution of Degree of Production Agglomeration
3.2. Spatiotemporal Evolution of Spatial Heterogeneity and Dependency
3.2.1. Global Spatial Autocorrelation Analysis
3.2.2. Local Spatial Autocorrelation Analysis
3.2.3. Specialization Index Analysis
3.3. Spatial Evolution Trajectory of Center of Gravity
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, C.-C.; Yan, J.; Wang, F. Impact of Population Aging on Food Security in the Context of Artificial Intelligence: Evidence from China. Technol. Forecast. Soc. Change 2024, 199, 123062. [Google Scholar] [CrossRef]
- Huang, K.-M.; Sant’Anna, A.C.; Etienne, X. How Did Covid-19 Impact US Household Foods? An Analysis Six Months in. PLoS ONE 2021, 16, e0256921. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Li, F.; Yin, C. Orchard Grass Safeguards Sustainable Development of Fruit Industry in China. J. Clean. Prod. 2023, 382, 135291. [Google Scholar] [CrossRef]
- Bu, T.; Tang, D.; Liu, Y.; Chen, D. Trends in Dietary Patterns and Diet-Related Behaviors in China. Am. J. Health Behav. 2021, 45, 371–383. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Li, B.; Zhang, Q.; Chen, G.; Papadaki, A. Exploring the Traditional Chinese Diet and Its Association with Health Status—A Systematic Review. Nutr. Rev. 2024, 83, e237–e256. [Google Scholar] [CrossRef]
- Xiang, X.; Peng, L.; Zhang, Y. Towards More Sustainable Diets: Insights from Food Production Responses to Diet Transitions in China. Sustain. Dev. 2023, 31, 1951–1964. [Google Scholar] [CrossRef]
- Chanti, W.; Youzhen, Q. A Nonlinear Empirical Analysis on Influence Factor of Circulation Efficiency. Discret. Contin. Dyn. Syst.-S 2019, 12, 929–940. [Google Scholar] [CrossRef]
- Liu, K.E.; Chang, H.H.; Chern, W.S. Examining changes in fresh fruit and vegetable consumption over time and across regions in urban China. China Agric. Econ. Rev. 2011, 3, 276–296. [Google Scholar] [CrossRef]
- Siddh, M.M.; Soni, G.; Jain, R.; Sharma, M.K.; Yadav, V. Agri-Fresh Food Supply Chain Quality (AFSCQ): A Literature Review. Ind. Manag. Data Syst. 2017, 117, 2015–2044. [Google Scholar] [CrossRef]
- Ilniyaz, O.; Du, Q.; Kurban, A.; Kasimu, A.; Azadi, H. An Explanatory Spatio-Temporal Pattern Analysis of the Fruit Industry in Xinjiang, China, between 1988 and 2017. Trans. GIS 2022, 26, 2383–2409. [Google Scholar] [CrossRef]
- Billings, S.B.; Johnson, E.B. Agglomeration within an urban area. J. Urban Econ. 2016, 91, 13–25. [Google Scholar] [CrossRef]
- Fang, C.; Yu, D. Urban Agglomeration: An Evolving Concept of an Emerging Phenomenon. Landsc. Urban Plan. 2017, 162, 126–136. [Google Scholar] [CrossRef]
- Madhukar, A.; Kumar, V.; Dashora, K. Spatial and Temporal Trends in the Yields of Three Major Crops: Wheat, Rice and Maize in India. Int. J. Plant Prod. 2020, 14, 187–207. [Google Scholar] [CrossRef]
- Wang, J.; Fu, Z.; Zhang, B.; Yang, F.; Zhang, L.; Shi, B. Decomposition of Influencing Factors and Its Spatial-Temporal Characteristics of Vegetable Production: A Case Study of China. Inf. Process. Agric. 2018, 5, 477–489. [Google Scholar] [CrossRef]
- Xiao, Z.; Huang, X.; Zang, Z.; Yang, H. Spatio-Temporal Variation and the Driving Forces of Tea Production in China over the Last 30 Years. J. Geogr. Sci. 2018, 28, 275–290. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Liu, Y. Spatial Shifts in Grain Production Increases in China and Implications for Food Security. Land Use Policy 2018, 74, 204–213. [Google Scholar] [CrossRef]
- Dakpo, K.H.; Desjeux, Y.; Jeanneaux, P.; Latruffe, L. Productivity, Technical Efficiency and Technological Change in French Agriculture during 2002–2015: A Fare-Primont Index Decomposition Using Group Frontiers and Meta-Frontier. Appl. Econ. 2019, 51, 1166–1182. [Google Scholar] [CrossRef]
- Kurdyś-Kujawska, A.; Strzelecka, A.; Zawadzka, D. The Impact of Crop Diversification on the Economic Efficiency of Small Farms in Poland. Agriculture 2021, 11, 250. [Google Scholar] [CrossRef]
- Voutilainen, O.; Muilu, T.; Wuori, O. Structural Development and Regional Concentration of Agriculture in Finland in 1975–2008. Agric. Food Sci. 2012, 21, 440–452. [Google Scholar] [CrossRef]
- Perry, E.M.; Dezzani, R.J.; Seavert, C.F.; Pierce, F.J. Spatial Variation in Tree Characteristics and Yield in a Pear Orchard. Precis. Agric. 2010, 11, 42–60. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.; Wang, X.; Wang, Y. Understanding the Impacts of ‘Grain for Green’ Land Management Practice on Land Greening Dynamics over the Loess Plateau of China. Land Use Policy 2020, 99, 105084. [Google Scholar] [CrossRef]
- Tran, T.T.; Li, H.; Nguyen, D.Q.; Sivasithamparam, K.; Jones, M.G.K.; Wylie, S.J. Spatial Distribution of Monilinia Fructicola and M. Laxa in Stone Fruit Production Areas in Western Australia. Australas. Plant Pathol. 2017, 46, 339–349. [Google Scholar] [CrossRef]
- Wójcik, M.; Traczyk, A. Changes in the Spatial Organisation of Fruit Growing at the Beginning of the 21St Century: The Case of Grójec Poviat (Mazovia Voivodeship, Poland). Quaest. Geogr. 2017, 36, 71–84. [Google Scholar] [CrossRef]
- Svobodová, I.; Věžník, A.; Král, M. Viticulture in The Czech Republic: Some Spatio-Temporal Trends. Morav. Geogr. Rep. 2014, 22, 2–14. [Google Scholar] [CrossRef]
- Kerry, R.; Goovaerts, P.; Gimenez, D.; Oudemans, P.V. Investigating Temporal and Spatial Patterns of Cranberry Yield in New Jersey Fields. Precis. Agric. 2017, 18, 507–524. [Google Scholar] [CrossRef]
- Zhang, Q.; Shi, F.; Abdullahi, N.M.; Shao, L.; Huo, X. An Empirical Study on Spatial-Temporal Dynamics and Influencing Factors of Apple Production in China. PLoS ONE 2020, 15, e0240140. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Chen, C.; Liu, Y.; Liu, G.; He, P.; Liao, G.; Gao, W.; Cao, J.; Shao, Z. Simulation of Citrus Production Space Based on MaxEnt. Front. Environ. Sci. 2022, 10, 993920. [Google Scholar] [CrossRef]
- Gini, C. Measurement of Inequality of Incomes. Econ. J. 1921, 31, 124–126. [Google Scholar] [CrossRef]
- Ceriani, L.; Verme, P. The Origins of the Gini Index: Extracts from Variabilità e Mutabilità (1912) by Corrado Gini. J. Econ. Inequal. 2012, 10, 421–443. [Google Scholar] [CrossRef]
- Langel, M.; Tille, Y. Variance Estimation of the Gini Index: Revisiting a Result Several Times Published. J. R. Stat. Soc. Ser. A-Stat. Soc. 2013, 176, 521–540. [Google Scholar] [CrossRef]
- Giorgi, G.M.; Gigliarano, C. The Gini Concentration Index: A Review of the Inference Literature. J. Econ. Surv. 2017, 31, 1130–1148. [Google Scholar] [CrossRef]
- Ellison, G.; Glaeser, E.L. Geographic Concentration in U.S. Manufacturing Industries:A Dartboard Approach. J. Political Econ. 1997, 105, 889–927. [Google Scholar] [CrossRef]
- Duranton, G.; Overman, H.G. Testing for Localization Using Micro-Geographic Data. Rev. Econ. Stud. 2005, 72, 1077–1106. [Google Scholar] [CrossRef]
- Lu, J.; Tao, Z. Trends and Determinants of China’s Industrial Agglomeration. J. Urban Econ. 2009, 65, 167–180. [Google Scholar] [CrossRef]
- Ding, Y.; Fotheringham, A. The Integration of Spatial-Analysis and GIS. Comput. Environ. Urban Syst. 1992, 16, 3–19. [Google Scholar] [CrossRef]
- Melecky, L. Spatial Autocorrelation Method for Local Analysis of the EU. Procedia Econ. Financ. 2015, 23, 1102–1109. [Google Scholar] [CrossRef]
- Shen, C.; Li, C.; Si, Y. Spatio-Temporal Autocorrelation Measures for Nonstationary Series: A New Temporally Detrended Spatio-Temporal Moran’s Index. Phys. Lett. A 2016, 380, 106–116. [Google Scholar] [CrossRef]
- Han, F.; Xie, R.; Fang, J. Urban Agglomeration Economies and Industrial Energy Efficiency. Energy 2018, 162, 45–59. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Wang, Y. Spatiotemporal Evolution of Cultivated Land Non-Agriculturalization and Its Drivers in Typical Areas of Southwest China from 2000 to 2020. Remote Sens. 2022, 14, 3211. [Google Scholar] [CrossRef]
- Hou, M.; Deng, Y.; Yao, S. Spatial Agglomeration Pattern and Driving Factors of Grain Production in China since the Reform and Opening Up. Land 2021, 10, 10. [Google Scholar] [CrossRef]
- Zhang, Q.; Weng, F.; Shi, F.; Shao, L.; Huo, X. The Evolutionary Characteristics of Apple Production Layout in China from 1978 to 2016. Ciência Rural 2021, 51, e20200688. [Google Scholar] [CrossRef]
- Wang, J.; Liu, T. Spatiotemporal Evolution and Suitability of Apple Production in China from Climate Change and Land Use Transfer Perspectives. Food Energy Secur. 2022, 11, e386. [Google Scholar] [CrossRef]
- Zhou, S.; Sun, B.; Ma, W.; Chen, X. The Pricing Strategy for Fuji Apple in Shaanxi of Chain under the E-Commerce Environment. Kybernetes 2018, 47, 208–221. [Google Scholar] [CrossRef]
- Hasan, M.R.; Mashud, A.H.M.; Daryanto, Y.; Wee, H.M. A Non-Instantaneous Inventory Model of Agricultural Products Considering Deteriorating Impacts and Pricing Policies. Kybernetes 2021, 50, 2264–2288. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Boote, K.J.; Kimball, B.A.; Ziska, L.H.; Izaurralde, R.C.; Ort, D.; Thomson, A.M.; Wolfe, D. Climate Impacts on Agriculture: Implications for Crop Production. Agron. J. 2011, 103, 351–370. [Google Scholar] [CrossRef]
- Huang, K.-M.; Guan, Z.; Hammami, A. The U.S. Fresh Fruit and Vegetable Industry: An Overview of Production and Trade. Agriculture 2022, 12, 1719. [Google Scholar] [CrossRef]
- Li, L.; Khan, S.U.; Xia, X.; Zhang, H.; Guo, C. Screening of Agricultural Land Productivity and Returning Farmland to Forest Area for Sensitivity to Rural Labor Outward Migration in the Ecologically Fragile Loess Plateau Region. Environ. Sci. Pollut. Res. 2020, 27, 26442–26462. [Google Scholar] [CrossRef]
- Li, Z.; Sun, X.; Huang, Z.; Zhang, X.; Wang, Z.; Li, S.; Zheng, W.; Zhai, B. Changes inNutrient Balance, Environmental Effects, and Green Development after Returning Farmland to Forests: A Case Study in Ningxia, China. Sci. Total Environ. 2020, 735, 139370. [Google Scholar] [CrossRef]
- Wang, Y.; Brandt, M.; Zhao, M.; Xing, K.; Tong, X.; Xue, F.; Kang, M.; Jiang, Y.; Fensholt, R. Do Afforestation Projects Increase Core Forests? Evidence from the Chinese Loess Plateau. Ecol. Indic. 2020, 117, 106558. [Google Scholar] [CrossRef]
- Li, G.; Sun, S.; Han, J.; Yan, J.; Liu, W.; Wei, Y.; Lu, N.; Sun, Y. 2019, Corrigendum to “Impacts of Chinese Grain for Green Program and Climate Change on Vegetation in the Loess Plateau during 1982–2015. Sci. Total Environ. 2019, 660, 177–187. [Google Scholar] [CrossRef]
- Miao, X.; Han, J.; Wang, S.; Li, X. Spatial Effects of Market Integration on the Industrial Agglomeration of Agricultural Products: Evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 84949–84971. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wang, F.; Hao, R.; Wu, L. Agricultural Science and Technology Innovation, Spatial Spillover and Agricultural Green Development—Taking 30 Provinces in China as the Research Object. Appl. Sci. 2022, 12, 845. [Google Scholar] [CrossRef]
Categories | Top Five Provinces and Their Weights | ||
---|---|---|---|
Top Five Provinces | (%) | ||
Fruit Industry | 0.4943 | Guangxi, Guangdong, Sichuan, Shaanxi, Xinjiang | 45.70 |
Orange | 0.6087 | Guangxi, Sichuan, Hunan, Jiangxi, Guangdong | 75.70 |
Pear | 0.5199 | Hebei, Sichuan, Liaoning, Xinjiang, Henan | 47.63 |
Apple | 0.6522 | Shaanxi, Gansu, Shandong, Shanxi, Liaoning | 70.17 |
Grape | 0.4630 | Xinjiang, Shaanxi, Sichuan, Hebei, Henan | 42.53 |
Banana | 0.7810 | Guangdong, Yunnan, Guangxi, Fujian, Guizhou | 99.39 |
Eastern Part | Central Part | Western Part | Northwest Part | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1978 | 2020 | Alteration | 1978 | 2020 | Alteration | 1978 | 2020 | Alteration | 1978 | 2020 | Alteration | |
Fruit Industry | 39.59 | 25.93 | −9.66 | 22.56 | 18.85 | −3.71 | 21.24 | 51.84 | 30.6 | 16.62 | 3.37 | −13.25 |
Orange | 27.92 | 17.31 | −10.61 | 41.30 | 35.23 | −6.07 | 30.77 | 47.47 | 16.7 | ---- | ---- | ----- |
Pear | 38.45 | 27.99 | −10.46 | 23.16 | 24.23 | 1.07 | 13.17 | 37.70 | 24.53 | 25.22 | 10.07 | −15.15 |
Apple | 38.55 | 20.57 | −17.98 | 21.84 | 13.77 | −8.07 | 18.67 | 57.88 | 39.21 | 20.94 | 7.78 | −13.16 |
Grape | 22.55 | 23.22 | 0.67 | 24.56 | 19.16 | −5.4 | 40.77 | 50.90 | 10.13 | 12.11 | 5.71 | −6.4 |
Banana | 50.00 | 47.36 | −2.64 | ---- | ---- | ---- | 50.00 | 52.64 | 2.64 | ---- | ---- | ---- |
Year | Moran’s I | Z-Score | p-Value |
---|---|---|---|
2020 | 0.161 | 1.626 | 0.052 |
2018 | 0.151 | 1.548 | 0.061 |
2013 | 0.200 | 1.989 | 0.023 |
2008 | 0.233 | 2.343 | 0.010 |
2003 | 0.236 | 2.606 | 0.005 |
1998 | 0.298 | 3.212 | 0.001 |
1993 | 0.035 | 0.626 | 0.266 |
1988 | 0.050 | 0.780 | 0.218 |
1983 | 0.132 | 1.644 | 0.050 |
1978 | 0.175 | 2.042 | 0.021 |
1978 | 2021 | |||
---|---|---|---|---|
Production | Specialization Index | Production | Specialization Index | |
Fruit Industry | Shandong, Liaoning, Hebei, Henan, Shaanxi (61.86%) | Guangxi, Shandong, Guangdong, Henan, Shaanxi (44.16%) | ||
Orange | Sichuan, Guangdong, Zhejiang, Guangxi, Fujian (86.48%) | Jiangxi, Zhejiang, Sichuan, Hunan, Guangdong (6.96) | Guangxi, Sichuan, Hunan, Hubei, Guangdong (74.95%) | Jiangxi, Hunan, Fujian, Guangxi, Hubei (2.84) |
Pear | Hebei, Shandong, Liaoning, Jiangsu, Shanxi (69.44%) | Qinghai, Shanghai, Anhui, Jiangsu, Hebei (2.47) | Hebei, Xinjiang, Henan, Liaoning, Sichuan (50.13%) | Hebei, Qinghai, Anhui, Liaoning, Tianjin (2.81) |
Apple | Shandong, Liaoning, Hebei, Henan, Shaanxi (84.43%) | Tibet, Liaoning, Shandong, Ningxia, Inner Mongolia (1.80) | Shaanxi, Shandong, Gansu, Shanxi, Henan (76.11%) | Shaanxi, Gansu, Shanxi, Shandong, Liaoning (2.80) |
Grape | Xinjiang, Shandong, Liaoning, Henan, Hebei (74.83%) | Xinjiang, Anhui, Inner Mongolia, Tianjin, Ningxia (6.83) | Xinjiang, Hebei, Shandong, Yunnan, Shaanxi (50.71%) | Xinjiang, Tianjin, Tibet, Shanghai, Zhejiang (2.78) |
Banana | Guangdong, Yunnan, Guangxi, Fujian, Guizhou (100%) | Guangdong, Yunnan, Fujian, Guangxi, Tibet (5.32) | Guangdong, Guangxi, Yunnan, Fujian, Guizhou (99.54%) | Guangdong, Yunnan, Guangxi, Fujian, Tibet (3.11) |
Year | Orange Industry | Pear Industry | Apple Industry | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Longitude | Latitude | Distance | Orientation | Longitude | Latitude | Distance | Orientation | Longitude | Latitude | Distance | Orientation | |
1978 | 111.73 | 27.57 | 115.89 | 36.40 | 117.48 | 38.41 | ||||||
1979 | 112.24 | 27.93 | 69.40 | northeast | 116.08 | 36.21 | 29.88 | southeast | 117.60 | 38.11 | 35.55 | southeast |
1980 | 110.53 | 27.87 | 190.74 | southwest | 115.03 | 35.39 | 148.06 | southwest | 117.25 | 38.18 | 39.75 | northwest |
1981 | 111.47 | 27.83 | 105.32 | southeast | 115.10 | 35.94 | 61.52 | northeast | 117.22 | 38.04 | 16.39 | southwest |
1982 | 111.75 | 27.58 | 41.07 | southeast | 114.90 | 35.72 | 33.11 | southwest | 116.87 | 38.08 | 39.45 | northwest |
1983 | 111.17 | 28.34 | 105.96 | northwest | 115.10 | 36.08 | 46.05 | northeast | 116.91 | 37.95 | 15.55 | southeast |
1984 | 111.24 | 27.81 | 58.86 | southeast | 114.62 | 35.96 | 55.20 | southwest | 116.63 | 38.08 | 35.11 | northwest |
1985 | 111.56 | 27.95 | 38.56 | northeast | 114.49 | 36.07 | 19.37 | northwest | 115.76 | 37.86 | 99.46 | southwest |
1986 | 112.11 | 27.57 | 74.11 | southeast | 114.45 | 35.95 | 13.78 | southwest | 115.94 | 37.81 | 20.84 | southeast |
1987 | 112.57 | 27.66 | 52.88 | northeast | 114.50 | 35.97 | 6.12 | northeast | 116.00 | 37.69 | 15.50 | southeast |
1988 | 112.45 | 26.65 | 113.09 | southwest | 114.38 | 35.92 | 14.40 | southwest | 115.81 | 37.73 | 21.79 | northwest |
1989 | 112.86 | 27.54 | 108.36 | northeast | 114.16 | 35.78 | 29.85 | southwest | 115.85 | 37.76 | 5.75 | northeast |
1990 | 112.98 | 26.99 | 61.78 | southeast | 114.09 | 35.97 | 22.46 | northwest | 116.21 | 38.11 | 55.67 | northeast |
1991 | 113.32 | 27.20 | 43.68 | northeast | 114.13 | 36.09 | 14.36 | northeast | 116.31 | 38.04 | 13.23 | southeast |
1992 | 112.70 | 26.75 | 84.97 | southwest | 114.18 | 36.08 | 5.59 | southeast | 116.88 | 38.24 | 67.53 | northeast |
1993 | 113.02 | 27.40 | 80.15 | northeast | 114.38 | 36.13 | 22.70 | northeast | 117.02 | 38.22 | 15.24 | southeast |
1994 | 113.49 | 27.53 | 54.92 | northeast | 114.39 | 36.24 | 12.74 | northeast | 116.97 | 38.12 | 11.57 | southwest |
1995 | 113.67 | 27.84 | 39.66 | northeast | 114.54 | 36.30 | 18.34 | northeast | 117.03 | 38.10 | 7.37 | southeast |
1996 | 113.80 | 27.87 | 14.43 | northeast | 114.95 | 36.47 | 49.14 | northeast | 117.18 | 38.12 | 16.25 | northeast |
1997 | 113.93 | 27.99 | 20.05 | northeast | 114.70 | 36.23 | 38.44 | southwest | 116.84 | 37.98 | 40.00 | southwest |
1998 | 113.28 | 27.98 | 72.30 | southwest | 115.15 | 36.30 | 50.49 | northeast | 117.10 | 38.10 | 31.74 | northeast |
1999 | 113.78 | 28.07 | 56.22 | northeast | 114.75 | 36.17 | 46.05 | southwest | 117.13 | 38.10 | 3.06 | east |
2000 | 112.57 | 27.99 | 134.92 | southwest | 114.75 | 35.96 | 24.05 | south | 116.93 | 38.03 | 24.02 | southwest |
2001 | 113.11 | 27.81 | 63.61 | southeast | 114.58 | 35.74 | 30.85 | southwest | 116.94 | 38.02 | 1.36 | southeast |
2002 | 113.00 | 27.77 | 12.71 | southwest | 114.32 | 35.76 | 30.07 | northwest | 116.88 | 38.11 | 11.76 | northwest |
2003 | 112.92 | 27.90 | 16.58 | northwest | 114.58 | 35.90 | 33.22 | northeast | 117.08 | 38.27 | 28.53 | northeast |
2004 | 112.98 | 27.85 | 8.35 | southeast | 114.55 | 35.89 | 3.61 | southwest | 117.30 | 38.34 | 25.13 | northeast |
2005 | 112.65 | 27.77 | 37.55 | southwest | 114.23 | 35.86 | 35.03 | southwest | 117.18 | 38.33 | 12.95 | southwest |
2006 | 112.94 | 27.69 | 33.79 | southeast | 114.12 | 35.76 | 16.53 | southwest | 117.23 | 38.37 | 7.48 | northeast |
2007 | 112.94 | 27.76 | 7.88 | north | 114.04 | 35.78 | 9.31 | northwest | 117.30 | 38.36 | 8.05 | southeast |
2008 | 112.98 | 27.84 | 9.44 | northeast | 113.83 | 36.03 | 36.47 | northwest | 117.15 | 38.35 | 17.05 | southwest |
2009 | 112.78 | 27.80 | 22.69 | southwest | 113.33 | 35.92 | 56.99 | southwest | 117.11 | 38.42 | 8.41 | northwest |
2010 | 112.57 | 27.76 | 24.19 | southwest | 113.13 | 35.98 | 23.08 | northwest | 117.05 | 38.45 | 7.76 | northwest |
2011 | 112.57 | 27.78 | 2.31 | north | 114.06 | 35.76 | 105.72 | southeast | 116.95 | 38.47 | 10.62 | northwest |
2012 | 112.47 | 27.80 | 10.84 | northwest | 113.46 | 35.86 | 67.80 | northwest | 116.82 | 38.49 | 14.86 | northwest |
2013 | 112.37 | 27.80 | 11.78 | west | 113.46 | 35.79 | 7.17 | south | 116.53 | 38.46 | 32.53 | southwest |
2014 | 112.32 | 27.79 | 4.83 | southwest | 113.22 | 35.72 | 28.04 | southwest | 116.37 | 38.41 | 18.85 | southwest |
2015 | 112.46 | 27.80 | 14.89 | northeast | 113.05 | 35.66 | 19.62 | southwest | 116.29 | 38.41 | 8.84 | west |
2016 | 111.99 | 27.66 | 54.01 | southwest | 113.00 | 35.64 | 6.37 | southwest | 116.11 | 38.48 | 21.40 | northwest |
2017 | 111.86 | 27.49 | 23.58 | southwest | 112.82 | 35.65 | 19.05 | northwest | 116.05 | 38.54 | 8.85 | northwest |
2018 | 111.71 | 27.32 | 25.68 | southwest | 112.91 | 35.53 | 16.84 | southeast | 115.91 | 38.52 | 15.03 | southwest |
2019 | 111.44 | 27.05 | 41.82 | southwest | 112.94 | 35.60 | 9.00 | northeast | 115.86 | 38.56 | 7.51 | northwest |
2020 | 111.26 | 26.89 | 27.60 | southwest | 112.39 | 35.62 | 61.71 | northwest | 115.78 | 38.55 | 9.30 | southwest |
2021 | 111.03 | 26.74 | 29.96 | southwest | 111.96 | 35.64 | 47.10 | northwest | 115.53 | 38.54 | 27.27 | southwest |
Year | Grape Industry | Banana Industry | Fruit Industry | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Longitude | Latitude | Distance | Orientation | Longitude | Latitude | Distance | Orientation | Longitude | Latitude | Distance | Orientation | |
1978 | 103.98 | 40.15 | 112.47 | 23.37 | 115.65 | 35.96 | ||||||
1979 | 104.03 | 40.10 | 7.24 | southeast | 111.99 | 23.45 | 53.87 | northwest | 115.76 | 35.74 | 27.36 | southeast |
1980 | 103.06 | 40.21 | 107.90 | northwest | 111.71 | 23.60 | 35.85 | northwest | 114.98 | 35.27 | 100.98 | southwest |
1981 | 102.76 | 40.24 | 34.05 | northwest | 112.92 | 23.51 | 135.90 | southeast | 115.02 | 35.17 | 11.41 | southeast |
1982 | 103.46 | 39.99 | 82.88 | southeast | 112.81 | 23.51 | 12.45 | west | 114.46 | 34.69 | 81.63 | southwest |
1983 | 104.57 | 39.79 | 125.74 | southeast | 112.32 | 23.46 | 55.09 | southwest | 114.49 | 34.95 | 28.82 | northeast |
1984 | 105.35 | 39.81 | 86.84 | northeast | 112.75 | 23.43 | 47.52 | southeast | 113.99 | 34.45 | 78.77 | southwest |
1985 | 104.90 | 39.85 | 50.88 | northwest | 112.70 | 23.41 | 5.51 | southwest | 113.66 | 34.09 | 54.31 | southwest |
1986 | 105.95 | 39.50 | 123.23 | southeast | 112.44 | 23.32 | 31.37 | southwest | 113.42 | 32.92 | 132.97 | southwest |
1987 | 106.78 | 39.31 | 94.11 | southeast | 112.52 | 23.30 | 9.35 | southeast | 113.53 | 32.65 | 32.60 | southeast |
1988 | 108.13 | 39.06 | 153.20 | southeast | 112.80 | 23.37 | 32.02 | northeast | 113.59 | 32.90 | 29.55 | northeast |
1989 | 107.82 | 39.25 | 40.79 | northwest | 113.09 | 23.46 | 33.84 | northeast | 113.55 | 32.62 | 32.22 | southwest |
1990 | 106.12 | 39.73 | 195.75 | northwest | 112.96 | 23.44 | 14.52 | southwest | 113.54 | 32.40 | 23.67 | southwest |
1991 | 106.12 | 39.79 | 6.42 | north | 112.77 | 23.42 | 21.65 | southwest | 113.64 | 31.95 | 51.92 | southeast |
1992 | 106.59 | 39.44 | 64.61 | southeast | 112.35 | 23.41 | 46.41 | southwest | 113.84 | 32.56 | 72.20 | northeast |
1993 | 107.50 | 39.18 | 104.67 | southeast | 112.41 | 23.45 | 8.22 | northeast | 114.21 | 32.96 | 60.94 | northeast |
1994 | 108.37 | 38.81 | 105.13 | southeast | 112.54 | 23.53 | 17.11 | northeast | 114.42 | 33.19 | 33.53 | northeast |
1995 | 108.68 | 38.62 | 40.49 | southeast | 112.53 | 23.55 | 2.20 | northwest | 114.63 | 33.32 | 27.83 | northeast |
1996 | 109.03 | 38.49 | 42.03 | southeast | 113.05 | 23.77 | 62.32 | northeast | 115.17 | 33.93 | 91.02 | northeast |
1997 | 109.51 | 38.12 | 67.52 | southeast | 112.90 | 23.73 | 16.87 | southwest | 115.12 | 33.86 | 9.82 | southwest |
1998 | 109.82 | 38.20 | 35.70 | northeast | 112.84 | 23.69 | 7.92 | southwest | 115.16 | 34.08 | 24.36 | northeast |
1999 | 109.99 | 38.04 | 25.28 | southeast | 112.83 | 23.62 | 8.51 | southwest | 114.95 | 33.81 | 38.39 | southwest |
2000 | 110.62 | 38.05 | 70.15 | northeast | 112.81 | 23.57 | 6.03 | southwest | 114.57 | 33.32 | 68.50 | southwest |
2001 | 111.19 | 37.62 | 78.55 | southeast | 112.85 | 23.57 | 4.55 | east | 115.03 | 33.80 | 73.95 | northeast |
2002 | 110.55 | 37.90 | 77.59 | northwest | 112.88 | 23.54 | 5.31 | southeast | 114.79 | 33.93 | 30.43 | northwest |
2003 | 110.50 | 37.92 | 6.20 | northwest | 112.97 | 23.56 | 10.28 | northeast | 114.88 | 33.97 | 11.49 | northeast |
2004 | 110.16 | 37.95 | 37.08 | northwest | 112.85 | 23.56 | 13.69 | west | 114.79 | 33.91 | 12.02 | southwest |
2005 | 109.87 | 37.85 | 34.04 | southwest | 112.74 | 23.56 | 11.42 | west | 114.62 | 33.95 | 19.48 | northwest |
2006 | 109.35 | 37.82 | 58.27 | southwest | 112.58 | 23.56 | 18.64 | west | 114.62 | 34.02 | 7.07 | north |
2007 | 109.18 | 37.82 | 19.21 | west | 112.21 | 23.56 | 40.46 | west | 114.26 | 33.84 | 44.72 | southwest |
2008 | 109.43 | 37.57 | 39.34 | southeast | 111.89 | 23.65 | 37.40 | northwest | 114.33 | 33.85 | 7.44 | northeast |
2009 | 108.90 | 37.56 | 58.97 | southwest | 111.41 | 23.60 | 53.73 | southwest | 114.03 | 33.77 | 34.20 | southwest |
2010 | 109.13 | 37.29 | 39.46 | southeast | 111.12 | 23.57 | 31.78 | southwest | 113.81 | 33.86 | 26.16 | northwest |
2011 | 109.92 | 36.61 | 115.86 | southeast | 110.80 | 23.57 | 35.67 | west | 113.78 | 33.75 | 12.69 | southwest |
2012 | 109.58 | 36.41 | 44.33 | southwest | 110.48 | 23.59 | 35.89 | northwest | 113.47 | 33.68 | 34.43 | southwest |
2013 | 109.51 | 36.22 | 21.69 | southwest | 110.03 | 23.63 | 50.15 | northwest | 113.36 | 33.62 | 13.59 | southwest |
2014 | 109.45 | 35.94 | 31.80 | southwest | 109.85 | 23.63 | 20.14 | west | 113.18 | 33.60 | 20.34 | southwest |
2015 | 109.18 | 35.82 | 33.79 | southwest | 109.95 | 23.56 | 13.99 | southeast | 113.07 | 33.47 | 19.26 | southwest |
2016 | 109.11 | 35.47 | 39.39 | southwest | 109.86 | 23.55 | 10.50 | southwest | 112.85 | 33.50 | 25.13 | northwest |
2017 | 109.30 | 35.54 | 22.70 | northeast | 110.11 | 23.47 | 28.68 | southeast | 112.90 | 33.38 | 14.42 | southeast |
2018 | 108.80 | 35.92 | 69.05 | northwest | 110.10 | 23.54 | 7.62 | northwest | 112.70 | 33.10 | 38.06 | southwest |
2019 | 108.61 | 35.99 | 22.88 | northwest | 110.19 | 23.56 | 10.88 | northeast | 112.57 | 33.04 | 15.96 | southwest |
2020 | 108.83 | 35.86 | 28.85 | southeast | 110.31 | 23.55 | 12.60 | southeast | 112.45 | 32.83 | 26.09 | southwest |
2021 | 108.59 | 35.84 | 26.90 | southwest | 110.29 | 23.56 | 1.80 | northwest | 112.33 | 32.65 | 24.65 | southwest |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, L.; Ouyang, Q.; Eastham, J.; Wang, J.; Wu, L. Production Agglomeration and Spatiotemporal Evolution of China’s Fruit Industry over the Last 40 Years. Agriculture 2025, 15, 634. https://doi.org/10.3390/agriculture15060634
Qiu L, Ouyang Q, Eastham J, Wang J, Wu L. Production Agglomeration and Spatiotemporal Evolution of China’s Fruit Industry over the Last 40 Years. Agriculture. 2025; 15(6):634. https://doi.org/10.3390/agriculture15060634
Chicago/Turabian StyleQiu, Lu, Qibin Ouyang, Jane Eastham, Jiayao Wang, and Lin Wu. 2025. "Production Agglomeration and Spatiotemporal Evolution of China’s Fruit Industry over the Last 40 Years" Agriculture 15, no. 6: 634. https://doi.org/10.3390/agriculture15060634
APA StyleQiu, L., Ouyang, Q., Eastham, J., Wang, J., & Wu, L. (2025). Production Agglomeration and Spatiotemporal Evolution of China’s Fruit Industry over the Last 40 Years. Agriculture, 15(6), 634. https://doi.org/10.3390/agriculture15060634