Effects of Combined Pollution of High-Density Polyethylene and Cadmium on Carbon and Nitrogen Storage and Forms in Coastal Wetland Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Material
2.2. Experimental Design
2.3. Methods for Analysis of Physicochemical Properties of the Soil
2.4. Data Analysis
3. Experimental Result
3.1. pH
3.2. Analysis of Carbon Transformation in the Soil
3.2.1. Changes in TOC and DOC Concentration in the Soil
3.2.2. Changes in Carbon-Related Enzymic Activities
3.3. Analysis of Nitrogen Transformation in the Soil
3.3.1. Changes in DON, NH4+-N, and NO3−-N Concentration in the Soil
3.3.2. Analysis of Nitrogen-Related Enzymic Activities
3.4. Correlation Analysis
4. Discussion
4.1. Analysis of the Change in the pH Value of the Soil
4.2. Effects of Dual Contamination of HDPE and Cd on C Conversion in the Soil
4.3. Impact of Dual Contamination of HDPE and Cd on Nitrogen Transformation in Soil
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, C.; Wang, H.; Liao, X.; Xiao, R.; Liu, K.; Bai, J.; Li, B.; He, Q. Heavy Metal Pollution in Coastal Wetlands: A Systematic Review of Studies Globally over the Past Three Decades. J. Hazard. Mater. 2022, 424, 127312. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Schwarz, C.; Lin, W.; Naing, H.; Cai, H.; Zhu, Z. A New Perspective on the Impacts of Spartina Alterniflora Invasion on Chinese Wetlands in the Context of Climate Change: A Case Study of the Jiuduansha Shoals, Yangtze Estuary. Sci. Total Environ. 2023, 868, 161477. [Google Scholar] [CrossRef]
- Ding, L.; Mao, R.F.; Guo, X.; Yang, X.; Zhang, Q.; Yang, C. Microplastics in Surface Waters and Sediments of the Wei River, in the Northwest of China. Sci. Total Environ. 2019, 667, 427–434. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Wu, D.; Rong, H.; Li, M.; Tong, M.; Kim, H. Influence of Nano- and Microplastic Particles on the Transport and Deposition Behaviors of Bacteria in Quartz Sand. Environ. Sci. Technol. 2018, 52, 11555–11563. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Gao, Y.; Jiang, W.; Chen, J.; Chen, Y.; Zhang, X.; Wang, G. Microplastics with Cadmium Inhibit the Growth of Vallisneria Natans (Lour.) Hara Rather than Reduce Cadmium Toxicity. Chemosphere 2021, 266, 128979. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Q.; Adams, C.A.; Sun, Y.; Zhang, S. Effects of Microplastics on Soil Properties: Current Knowledge and Future Perspectives. J. Hazard. Mater. 2022, 424, 127531. [Google Scholar] [CrossRef]
- Liu, H.; Yang, X.; Liu, G.; Liang, C.; Xue, S.; Chen, H.; Ritsema, C.J.; Geissen, V. Response of Soil Dissolved Organic Matter to Microplastic Addition in Chinese Loess Soil. Chemosphere 2017, 185, 907–917. [Google Scholar] [CrossRef]
- Sun, X.; Tao, R.; Xu, D.; Qu, M.; Zheng, M.; Zhang, M.; Mei, Y. Role of Polyamide Microplastic in Altering Microbial Consortium and Carbon and Nitrogen Cycles in a Simulated Agricultural Soil Microcosm. Chemosphere 2023, 312, 137155. [Google Scholar] [CrossRef]
- Gharahi, N.; Zamani-Ahmadmahmoodi, R. Effect of Plastic Pollution in Soil Properties and Growth of Grass Species in Semi-Arid Regions: A Laboratory Experiment. Environ. Sci. Pollut. Res. 2022, 29, 59118–59126. [Google Scholar] [CrossRef]
- Shen, H.; Sun, Y.; Duan, H.; Ye, J.; Zhou, A.; Meng, H.; Zhu, F.; He, H.; Gu, C. Effect of PVC Microplastics on Soil Microbial Community and Nitrogen Availability under Laboratory-Controlled and Field-Relevant Temperatures. Appl. Soil Ecol. 2023, 184, 104794. [Google Scholar] [CrossRef]
- Shi, J.; Wang, J.; Lv, J.; Wang, Z.; Peng, Y.; Wang, X. Microplastic Presence Significantly Alters Soil Nitrogen Transformation and Decreases Nitrogen Bioavailability under Contrasting Temperatures. J. Environ. Manag. 2022, 317, 115473. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Yao, H.; Li, Y.; Zhu, Y. Microplastic Addition Alters the Microbial Community Structure and Stimulates Soil Carbon Dioxide Emissions in Vegetable-Growing Soil. Environ. Toxic Chem. 2021, 40, 352–365. [Google Scholar] [CrossRef]
- Brown, R.W.; Chadwick, D.R.; Zang, H.; Graf, M.; Liu, X.; Wang, K.; Greenfield, L.M.; Jones, D.L. Bioplastic (PHBV) Addition to Soil Alters Microbial Community Structure and Negatively Affects Plant-Microbial Metabolic Functioning in Maize. J. Hazard. Mater. 2023, 441, 129959. [Google Scholar] [CrossRef]
- Su, P.; Gao, C.; Zhang, X.; Zhang, D.; Liu, X.; Xiang, T.; Luo, Y.; Chu, K.; Zhang, G.; Bu, N.; et al. Microplastics Stimulated Nitrous Oxide Emissions Primarily through Denitrification: A Meta-Analysis. J. Hazard. Mater. 2023, 445, 130500. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, X.; Song, N. Polyethylene Microplastics Increase Cadmium Uptake in Lettuce (Lactuca Sativa L.) by Altering the Soil Microenvironment. Sci. Total Environ. 2021, 784, 147133. [Google Scholar] [CrossRef]
- Jalmi, S.K.; Bhagat, P.K.; Verma, D.; Noryang, S.; Tayyeba, S.; Singh, K.; Sharma, D.; Sinha, A.K. Traversing the Links between Heavy Metal Stress and Plant Signaling. Front. Plant Sci. 2018, 9, 12. [Google Scholar] [CrossRef]
- Suzaki, P.Y.R.; Munaro, M.T.; Triques, C.C.; Kleinübing, S.J.; Klen, M.R.F.; De Matos Jorge, L.M.; Bergamasco, R. Biosorption of Binary Heavy Metal Systems: Phenomenological Mathematical Modeling. Chem. Eng. J. 2017, 313, 364–373. [Google Scholar] [CrossRef]
- Khan, M.A.; Khan, S.; Khan, A.; Alam, M. Soil Contamination with Cadmium, Consequences and Remediation Using Organic Amendments. Sci. Total Environ. 2017, 601–602, 1591–1605. [Google Scholar] [CrossRef]
- Buccolieri, A.; Buccolieri, G.; Cardellicchio, N.; Dell’Atti, A.; Di Leo, A.; Maci, A. Heavy Metals in Marine Sediments of Taranto Gulf (Ionian Sea, Southern Italy). Mar. Chem. 2006, 99, 227–235. [Google Scholar] [CrossRef]
- Schad, P. World Reference Base for Soil Resources—Its Fourth Edition and Its History. J. Plant Nutr. Soil Sci. 2023, 186, 151–163. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Dai, Y.; Ren, J.; Li, Y.; Wang, X.; Zhang, P.; Peng, C. Effects of Co-Loading of Polyethylene Microplastics and Ciprofloxacin on the Antibiotic Degradation Efficiency and Microbial Community Structure in Soil. Sci. Total Environ. 2020, 741, 140463. [Google Scholar] [CrossRef] [PubMed]
- Bao, S. Agrochemical Analysis of Soils, 3rd ed.; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- State Environmental Protection Administration of China. Water and Wastewater Monitoring and Analysis Methods, 4th ed.; China Environmental Science Press: Beijing, China, 2002; pp. 210–213. [Google Scholar]
- Saiya-Cork, K.R.; Sinsabaugh, R.L.; Zak, D.R. The Effects of Long Term Nitrogen Deposition on Extracellular Enzyme Activity in an Acer Saccharum Forest Soil. Soil Biol. Biochem. 2002, 34, 1309–1315. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, X.; Zhang, S.; Zhang, S.; Sun, Y. Interactions of Microplastics and Cadmium on Plant Growth and Arbuscular Mycorrhizal Fungal Communities in an Agricultural Soil. Chemosphere 2020, 254, 126791. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Wangjin, X.; Wang, Y.; Meng, G.; Chen, Y. The Adsorption Behavior of Metals in Aqueous Solution by Microplastics Effected by UV Radiation. J. Environ. Sci. 2020, 87, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Melo, D.Q.; Neto, V.O.S.; Oliveira, J.T.; Barros, A.L.; Gomes, E.C.C.; Raulino, G.S.C.; Longuinotti, E.; Nascimento, R.F. Adsorption Equilibria of Cu2+, Zn2+, and Cd2+ on EDTA-Functionalized Silica Spheres. J. Chem. Eng. Data 2013, 58, 798–806. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Sang, M.K.; Igalavithana, A.D.; Zhang, M.; Hou, D.; Oleszczuk, P.; Sung, J.; Ok, Y.S. Biochar Alters Chemical and Microbial Properties of Microplastic-Contaminated Soil. Environ. Res. 2022, 209, 112807. [Google Scholar] [CrossRef]
- Mcleod, E.; Chmura, G.L.; Bouillon, S.; Salm, R.; Björk, M.; Duarte, C.M.; Lovelock, C.E.; Schlesinger, W.H.; Silliman, B.R. A Blueprint for Blue Carbon: Toward an Improved Understanding of the Role of Vegetated Coastal Habitats in Sequestering CO2. Front. Ecol. Environ. 2011, 9, 552–560. [Google Scholar] [CrossRef]
- Oberbeckmann, S.; Löder, M.G.J.; Labrenz, M. Marine Microplastic-Associated Biofilms—A Review. Environ. Chem. 2015, 12, 551. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, D.; Lin, J.; Kumar, A.; Jia, K.; Tian, X.; Yu, Z.; Zhu, B. Priming Effects Induced by Degradable Microplastics in Agricultural Soils. Soil Biol. Biochem. 2023, 180, 109006. [Google Scholar] [CrossRef]
- Wang, F.; Wang, T.; Gustave, W.; Wang, J.; Zhou, Y.; Chen, J. Spatial-Temporal Patterns of Organic Carbon Sequestration Capacity after Long-Term Coastal Wetland Reclamation. Agric. Ecosyst. Environ. 2023, 341, 108209. [Google Scholar] [CrossRef]
- Lee, Y.K.; Murphy, K.R.; Hur, J. Fluorescence Signatures of Dissolved Organic Matter Leached from Microplastics: Polymers and Additives. Environ. Sci. Technol. 2020, 54, 11905–11914. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Yang, H.; Wang, G.; Ma, J.; Feng, L.; Liu, J. Response of Soil Carbon Fractions and Enzyme Activities to Mowing Management on in a Coastal Wetland of the Yellow River Delta. Front. Mar. Sci. 2022, 9, 993181. [Google Scholar] [CrossRef]
- Wang, Q.; Feng, X.; Liu, Y.; Cui, W.; Sun, Y.; Zhang, S.; Wang, F. Effects of Microplastics and Carbon Nanotubes on Soil Geochemical Properties and Bacterial Communities. J. Hazard. Mater. 2022, 433, 128826. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhao, X.; Wu, D.; Peng, L.; Fan, C.; Zhang, W.; Li, Q.; Ge, C. Addition of Biodegradable Microplastics Alters the Quantity and Chemodiversity of Dissolved Organic Matter in Latosol. Sci. Total Environ. 2022, 816, 151960. [Google Scholar] [CrossRef]
- Zhou, J.; Gui, H.; Banfield, C.C.; Wen, Y.; Zang, H.; Dippold, M.A.; Charlton, A.; Jones, D.L. The Microplastisphere: Biodegradable Microplastics Addition Alters Soil Microbial Community Structure and Function. Soil Biol. Biochem. 2021, 156, 108211. [Google Scholar] [CrossRef]
- Chen, C.; Pan, J.; Xiao, S.; Wang, J.; Gong, X.; Yin, G.; Hou, L.; Liu, M.; Zheng, Y. Microplastics Alter Nitrous Oxide Production and Pathways through Affecting Microbiome in Estuarine Sediments. Water Res. 2022, 221, 118733. [Google Scholar] [CrossRef]
- Zhang, G.S.; Zhang, F.X. Variations in Aggregate-Associated Organic Carbon and Polyester Microfibers Resulting from Polyester Microfibers Addition in a Clayey Soil. Environ. Pollut. 2020, 258, 113716. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, J.; Wang, J.; Chang, S.X.; Wang, S. The Quality and Quantity of Exogenous Organic Carbon Input Control Microbial NO3− Immobilization: A Meta-Analysis. Soil Biol. Biochem. 2017, 115, 357–363. [Google Scholar] [CrossRef]
- Qi, Y.; Beriot, N.; Gort, G.; Huerta Lwanga, E.; Gooren, H.; Yang, X.; Geissen, V. Impact of Plastic Mulch Film Debris on Soil Physicochemical and Hydrological Properties. Environ. Pollut. 2020, 266, 115097. [Google Scholar] [CrossRef]
- Dai, Z.; Zhang, N.; Ma, X.; Wang, F.; Peng, J.; Yang, S.; Cao, W. Microplastics Strengthen Nitrogen Retention by Intensifying Nitrogen Limitation in Mangrove Ecosystem Sediments. Environ. Int. 2024, 185, 108546. [Google Scholar] [CrossRef]
HDPE (g) | Cd (μg g−1) | TC (mg g−1) | TN (mg g−1) | pH |
---|---|---|---|---|
0 | 1.33 ± 0.12 | 15.63 ± 0.06 | 0.51 ± 0.06 | 8.61 ± 0.07 |
TOC (mg g−1) | DOC (μg g−1) | DON (μg g−1) | NO3−-N (μg g−1) | NH4+-N (μg g−1) |
2.86 ± 0.09 | 262.93 ± 4.25 | 25.10 ± 0.99 | 0.79 ± 0.00 | 0.79 ± 0.02 |
BG (μmol h−1 g−1) | CBH (μmol h−1 g−1) | NAG (μmol h−1 g−1) | TP (μg g−1) | TSi (mg g−1) |
8370.27 ± 435.85 | 1111.22 ± 23.45 | 282.67 ± 11.93 | 679.21 ± 28.09 | 456.10 ± 10.59 |
Treatments | Cd0 | Cd2 | Cd4 | Cd8 | |
---|---|---|---|---|---|
14 Days | HDPE0 | 8.67 ± 0.03 Ca | 8.61 ± 0.01 Bb | 8.45 ± 0.01 Dc | 8.42 ± 0.01 Dd |
HDPE0.5 | 8.71 ± 0.01 Ba | 8.63 ± 0.02 Bb | 8.54 ± 0.01 Cc | 8.46 ± 0.02 Cd | |
HDPE1 | 8.73 ± 0.01 ABa | 8.64 ± 0.01 Bb | 8.57 ± 0.00 Bc | 8.50 ± 0.00 Bd | |
HDPE2 | 8.75 ± 0.01 Aa | 8.65 ± 0.02 Ab | 8.59 ± 0.01 Ac | 8.57 ± 0.03 Ac | |
28 Days | HDPE0 | 8.33 ± 0.00 Ca | 8.29 ± 0.02 Db | 8.29 ± 0.02 Ab | 8.23 ± 0.01 Cc |
HDPE0.5 | 8.44 ± 0.02 Ba | 8.38 ± 0.00 Cb | 8.27 ± 0.01 Dc | 8.25 ± 0.01 Cc | |
HDPE1 | 8.47 ± 0.01 Ba | 8.43 ± 0.01 Bb | 8.39 ± 0.03 Cc | 8.34 ± 0.02 Bd | |
HDPE2 | 8.56 ± 0.05 Aa | 8.50 ± 0.00 Aab | 8.44 ± 0.04 Bb | 8.37 ± 0.02 Ac | |
56 Days | HDPE0 | 8.47 ± 0.01 BCa | 8.27 ± 0.04 Db | 8.23 ± 0.01 Dbc | 8.20 ± 0.02 Dc |
HDPE0.5 | 8.45 ± 0.12 Ca | 8.46 ± 0.01 Ca | 8.42 ± 0.02 Cab | 8.32 ± 0.05 Cb | |
HDPE1 | 8.58 ± 0.00 ABa | 8.55 ± 0.01 Ba | 8.47 ± 0.04 Bb | 8.39 ± 0.01 Bc | |
HDPE2 | 8.66 ± 0.03 Aa | 8.61 ± 0.01 Ab | 8.54 ± 0.02 Ac | 8.44 ± 0.01 Ad |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, Z.; Xu, S.; Zang, X.; Lyu, H.; Wang, Z.; He, S.; Du, D.; Li, J. Effects of Combined Pollution of High-Density Polyethylene and Cadmium on Carbon and Nitrogen Storage and Forms in Coastal Wetland Soil. Agriculture 2025, 15, 565. https://doi.org/10.3390/agriculture15050565
Nie Z, Xu S, Zang X, Lyu H, Wang Z, He S, Du D, Li J. Effects of Combined Pollution of High-Density Polyethylene and Cadmium on Carbon and Nitrogen Storage and Forms in Coastal Wetland Soil. Agriculture. 2025; 15(5):565. https://doi.org/10.3390/agriculture15050565
Chicago/Turabian StyleNie, Ziying, Shiyan Xu, Xuejing Zang, Huihua Lyu, Zhiquan Wang, Shengbing He, Daolin Du, and Jian Li. 2025. "Effects of Combined Pollution of High-Density Polyethylene and Cadmium on Carbon and Nitrogen Storage and Forms in Coastal Wetland Soil" Agriculture 15, no. 5: 565. https://doi.org/10.3390/agriculture15050565
APA StyleNie, Z., Xu, S., Zang, X., Lyu, H., Wang, Z., He, S., Du, D., & Li, J. (2025). Effects of Combined Pollution of High-Density Polyethylene and Cadmium on Carbon and Nitrogen Storage and Forms in Coastal Wetland Soil. Agriculture, 15(5), 565. https://doi.org/10.3390/agriculture15050565