Long Short-Term Memory Neural Network with Attention Mechanism for Rice Yield Early Estimation in Qian Gorlos County, Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Remote Sensing Data
2.2.2. Rice Yield Measurement
2.2.3. Mapping of Rice Spatial Distribution
2.3. Methods
2.3.1. Calculation and Screening of Vegetation Index
VI | Abbreviation | Formula | Source |
---|---|---|---|
Difference Vegetation Index | DVI | NIR − R | Kaufman and Tanre [42] |
Enhanced Vegetation Index | EVI | 2.5 × (NIR − R)/(NIR + 6 R − 7.5 B + L) | Corti, et al. [43] |
Excess Green Index | EXG | 2G − R − B | E. Meyer, et al. [44] |
Green Chlorophyll Vegetation Index | GCVI | NIR/G − 1 | Shuai, et al. [45] |
Green Normalized Difference Vegetation Index | GNDVI | (NIR − G)/(NIR + G) | Daughtry, et al. [46] |
Normalized Difference Red Edge Vegetation Index | NDRE | (NIR − REG)/(NIR + REG) | Li, et al. [47] |
Normalized Difference Vegetation Index | NDVI | (NIR − R)/(NIR + R) | Li, Miao, Feng, Yuan, Yue, Gao, Liu, Liu, Ustin and Chen [47] |
Normalized Difference Water Index | NDWI | (G − NIR)/(G + NIR) | McFeeters [48] |
Optimized Soil Adjust Vegetation Index | OSAVI | (1 + 0.16) × (NIR − R)/(NIR + R + 0.16) | Wan, et al. [49] |
Ratio Vegetation Index | RVI | R/NIR | Pearson and Miller [50] |
2.3.2. ALSTM Neural Network
2.3.3. Baseline Models
2.3.4. Model Evaluation
3. Results and Analysis
3.1. Correlation Between Rice Yield and Vegetation Index
3.2. Time-Series for Early Yield Estimation
3.3. Weight Analysis of Feature Variables Based on Attention Mechanism
3.4. Robustness Validation of the ALSTM Yield Estimation Framework
4. Discussion
4.1. Advantages of ALSTM in Yield Estimation
4.2. Important Growth Periods for Rice Yield Estimation
4.3. Important Vegetation Indices for Rice Yield Estimation
4.4. Uncertainties and Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peng, S.; Tang, Q.; Zou, Y. Current status and challenges of rice production in China. Plant Prod. Sci. 2009, 12, 3–8. [Google Scholar] [CrossRef]
- Xin, F.; Xiao, X.; Dong, J.; Zhang, G.; Zhang, Y.; Wu, X.; Li, X.; Zou, Z.; Ma, J.; Du, G. Large increases of paddy rice area, gross primary production, and grain production in Northeast China during 2000–2017. Sci. Total Environ. 2020, 711, 135183. [Google Scholar] [CrossRef] [PubMed]
- Bin Rahman, A.R.; Zhang, J. Trends in rice research: 2030 and beyond. Food Energy Secur. 2023, 12, e390. [Google Scholar] [CrossRef]
- Son, N.; Chen, C.; Chen, C.; Guo, H.; Cheng, Y.; Chen, S.; Lin, H.; Chen, S. Machine learning approaches for rice crop yield predictions using time-series satellite data in Taiwan. Int. J. Remote Sens. 2020, 41, 7868–7888. [Google Scholar] [CrossRef]
- Son, N.; Chen, C.; Cheng, Y.; Toscano, P.; Chen, C.; Chen, S.; Tseng, K.; Syu, C.; Guo, H.; Zhang, Y. Field-scale rice yield prediction from Sentinel-2 monthly image composites using machine learning algorithms. Ecol. Inform. 2022, 69, 101618. [Google Scholar] [CrossRef]
- Timsina, J.; Connor, D.J. Productivity and management of rice–wheat cropping systems: Issues and challenges. Field Crop Res. 2001, 69, 93–132. [Google Scholar] [CrossRef]
- Yang, G.; Liu, J.; Zhao, C.; Li, Z.; Huang, Y.; Yu, H.; Xu, B.; Yang, X.; Zhu, D.; Zhang, X. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives. Front. Plant Sci. 2017, 8, 1111. [Google Scholar] [CrossRef]
- Jin, X.; Kumar, L.; Li, Z.; Feng, H.; Xu, X.; Yang, G.; Wang, J. A review of data assimilation of remote sensing and crop models. Eur. J. Agron. 2018, 92, 141–152. [Google Scholar] [CrossRef]
- Zhu, X.; Cai, F.; Tian, J.; Williams, T.K. Spatiotemporal fusion of multisource remote sensing data: Literature survey, taxonomy, principles, applications, and future directions. Remote Sens. 2018, 10, 527. [Google Scholar] [CrossRef]
- Khanal, S.; Kc, K.; Fulton, J.P.; Shearer, S.; Ozkan, E. Remote sensing in agriculture—Accomplishments, limitations, and opportunities. Remote Sens. 2020, 12, 3783. [Google Scholar] [CrossRef]
- Prasad, A.K.; Chai, L.; Singh, R.P.; Kafatos, M. Crop yield estimation model for Iowa using remote sensing and surface parameters. Int. J. Appl. Earth Obs. 2006, 8, 26–33. [Google Scholar] [CrossRef]
- Wang, E.; Engel, T. SPASS: A generic process-oriented crop model with versatile windows interfaces. Environ. Model. Softw. 2000, 15, 179–188. [Google Scholar] [CrossRef]
- Manivasagam, V.S.; Rozenstein, O. Practices for upscaling crop simulation models from field scale to large regions. Comput. Electron. Agric. 2020, 175, 105554. [Google Scholar] [CrossRef]
- Divya, K.L.; Mhatre, P.H.; Venkatasalam, E.P.; Sudha, R. Crop simulation models as decision-supporting tools for sustainable potato production: A review. Potato Res. 2021, 64, 387–419. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, H.; Wang, Z.; Xie, Q.; Wang, Y.; Liu, L.; Hall, C.C. A comparison of estimating crop residue cover from sentinel-2 data using empirical regressions and machine learning methods. Remote Sens. 2020, 12, 1470. [Google Scholar] [CrossRef]
- Balaghi, R.; Tychon, B.; Eerens, H.; Jlibene, M. Empirical regression models using NDVI, rainfall and temperature data for the early prediction of wheat grain yields in Morocco. Int. J. Appl. Earth Obs. 2008, 10, 438–452. [Google Scholar] [CrossRef]
- Gaso, D.V.; Berger, A.G.; Ciganda, V.S. Predicting wheat grain yield and spatial variability at field scale using a simple regression or a crop model in conjunction with Landsat images. Comput. Electron. Agric. 2019, 159, 75–83. [Google Scholar] [CrossRef]
- Benos, L.; Tagarakis, A.C.; Dolias, G.; Berruto, R.; Kateris, D.; Bochtis, D. Machine learning in agriculture: A comprehensive updated review. Sensors 2021, 21, 3758. [Google Scholar] [CrossRef]
- Saleem, M.H.; Potgieter, J.; Arif, K.M. Automation in agriculture by machine and deep learning techniques: A review of recent developments. Precis. Agric. 2021, 22, 2053–2091. [Google Scholar] [CrossRef]
- Sharma, A.; Jain, A.; Gupta, P.; Chowdary, V. Machine learning applications for precision agriculture: A comprehensive review. IEEE Access 2020, 9, 4843–4873. [Google Scholar] [CrossRef]
- Sharma, R.; Kamble, S.S.; Gunasekaran, A.; Kumar, V.; Kumar, A. A systematic literature review on machine learning applications for sustainable agriculture supply chain performance. Comput. Oper. Res. 2020, 119, 104926. [Google Scholar] [CrossRef]
- Araújo, S.O.; Peres, R.S.; Ramalho, J.C.; Lidon, F.; Barata, J. Machine learning applications in agriculture: Current trends, challenges, and future perspectives. Agronomy 2023, 13, 2976. [Google Scholar] [CrossRef]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Tian, H.; Wang, P.; Tansey, K.; Zhang, J.; Zhang, S.; Li, H. An LSTM neural network for improving wheat yield estimates by integrating remote sensing data and meteorological data in the Guanzhong Plain, PR China. Agric. For. Meteorol. 2021, 310, 108629. [Google Scholar] [CrossRef]
- Niu, Z.; Zhong, G.; Yu, H. A review on the attention mechanism of deep learning. Neurocomputing 2021, 452, 48–62. [Google Scholar] [CrossRef]
- Liu, F.; Jiang, X.; Wu, Z. Attention mechanism-combined LSTM for grain yield prediction in China using multisource satellite imagery. Sustainability 2023, 15, 9210. [Google Scholar] [CrossRef]
- Shahhosseini, M.; Hu, G.; Archontoulis, S.V. Forecasting corn yield with machine learning ensembles. Front. Plant Sci. 2020, 11, 1120. [Google Scholar] [CrossRef]
- Rashid, M.; Bari, B.S.; Yusup, Y.; Kamaruddin, M.A.; Khan, N. A comprehensive review of crop yield prediction using machine learning approaches with special emphasis on palm oil yield prediction. IEEE Access 2021, 9, 63406–63439. [Google Scholar] [CrossRef]
- Jeong, S.; Ko, J.; Yeom, J. Predicting rice yield at pixel scale through synthetic use of crop and deep learning models with satellite data in South and North Korea. Sci. Total Environ. 2022, 802, 149726. [Google Scholar] [CrossRef]
- Liu, L.; Xie, Y.; Zhu, B.; Song, K. Rice leaf chlorophyll content estimation with different crop coverages based on Sentinel-2. Ecol. Inform. 2024, 81, 102622. [Google Scholar] [CrossRef]
- Ma, X.; Ma, Y. The spatiotemporal variation analysis of virtual water for agriculture and livestock husbandry: A study for Jilin Province in China. Sci. Total Environ. 2017, 586, 1150–1161. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, B.; Rasmussen, A.; Porter, J.R. Temperatures and the growth and development of maize and rice: A review. Glob. Change Biol. 2014, 20, 408–417. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, W.; Li, Z.; Atkinson, P.M. Fusion of Sentinel-2 images. Remote Sens. Environ. 2016, 187, 241–252. [Google Scholar] [CrossRef]
- Wang, Q.; Atkinson, P.M. Spatio-temporal fusion for daily Sentinel-2 images. Remote Sens. Environ. 2018, 204, 31–42. [Google Scholar] [CrossRef]
- Raiyani, K.; Gonçalves, T.; Rato, L.; Salgueiro, P.; Marques Da Silva, J.R. Sentinel-2 image scene classification: A comparison between Sen2Cor and a machine learning approach. Remote Sens. 2021, 13, 300. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, H.B.; Xu, X.Q.; He, J.Y.; Ge, X.K.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.X.; Tian, Y.C. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 246–255. [Google Scholar] [CrossRef]
- Qiao, L.; Tang, W.; Gao, D.; Zhao, R.; An, L.; Li, M.; Sun, H.; Song, D. UAV-based chlorophyll content estimation by evaluating vegetation index responses under different crop coverages. Comput. Electron. Agric. 2022, 196, 106775. [Google Scholar] [CrossRef]
- Aslan, M.F.; Sabanci, K.; Aslan, B. Artificial Intelligence Techniques in Crop Yield Estimation Based on Sentinel-2 Data: A Comprehensive Survey. Sustainability 2024, 16, 8277. [Google Scholar] [CrossRef]
- Liu, T.; Wu, F.; Mou, N.; Zhu, S.; Yang, T.; Zhang, W.; Wang, H.; Wu, W.; Zhao, Y.; Sun, C. The estimation of wheat yield combined with UAV canopy spectral and volumetric data. Food Energy Secur. 2024, 13, e527. [Google Scholar] [CrossRef]
- Taylor, J.A.; Bates, T.R. A discussion on the significance associated with Pearson’s correlation in precision agriculture studies. Precis. Agric. 2013, 14, 558–564. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Corti, M.; Cavalli, D.; Cabassi, G.; Marino Gallina, P.; Bechini, L. Does remote and proximal optical sensing success-fully estimate maize variables? A review. Eur. J. Agron. 2018, 99, 37–50. [Google Scholar] [CrossRef]
- Meyer, G.E.; Mehta, T.; Kocher, M.F.; Mortensen, D.A.; Samal, A. Textural imaging and discriminant analysis for distinguishingweeds for spot spraying. Trans. ASAE 1998, 41, 1189–1197. [Google Scholar] [CrossRef]
- Shuai, G.; Fowler, A.; Basso, B. Within-season vegetation indices and yield stability as a predictor of spatial patterns of Maize (Zea mays L.) yields. Precis. Agric. 2024, 25, 963–982. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Gallo, K.P.; Goward, S.N.; Prince, S.D.; Kustas, W.P. Spectral estimates of absorbed radiation and phytomass production in corn and soybean canopies. Remote Sens. Environ. 1992, 39, 141–152. [Google Scholar] [CrossRef]
- Li, F.; Miao, Y.; Feng, G.; Yuan, F.; Yue, S.; Gao, X.; Liu, Y.; Liu, B.; Ustin, S.L.; Chen, X. Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crop Res. 2014, 157, 111–123. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Wan, L.; Cen, H.; Zhu, J.; Li, Y.; Zhu, Y.; Sun, D.; Weng, H.; He, Y. Combining UAV-based vegetation indices, canopy height and canopy coverage to improve rice yield prediction under different nitrogen levels. In Proceedings of the 2019 ASABE Annual International Meeting, Boston, MA, USA, 7–10 July 2019; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2019; p. 1. [Google Scholar]
- Pearson, R.L.; Miller, L.D. Remote mapping of standing crop biomass for estimation of the productivity of the short-grass prairie. In Proceedings of the Eighth International Symposium on Remote Sensing of Environment, Ann Arbor, MI, USA, 2–6 October 1972; p. 1355. [Google Scholar]
- Wang, Q.; Hao, Y. ALSTM: An attention-based long short-term memory framework for knowledge base reasoning. Neurocomputing 2020, 399, 342–351. [Google Scholar] [CrossRef]
- Tian, H.; Wang, P.; Tansey, K.; Han, D.; Zhang, J.; Zhang, S.; Li, H. A deep learning framework under attention mechanism for wheat yield estimation using remotely sensed indices in the Guanzhong Plain, PR China. Int. J. Appl. Earth Obs. 2021, 102, 102375. [Google Scholar] [CrossRef]
- Zou, H. The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 2006, 101, 1418–1429. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Landi, F.; Baraldi, L.; Cornia, M.; Cucchiara, R. Working memory connections for LSTM. Neural Netw. 2021, 144, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.S.; Ames, D.P.; Panigrahi, S. Application of vegetation indices for agricultural crop yield prediction using neural network techniques. Remote Sens. 2010, 2, 673–696. [Google Scholar] [CrossRef]
- Bala, S.K.; Islam, A.S. Correlation between potato yield and MODIS-derived vegetation indices. Int. J. Remote Sens. 2009, 30, 2491–2507. [Google Scholar] [CrossRef]
- Muruganantham, P.; Wibowo, S.; Grandhi, S.; Samrat, N.H.; Islam, N. A systematic literature review on crop yield prediction with deep learning and remote sensing. Remote Sens. 2022, 14, 1990. [Google Scholar] [CrossRef]
- Xiong, Z.; Xin, Q.; Zhang, Z.; Gui, H. A Meteorology-Driven Lstm For Predicting Time Series of Vegetation Leaf Area Index In Land Surface Model. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 4915–4918. [Google Scholar]
- Li, P.; Jiang, X.; Jin, G.; Yu, Y.; Xie, Z. ALSTM: An attention-based lstm model for multi-scenario bandwidth prediction. In Proceedings of the 2021 IEEE 27th International Conference on Parallel and Distributed Systems (ICPADS), Beijing, China, 14–16 December 2021; pp. 98–105. [Google Scholar]
- Tang, L.; Zhu, Y.; Hannaway, D.; Meng, Y.; Liu, L.; Chen, L.; Cao, W. RiceGrow: A rice growth and productivity model. NJAS—Wagening. J. Life Sci. 2009, 57, 83–92. [Google Scholar] [CrossRef]
- Fageria, N.K. Yield physiology of rice. J. Plant Nutr. 2007, 30, 843–879. [Google Scholar] [CrossRef]
- Hattori, Y.; Nagai, K.; Ashikari, M. Rice growth adapting to deepwater. Curr. Opin. Plant Biol. 2011, 14, 100–105. [Google Scholar] [CrossRef]
- Mosleh, M.K.; Hassan, Q.K.; Chowdhury, E.H. Application of remote sensors in mapping rice area and forecasting its production: A review. Sensors 2015, 15, 769–791. [Google Scholar] [CrossRef]
- Huang, J.F.; Tang, S.C.; Ousama, A.I.; Wang, R.C. Rice yield estimation using remote sensing and simulation model. J. Zhejiang Univ. Sci. A 2002, 3, 461–466. [Google Scholar] [CrossRef]
- Yang, Q.; Shi, L.; Han, J.; Zha, Y.; Zhu, P. Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images. Field Crop Res. 2019, 235, 142–153. [Google Scholar] [CrossRef]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Minh, V.Q.; Trung, N.H. A comparative analysis of multitemporal MODIS EVI and NDVI data for large-scale rice yield estimation. Agric. Forest Meteorol. 2014, 197, 52–64. [Google Scholar] [CrossRef]
- Yang, R.; Zhou, J.; Lu, X.; Shen, J.; Chen, H.; Chen, M.; He, Y.; Liu, F. A robust rice yield estimation framework developed by grading modeling and normalized weight decision-making strategy using UAV imaging technology. Comput. Electron. Agric. 2023, 215, 108417. [Google Scholar] [CrossRef]
Serial Number | Time Interval | Rice Growth Period | Characteristics of the Growth Period |
---|---|---|---|
GP1 | 6.11–6.25 | Transplanting stage—Tillering stage | After rice breeding and germinating, the seedlings were transplanted to a paddy field, and the seedlings just adapted to the paddy field environment |
GP2 | 6.25–7.11 | Tillering stage—Jointing stage | The tillering buds emerged and protruded 1–2 cm from the base leaf axils |
GP3 | 7.11–7.25 | Jointing stage—Heading stage | The number of rice components is fixed, and the internode of the stem rapidly extends upward, which is still the vegetative growth stage |
GP4 | 7.25–8.17 | Heading stage—Milk ripening stage | The seeds and stems, leaves, and ears in the middle and upper parts of the plant are green. Grain inclusions are milky white serous. |
GP5 | 8.17–9.16 | Milk ripening stage—yellow ripening stage | The rice grains hardened, and the rice began to change from vegetative growth to reproductive growth |
Waveband | Spatial Resolution/m | Central Wavelength/nm | Bandwidth/nm |
---|---|---|---|
B2-Blue | 490 | 65 | |
B3-Green | 560 | 35 | |
B4-Red | 10 | 665 | 30 |
B8-NIR | 842 | 115 | |
B5-Red edge | 705 | 15 | |
B6-Red edge | 740 | 15 | |
B7-Edge of the NIR plateau | 20 | 783 | 20 |
B8a-Narrow NIR | 865 | 20 | |
B11-SWIR | 1610 | 90 | |
B12-SWIR | 2190 | 180 | |
B1-Coastal aerosol | 443 | 20 | |
B9-Water Vapour | 60 | 945 | 20 |
B10-Cirrus | 1375 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Xie, Y.; Liu, L.; Song, K.; Zhu, B. Long Short-Term Memory Neural Network with Attention Mechanism for Rice Yield Early Estimation in Qian Gorlos County, Northeast China. Agriculture 2025, 15, 231. https://doi.org/10.3390/agriculture15030231
Li J, Xie Y, Liu L, Song K, Zhu B. Long Short-Term Memory Neural Network with Attention Mechanism for Rice Yield Early Estimation in Qian Gorlos County, Northeast China. Agriculture. 2025; 15(3):231. https://doi.org/10.3390/agriculture15030231
Chicago/Turabian StyleLi, Jian, Yichen Xie, Lushi Liu, Kaishan Song, and Bingxue Zhu. 2025. "Long Short-Term Memory Neural Network with Attention Mechanism for Rice Yield Early Estimation in Qian Gorlos County, Northeast China" Agriculture 15, no. 3: 231. https://doi.org/10.3390/agriculture15030231
APA StyleLi, J., Xie, Y., Liu, L., Song, K., & Zhu, B. (2025). Long Short-Term Memory Neural Network with Attention Mechanism for Rice Yield Early Estimation in Qian Gorlos County, Northeast China. Agriculture, 15(3), 231. https://doi.org/10.3390/agriculture15030231