Yield Adaptability and Stability in Chickpea Based on AMMI, Eberhart and Russell’s, Lin and Binns’s, and WAASB Models
Abstract
1. Introduction
2. Materials and Methods
2.1. General Conditions
2.2. Experimental Design
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Asif, M.; Rooney, L.W.; Ali, R.; Riaz, M.N. Application and Opportunities of Pulses in Food System: A Review. Crit. Rev. Food Sci. Nutr. 2013, 53, 1168–1179. [Google Scholar] [CrossRef]
- Xavier, G.; Jesus, E.; Dias, A.; Coelho, M.; Molina, Y.; Rumjanek, N. Contribution of Biofertilizers to Pulse Crops: From Single-Strain Inoculants to New Technologies Based on Microbiomes Strategies. Plants 2023, 12, 954. [Google Scholar] [CrossRef]
- Lasisi, A.; Liu, K. A Global Meta-Analysis of Pulse Crop Effect on Yield, Resource Use, and Soil Organic Carbon in Cereal- and Oilseed-Based Cropping Systems. Field Crops Res. 2023, 294, 108857. [Google Scholar] [CrossRef]
- Bera, A. Impact of Climate Change on Pulse Production and It’s Mitigation Strategies. Asian J. Adv. Agric. Res. 2021, 15, 14–28. [Google Scholar] [CrossRef]
- Begum, N.; Khan, Q.U.; Liu, L.G.; Li, W.; Liu, D.; Haq, I.U. Nutritional Composition, Health Benefits and Bio-Active Compounds of Chickpea (Cicer arietinum L.). Front. Nutr. 2023, 10, 1218468. [Google Scholar] [CrossRef] [PubMed]
- FAO. FAOSTAT. Food and Agriculture Organization of the United Nations. 2020. Available online: http://www.fao.org/faostat/en/#data (accessed on 15 July 2025).
- Xiao, S.; Li, Z.; Zhou, K.; Fu, Y. Chemical Composition of Kabuli and Desi Chickpea (Cicer arietinum L.) Cultivars Grown in Xinjiang, China. Food Sci. Nutr. 2023, 11, 236–248. [Google Scholar] [CrossRef] [PubMed]
- Eker, T.; Sari, D.; Sari, H.; Tosun, H.S.; Toker, C. A Kabuli Chickpea Ideotype. Sci. Rep. 2022, 12, 1611. [Google Scholar] [CrossRef]
- Choudhary, A.K.; Jain, S.K.; Dubey, A.K.; Kumar, J.; Sharma, M.; Gupta, K.C.; Sharma, L.D.; Prakash, V.; Kumar, S. Conventional and Molecular Breeding for Disease Resistance in Chickpea: Status and Strategies. Biotechnol. Genet. Eng. Rev. 2023, 39, 193–224. [Google Scholar] [CrossRef]
- Arriagada, O.; Cacciuttolo, F.; Cabeza, R.A.; Carrasco, B.; Schwember, A.R. A Comprehensive Review on Chickpea (Cicer arietinum L.) Breeding for Abiotic Stress Tolerance and Climate Change Resilience. Int. J. Mol. Sci. 2022, 23, 6794. [Google Scholar] [CrossRef] [PubMed]
- Gurumurthy, S.; Ashu, A.; Kruthika, S.; Solanke, A.P.; Basavaraja, T.; Soren, K.R.; Rane, J.; Pathak, H.; Prasad, P.V.V. An Innovative Natural Speed Breeding Technique for Accelerated Chickpea (Cicer arietinum L.) Generation Turnover. Plant Methods 2024, 20, 177. [Google Scholar] [CrossRef]
- Scavo, A.; Mauromicale, G.; Ierna, A. Dissecting the Genotype × Environment Interaction for Potato Tuber Yield and Components. Agronomy 2022, 13, 101. [Google Scholar] [CrossRef]
- Pour-Aboughadareh, A.; Khalili, M.; Poczai, P.; Olivoto, T. Stability Indices to Deciphering the Genotype-by-Environment Interaction (GEI) Effect: An Applicable Review for Use in Plant Breeding Programs. Plants 2022, 11, 414. [Google Scholar] [CrossRef]
- Wricke, G. Uber Eine Methode Zur Erfassung Der Okologischen Streubreite in Feldversucen. Z. Pflanzenzucht. 1962, 47, 92–96. [Google Scholar]
- Eberhart, S.T.; Russell, W.A. Stability Parameters for Comparing Varieties 1. Crop Sci. 1966, 6, 36–40. [Google Scholar] [CrossRef]
- Finlay, K.W.; Wilkinson, G.N. The Analysis of Adaptation in a Plant-Breeding Programme. Aust. J. Agric. Res. 1963, 14, 742–754. [Google Scholar] [CrossRef]
- Cruz, C.D. Modelos Biometricos Aplicados Ao Melhoramento Geneticos; Editora UFV: Viçosa, Brazil, 2002; ISBN 978-85-7269-151-2. [Google Scholar]
- Zobel, R.W.; Wright, M.J.; Gauch, H.G. Statistical Analysis of a Yield Trial. Agron. J. 1988, 80, 388–393. [Google Scholar] [CrossRef]
- Olivoto, T.; Lúcio, A.D.C.; Da Silva, J.A.G.; Marchioro, V.S.; De Souza, V.Q.; Jost, E. Mean Performance and Stability in Multi-Environment Trials I: Combining Features of AMMI and BLUP Techniques. Agron. J. 2019, 111, 2949–2960. [Google Scholar] [CrossRef]
- Annicchiarico, P. Cultivar Adaptation and Recommendation from Alfalfa Trials in Northern Italy. J. Genet. Breed. 1992, 46, 269. [Google Scholar]
- Huehn, M. Nonparametric Measures of Phenotypic Stability. Part 2: Applications. Euphytica 1990, 47, 195–201. [Google Scholar] [CrossRef]
- Lin, C.S.; Binns, M.R. A Superiority Measure of Cultivar Performance for Cultivar × Location Data. Can. J. Plant Sci. 1988, 68, 193–198. [Google Scholar] [CrossRef]
- Carneiro, P.C.S. Novas Metodologias de Análise da Adaptabilidade e Estabilidade de Comportamento; Universidade Federal de Viçosa: Viçosa, Brazil, 1998. [Google Scholar]
- Yue, H.; Gauch, H.G.; Wei, J.; Xie, J.; Chen, S.; Peng, H.; Bu, J.; Jiang, X. Genotype by Environment Interaction Analysis for Grain Yield and Yield Components of Summer Maize Hybrids across the Huanghuaihai Region in China. Agriculture 2022, 12, 602. [Google Scholar] [CrossRef]
- Karimizadeh, R.; Pezeshkpour, P.; Mirzaee, A.; Barzali, M.; Sharifi, P.; Safari Motlagh, M.R. Stability Analysis for Seed Yield of Chickpea (Cicer arietinum L.) Genotypes by Experimental and Biological Approaches. Vestn. VOGiS 2023, 27, 135–145. [Google Scholar] [CrossRef]
- Hussain, T.; Akram, Z.; Shabbir, G.; Manaf, A.; Ahmed, M. Identification of Drought Tolerant Chickpea Genotypes through Multi Trait Stability Index. Saudi J. Biol. Sci. 2021, 28, 6818–6828. [Google Scholar] [CrossRef] [PubMed]
- Houasli, C.; Sahri, A.; Nsarellah, N.; Idrissi, O. Chickpea (Cicer arietinum L.) Breeding in Morocco: Genetic Gain and Stability of Grain Yield and Seed Size under Winter Planting Conditions. Euphytica 2021, 217, 159. [Google Scholar] [CrossRef]
- Danakumara, T.; Kumar, T.; Kumar, N.; Patil, B.S.; Bharadwaj, C.; Patel, U.; Joshi, N.; Bindra, S.; Tripathi, S.; Varshney, R.K.; et al. A Multi-Model Based Stability Analysis Employing Multi-Environmental Trials (METs) Data for Discerning Heat Tolerance in Chickpea (Cicer arietinum L.) Landraces. Plants 2023, 12, 3691. [Google Scholar] [CrossRef]
- Joshi, P.; Vandemark, G. AMMI and GGE Biplot Analysis of Seed Protein Concentration, Yield, and 100-seed Weight for Chickpea Cultivars and Breeding Lines in the US Pacific Northwest. Crop Sci. 2025, 65, e21417. [Google Scholar] [CrossRef]
- Vadithya, A.S.; Bindra, S.; Sharma, N.; Sanwal, S.K.; Shanmugavadivel, S.P.; Singh, I.; Bharadwaj, C.; Singh, M. Multi-Model Statistical Approaches for Assessing the Stability of Cicer Interspecific Derivatives in the Trans and Upper Gangetic Regions of India. Sci. Rep. 2025, 15, 22230. [Google Scholar] [CrossRef] [PubMed]
- SAS. SAS System, version 9.1.3; SAS Institute Inc.: Cary, NC, USA, 2008.
- Scott, A.J.; Knott, M. A Cluster Analysis Method for Grouping Means in the Analysis of Variance. Biometrics 1974, 30, 507. [Google Scholar] [CrossRef]
- Olivoto, T.; Lúcio, A.D. Metan: An R Package for Multi-environment Trial Analysis. Methods Ecol. Evol. 2020, 11, 783–789. [Google Scholar] [CrossRef]
- Cruz, C.D. Programa Genes-Ampliado e Integrado Aos Aplicativos R, Matlab e Selegen. Acta Scientiarum. Agron. 2016, 38, 547–552. [Google Scholar] [CrossRef]
- Oroian, C.; Ugruțan, F.; Mureșan, I.C.; Oroian, I.; Odagiu, A.; Petrescu-Mag, I.V.; Burduhos, P. AMMI Analysis of Genotype × Environment Interaction on Sugar Beet (Beta vulgaris L.) Yield, Sugar Content and Production in Romania. Agronomy 2023, 13, 2549. [Google Scholar] [CrossRef]
- Aditya, J.P.; Bhartiya, P.; Bhartiya, A. Genetic Variability, Heritability and Character Association for Yield and Component Characters in Soybean (G. max (L.) Merrill). J. Cent. Eur. Agric. 2011, 12, 27–34. [Google Scholar] [CrossRef]
- Oda, M.C.; Sediyama, T.; Cruz, C.D.; Nascimento, M.; Matsuo, É. Adaptability and Yield Stability of Soybean Genotypes by Mean Eberhart and Russell Methods, Artificial Neural Networks and Centroid. ASB J. 2021, 8, 1–13. [Google Scholar] [CrossRef]
- Ortiz, R.; Reslow, F.; Huicho, J.; Vetukuri, R.; Crossa, J. Adaptability, Stability, and Productivity of Potato Breeding Clones and Cultivars at High Latitudes in Europe. Discov. Life 2024, 54, 13. [Google Scholar] [CrossRef]
- Molina, C.; Rotter, B.; Horres, R.; Udupa, S.M.; Besser, B.; Bellarmino, L.; Baum, M.; Matsumura, H.; Terauchi, R.; Kahl, G.; et al. SuperSAGE: The Drought Stress-Responsive Transcriptome of Chickpea Roots. BMC Genom. 2008, 9, 553. [Google Scholar] [CrossRef]
- Varshney, R.K.; Thudi, M.; Roorkiwal, M.; He, W.; Upadhyaya, H.D.; Yang, W.; Bajaj, P.; Cubry, P.; Rathore, A.; Jian, J.; et al. Resequencing of 429 Chickpea Accessions from 45 Countries Provides Insights into Genome Diversity, Domestication and Agronomic Traits. Nat. Genet. 2019, 51, 857–864. [Google Scholar] [CrossRef]
- Istanbuli, T.; Alsamman, A.M.; Al-Shamaa, K.; Abu Assar, A.; Adlan, M.; Kumar, T.; Tawkaz, S.; Hamwieh, A. Selection of High Nitrogen Fixation Chickpea Genotypes under Drought Stress Conditions Using Multi-Environment Analysis. Front. Plant Sci. 2025, 16, 1490080. [Google Scholar] [CrossRef]
- Pour-Aboughadareh, A.; Barati, A.; Koohkan, S.A.; Jabari, M.; Marzoghian, A.; Gholipoor, A.; Shahbazi-Homonloo, K.; Zali, H.; Poodineh, O.; Kheirgo, M. Dissection of Genotype-by-Environment Interaction and Yield Stability Analysis in Barley Using AMMI Model and Stability Statistics. Bull. Natl. Res. Cent. 2022, 46, 19. [Google Scholar] [CrossRef]
- Scapim, C.A.; Pacheco, C.A.P.; do Amaral Júnior, A.T.; Vieira, R.A.; Pinto, R.J.B.; Conrado, T.V. Correlations between the Stability and Adaptability Statistics of Popcorn Cultivars. Euphytica 2010, 174, 209–218. [Google Scholar] [CrossRef]
- Schmildt, E.R.; Cruz, C.D. Adaptability and Stability of Maize Using Eberhart and Russell and Annicchiarico Methods. Ceres 2005, 52, 45–58. [Google Scholar]
- Olivoto, T.; Lúcio, A.D.C.; Da Silva, J.A.G.; Sari, B.G.; Diel, M.I. Mean Performance and Stability in Multi-Environment Trials II: Selection Based on Multiple Traits. Agron. J. 2019, 111, 2961–2969. [Google Scholar] [CrossRef]
- Wicaksana, N.; Maulana, H.; Yuwariah, Y.; Ismail, A.; Ruswandi, Y.A.R.; Ruswandi, D. Selection of High Yield and Stable Maize Hybrids in Mega-Environments of Java Island, Indonesia. Agronomy 2022, 12, 2923. [Google Scholar] [CrossRef]



| E | Planting Dates | Location | Coordinates | Altitude (m) | Type of Soil | Management | Accumulated Rainfall (mm) | Water Supply (mm) |
|---|---|---|---|---|---|---|---|---|
| E1 | 20 January 2020 | Embrapa Hortaliças | S 15° 56.087′; W 048° 08.439′ | 898 | Dystrophic Red Oxisol | Rainfed | 563 | 0 |
| E2 | 20 March 2020 | 320 | 0 | |||||
| E3 | 10 April 2020 | 114 | 0 | |||||
| E4 | 10 April 2020 | 118 | 0 | |||||
| E5 | 30 April 2021 | Futurama farm | S 16° 16.501′; W 047° 21 | 1005 | Dystrophic Yellow Oxisol | Irrigated | 12 | 213 |
| E6 | 20 May 2021 | 0 | 191 | |||||
| E7 | 9 June 2021 | 0 | 216 |
| Genotypes | Origin | Pedigree | Grain Type | Growth Habit | 1000 Seeds Weight (g) |
|---|---|---|---|---|---|
| Astro | Mexico | Local landrace | Kabuli | Semi-erect | 570 |
| Blanco Sinaloa 92 | INIFAP/Mexico | Comercial variety | Kabuli | Semi-erect | 506 |
| BG 1392 | ICRISAT/India | Not Available | Kabuli | Semi-erect | 599 |
| Cícero | EMBRAPA/Brazil | Comercial variety | Kabuli | Semi-erect | 520 |
| FLIP03-35C | ICARDA/Lebanon | X98TH18/S96114 x FLI92-148C | Kabuli | Semi-erect | 403 |
| FLIP06-155C | ICARDA/Lebanon | X98TH58/(Malik 1 x ILC7795 x FLIP94-92C) x S96233 | Kabuli | Semi-erect | 430 |
| FLIP06-34C | ICARDA/Lebanon | Not Available | Kabuli | Semi-erect | 391 |
| FLIP02-23C | ICARDA/Lebanon | X98TH18/S96114 x FLI92-148C | Kabuli | Erect | 359 |
| FLIP03-109C | ICARDA/Lebanon | X00TH51/FLIP98-52C x FLIP 98-47C | Kabuli | Semi-erect | 407 |
| IAC Marrocos | ICARDA/Lebanon | Comercial variety | Kabuli | Prostrate | 285 |
| ICCV 10 | ICRISAT/India | P 1231 x P 1265. | Desi | Semi-erect | 273 |
| ILC 1929 | Syria | Local landrace | Kabuli | Semi-erect | 381 |
| Jamu 96 | INIFAP/Mexico | Comercial variety | Kabuli | Erect | 440 |
| Joly | Spain | Local landrace | Kabuli | Semi-erect | 544 |
| Nacional 29 | INIFAT/Cuba | Comercial variety | Kabuli | Prostrate | 505 |
| Source of Variation | DF | MS | Cumulative (%) |
|---|---|---|---|
| Replication/Environment | 14 | 44,376.83 | 1.94 |
| Environment | 6 | 1,312,820.81 ** | 24.55 |
| Genotype | 14 | 799,014.10 ** | 34.87 |
| Genotype × Environment | 84 | 102,845.35 ** | 26.93 |
| PC1 | 19 | 336,273.35 ** | 74.00 |
| PC2 | 17 | 64,072.28 ** | 86.60 |
| PC3 | 15 | 33,679.87 * | 92.40 |
| PC4 | 13 | 28,326.65 ns | 96.70 |
| PC5 | 11 | 19,339.75 ns | 99.10 |
| PC6 | 9 | 8267.19 ns | 100.00 |
| Environment (linear) | 1 | 7,876,924.87 ** | |
| Genotype x Environment (linear) | 14 | 373,177.16 ** | |
| Pooled Deviation | 75 | 45,527.05 ** | |
| Error | 196 | 19,178.52 | 11.72 |
| Genotypes | Yield 1/Environments | ||||||
|---|---|---|---|---|---|---|---|
| E1 | E2 | E3 | E4 | E5 | E6 | E7 | |
| Astro | 263.33 C | 46.00 b | 164.00 C | 73.67 A | 111.67 c | 149.33 C | 212.00 D |
| Blanco Sinaloa 92 | 419.33 C | 61.00 b | 215.00 C | 134.00 A | 223.33 c | 314.67 C | 324.67 D |
| BG 1392 | 280.00 C | 91.00 b | 177.67 C | 159.33 A | 98.67 c | 138.00 C | 214.00 D |
| Cícero | 79.33 C | 30.12 b | 207.67 C | 98.00 A | 80.67 c | 100.00 C | 128.00 D |
| FLIP03-35C | 514.67 B | 105.67 b | 257.67 C | 285.67 A | 964.67 a | 1040.67 A | 876.00 B |
| FLIP06-155C | 559.33 B | 177.00 a | 184.33 C | 218.33 A | 905.00 a | 1045.67 A | 1250.00 A |
| FLIP06-34C | 369.33 C | 296.00 a | 295.67 B | 175.67 A | 488.00 b | 531.67 B | 919.33 B |
| FLIP02-23C | 522.67 B | 231.00 a | 364.00 B | 207.33 A | 960.67 a | 1140.67 A | 1075.33 A |
| FLIP03-109C | 811.33 A | 219.00 a | 479.33 A | 254.00 A | 889.67 a | 1161.33 A | 965.33 B |
| IAC Marrocos | 390.00 C | 401.33 a | 344.33 B | 49.33 A | 422.67 b | 634.67 B | 506.00 C |
| ICCV 10 | 68.67 C | 20.67 b | 163.33 C | 241.00 A | 147.67 c | 563.00 B | 622.00 C |
| ILC 1929 | 767.33 A | 146.00 b | 206.67 C | 105.00 A | 270.67 c | 371.33 B | 337.33 D |
| Jamu 96 | 370.67 C | 31.33 b | 294.00 B | 174.00 A | 445.00 b | 480.67 B | 504.00 C |
| Joly | 345.33 C | 103.00 b | 207.67 C | 155.67 A | 135.67 c | 158.67 C | 312.00 D |
| Nacional 29 | 264.00 C | 43.67 b | 323.00 B | 221.00 A | 196.33 c | 180.67 C | 203.33 D |
| Average | 401.69 B | 132.67 D | 258.96 C | 170.13 D | 422.69 B | 534.07 A | 563.29 A |
| Environmental Index 2 | 46.90 | −222.12 | −95.83 | −184.65 | 67.90 | 179.28 | 208.50 |
| Genotypes | Yield (Kg per Hectare) | Eberhardt and Russell | Lin and Binns’s Modified by Carneiro (Pi’s/1,000,000) | WAASB Index | Average Sum of Rank | ||||
|---|---|---|---|---|---|---|---|---|---|
| R2 | Pi | Pi+ | Pi− | ||||||
| Astro | 145.71 (14) | 0.29 ** | −2434.75 ns | 43.24 | 572.43 (14) | 271.42 (13) | 301.02 (13) | 5.91 (6) | 12.00 |
| Blanco Sinaloa 92 | 241.71 (10) | 0.57 * | −16.81 ns | 64.21 | 475.09 (9) | 216.73 (10) | 258.36 (10) | 4.63 (5) | 8.80 |
| BG 1392 | 165.52 (13) | 0.13 ** | −1688.72 ns | 10.98 | 557.46 (13) | 275.25 (14) | 282.20 (12) | 7.12 (9) | 12.20 |
| Cícero | 101.57 (15) | 0.07 ** | −2557.04 ns | 4.09 | 610.70 (15) | 294.13 (15) | 316.58 (15) | 7.7 (11) | 14.20 |
| FLIP03-35C | 577.86 (4) | 2.05 ** | 20,715.27 ** | 84.38 | 254.8 (3) | 38.24 (4) | 216.56 (3) | 10.25 (13) | 5.40 |
| FLIP06-155C | 619.95 (3) | 2.51** | 15,992.02 ** | 90.75 | 267.56 (4) | 35.75 (3) | 231.82 (5) | 12.96 (15) | 6.00 |
| FLIP06-34C | 439.38 (5) | 1.21 ns | 14,143.29 ** | 71.23 | 365.63 (5) | 132.13 (5) | 233.49 (7) | 3.57 (4) | 5.20 |
| FLIP02-23C | 643.10 (2) | 2.25 ** | 13,721.99 ** | 89.81 | 228.23 (2) | 29.38 (1) | 198.85 (2) | 11.05 (14) | 4.20 |
| FLIP03-109C | 682.86 (1) | 2.09 ** | 1859.02 ns | 94.90 | 174.36 (1) | 30.33 (2) | 144.03 (1) | 9.07 (12) | 3.00 |
| IAC Marrocos | 392.62 (6) | 0.77 ns | 11,294.57 * | 54.08 | 369.09 (6) | 137.25 (6) | 231.84 (6) | 1.77 (2) | 5.20 |
| ICCV 10 | 260.90 (9) | 1.02 ns | 24,756.36 ** | 54.07 | 498.76 (11) | 187.87 (8) | 310.89 (14) | 2.87 (3) | 9.00 |
| ILC 1929 | 314.90 (8) | 0.68 ns | 36,175.64 ** | 27.76 | 411.37 (8) | 193.48 (9) | 217.9 (4) | 6.85 (8) | 5.40 |
| Jamu 96 | 328.52 (7) | 0.98 ns | −3504.13 ns | 92.09 | 399.16 (7) | 155.57 (7) | 243.59 (8) | 0.78 (1) | 4.00 |
| Joly | 202.57 (12) | 0.27 ** | 1221.42 ns | 25.20 | 525.66 (12) | 259.85 (12) | 265.81 (11) | 6.52 (7) | 11.00 |
| Nacional 29 | 204.57 (11) | 0.11 ** | 2064.51 ns | 4.67 | 497.57 (10) | 252.01 (11) | 245.55 (9) | 7.62 (10) | 10.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Artiaga, O.; Spehar, C.R.; Queiroz, N.R.; Silva, G.O.; Suinaga, F.A.; Nascimento, W.M. Yield Adaptability and Stability in Chickpea Based on AMMI, Eberhart and Russell’s, Lin and Binns’s, and WAASB Models. Agriculture 2025, 15, 2572. https://doi.org/10.3390/agriculture15242572
Artiaga O, Spehar CR, Queiroz NR, Silva GO, Suinaga FA, Nascimento WM. Yield Adaptability and Stability in Chickpea Based on AMMI, Eberhart and Russell’s, Lin and Binns’s, and WAASB Models. Agriculture. 2025; 15(24):2572. https://doi.org/10.3390/agriculture15242572
Chicago/Turabian StyleArtiaga, Osmar, Carlos Roberto Spehar, Nathalia Ramos Queiroz, Giovani Olegário Silva, Fabio Akiyoshi Suinaga, and Warley Marcos Nascimento. 2025. "Yield Adaptability and Stability in Chickpea Based on AMMI, Eberhart and Russell’s, Lin and Binns’s, and WAASB Models" Agriculture 15, no. 24: 2572. https://doi.org/10.3390/agriculture15242572
APA StyleArtiaga, O., Spehar, C. R., Queiroz, N. R., Silva, G. O., Suinaga, F. A., & Nascimento, W. M. (2025). Yield Adaptability and Stability in Chickpea Based on AMMI, Eberhart and Russell’s, Lin and Binns’s, and WAASB Models. Agriculture, 15(24), 2572. https://doi.org/10.3390/agriculture15242572

