Quantifying Dynamic Water-Saving Thresholds Through Regulating Irrigation: Insights from an Integrated Hydrological Model of the Hetao Irrigation District
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. SWAT-MODFLOW Model
2.3.2. Interannual and Intra-Annual Water-Saving Scenario Settings
3. Results
3.1. Model Construction
3.2. Interannual Dynamic Water-Saving Threshold
3.3. Year Dynamic Water-Saving Threshold
4. Discussion
4.1. Principal Findings and Model Performance
4.2. Interpretation of Inter-Annual Water-Saving Potential
4.3. Implications of Intra-Annual Irrigation Adjustments
4.4. Implications for Water-Saving Strategies Based on Spatial Heterogeneity
4.5. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SW | Surface Water |
| GW | Groundwater |
| YLD | Harvested yield |
References
- Rosa, L. Adapting agriculture to climate change via sustainable irrigation: Biophysical potentials and feedbacks. Environ. Res. Lett. 2022, 17, 063008. [Google Scholar] [CrossRef]
- Abioye, E.A.; Hensel, O.; Esau, T.J.; Elijah, O.; Abidin, M.; Ayobami, A.S.; Yerima, O.; Nasirahmadi, A. Precision Irrigation Management Using Machine Learning and Digital Farming Solutions. AgriEngineering 2022, 4, 70–103. [Google Scholar] [CrossRef]
- Ingrao, C.; Strippoli, R.; Lagioia, G.; Huisingh, D. Water scarcity in agriculture: An overview of causes, impacts and approaches for reducing the risks. Heliyon 2023, 9, e18507. [Google Scholar] [CrossRef]
- Oladosu, Y.; Rafii, M.Y.; Arolu, F.; Chukwu, S.C.; Salisu, M.A.; Fagbohun, I.K.; Muftaudeen, T.K.; Swaray, S.; Haliru, B.S. Superabsorbent Polymer Hydrogels for Sustainable Agriculture: A Review. Horticulturae 2022, 8, 605. [Google Scholar] [CrossRef]
- Devkota, K.P.; Devkota, M.; Rezaei, M.; Oosterbaan, R. Managing salinity for sustainable agricultural production in salt-affected soils of irrigated drylands. Agric. Syst. 2022, 198, 103390. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Hou, K.; Qian, H.; Gao, Y.Y.; Fang, Y.; Xiao, S.; Tang, S.Q.; Zhang, Q.Y.; Qu, W.A.; Ren, W.H. Characterization of soil salinization and its driving factors in a typical irrigation area of Northwest China. Sci. Total Environ. 2022, 837, 155808. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.W.; Wang, W.R.; Wang, W.H.; Huang, F.R.; Gao, M.M.; Liu, Y.C.; Gong, P.Y.; Yao, Y. Irrigation Suitability and Interaction Between Surface Water and Groundwater Influenced by Agriculture Activities in an Arid Plain of Central Asia. Agriculture 2025, 15, 1704. [Google Scholar] [CrossRef]
- Almahawis, M.K.; Bailey, R.T.; Abbas, S.A.; Arnold, J.G.; White, M.J. Investigating the impact of irrigation practices on hydrologic fluxes in a highly managed river basin. Agric. Water Manag. 2024, 301, 108954. [Google Scholar] [CrossRef]
- Duan, L.M.; Zhang, W.R.; Qiu, Y.H.; Chen, S.Y.; Wang, D.H.; Luo, Y.Y.; Qu, S.; Gao, R.Z.; Xue, B.L.; Wang, G.Q.; et al. Identifying the spatio-seasonal pattern of hydrochemical evolution and surface water-groundwater interaction in a large urban river basin, Northwest China. Sci. Total Environ. 2024, 944, 173989. [Google Scholar] [CrossRef]
- Kassie, Y.A.; Yimam, A.Y.; Assefa, T.T.; Belay, S.A. Evaluating land suitability and water availability for surface irrigation in the Abbay basin of Ethiopia. R. Soc. Open Sci. 2022, 9, 220674. [Google Scholar] [CrossRef]
- Yan, H.; Xie, Z.H.; Jia, B.H.; Li, R.C.; Wang, L.H.; Tian, Y.H.; You, Y.B. Impact of groundwater overextraction and agricultural irrigation on hydrological processes in an inland arid basin. J. Hydrol. 2025, 653, 132770. [Google Scholar] [CrossRef]
- Liang, F.L.; Li, S.; Jie, F.L.; Ge, Y.Y.; Liu, N.; Jia, G.W. The Development of a Coupled Soil Water Assessment Tool-MODFLOW Model for Studying the Impact of Irrigation on a Regional Water Cycle. Water 2023, 15, 3542. [Google Scholar] [CrossRef]
- Momm, H.G.; Bingner, R.L.; Moore, K.; Herring, G. Integrated surface and groundwater modeling to enhance water resource sustainability in agricultural watersheds. Agric. Water Manag. 2022, 269, 107692. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Qian, H.; Xu, P.P.; Liu, R.; Ke, X.M.; Furman, A.; Shang, J.T. A Numerical Assessment and Prediction for Meeting the Demand for Agricultural Water and Sustainable Development in Irrigation Area. Remote Sens. 2023, 15, 571. [Google Scholar] [CrossRef]
- Nasiri, S.; Ansari, H.; Ziaei, A.N. Determination of water balance equation components in irrigated agricultural watersheds using SWAT and MODFLOW models: A case study of Samalqan plain in Iran. J. Groundw. Sci. Eng. 2022, 10, 44–56. [Google Scholar] [CrossRef]
- Dangol, S.; Zhang, X.S.; Liang, X.Z.; Miralles-Wilhelm, F. Agricultural Irrigation Effects on Hydrological Processes in the United States Northern High Plains Aquifer Simulated by the Coupled SWAT-MODFLOW System. Water 2022, 14, 1938. [Google Scholar] [CrossRef]
- Bailey, R.T.; Abbas, S.; Arnold, J.G.; White, M.J. SWAT plus MODFLOW: A new hydrologic model for simulating surface-subsurface flow in managed watersheds. Geosci. Model Dev. 2025, 18, 5681–5697. [Google Scholar] [CrossRef]
- Al-Suraifi, A.R.; Shirinabadi, R.; Rabiefar, H.; Najarchi, M. Development of a coupled surface water-groundwater model for the spatiotemporal simulation of river-aquifer interactions. Irrig. Drain. 2025, 74, 402–419. [Google Scholar] [CrossRef]
- Zafarmomen, N.; Alizadeh, H.; Bayat, M.; Ehtiat, M.; Moradkhani, H. Assimilation of Sentinel-Based Leaf Area Index for Modeling Surface-Ground Water Interactions in Irrigation Districts. Water Resour. Res. 2024, 60, e2023WR036080. [Google Scholar] [CrossRef]
- Xiong, L.Y.; Jiang, Y.; Li, X.Y.; Ren, D.Y.; Huang, G.H. Long-term regional groundwater responses and their ecological impacts under agricultural water saving in an arid irrigation district, upper Yellow River basin. Agric. Water Manag. 2023, 288, 108493. [Google Scholar] [CrossRef]
- Xu, H.; Song, J.F. Drivers of the irrigation water rebound effect: A case study of Hetao irrigation district in Yellow River basin, China. Agric. Water Manag. 2022, 266, 107567. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Yang, P.L. Agricultural Water Optimal Allocation Using Minimum Cross-Entropy and Entropy-Weight-Based TOPSIS Method in Hetao Irrigation District, Northwest China. Agriculture 2022, 12, 853. [Google Scholar] [CrossRef]
- Yao, J.W.; Berbel, J.; Yang, Z.Y.; Wang, H.Y.; Martinez-Dalmau, J. Application of Positive Mathematical Programming (PMP) in Sustainable Water Resource Management: A Case Study of Hetao Irrigation District, China. Water 2025, 17, 2598. [Google Scholar] [CrossRef]
- Liu, X.X.; Ma, S.M.; Fang, Y.; Wang, S.F.; Guo, P. A novel approach to identify crop irrigation priority. Agric. Water Manag. 2023, 275, 108008. [Google Scholar] [CrossRef]
- Zhao, G.L.; Tian, S.M.; Han, B.; Zhang, Z.S.; Chen, R.X.; Zhang, Y. Quantitative assessment sustainability of the river-irrigation district-lake system under global climate change. Ecol. Indic. 2025, 177, 113802. [Google Scholar] [CrossRef]
- Feng, Z.Z.; Miao, Q.F.; Shi, H.B.; Goncalves, J.M.; Li, R.P. Water Saving and Environmental Issues in the Hetao Irrigation District, the Yellow River Basin: Development Perspective Analysis. Agronomy 2025, 15, 1654. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Z.; Li, Z.H.; Dai, D.Q.; Li, Y.P. Evaluation of water use efficiency and optimal irrigation quantity of spring maize in Hetao Irrigation District using the Noah-MP Land Surface Model. Agric. Water Manag. 2022, 264, 107498. [Google Scholar] [CrossRef]
- Xiong, L.; Jiang, Y.; Qi, J.Y.; Huang, G.H. Improving regional soil water-salt management by modeling soil freezing-thawing processes in a cold-arid irrigation district, upper Yellow River basin. J. Hydrol. Reg. Stud. 2025, 60, 102544. [Google Scholar] [CrossRef]
- Zheng, H.X.; Han, Y.J.; Bao, R.X.; Wang, B.Y.; Wu, J.B.; Tian, D.L.; Yan, H.F.; Hao, B.B. Traceability simulation of drainage in irrigation areas along the south bank of the Yellow River based on the SWAT model. Front. Environ. Sci. 2025, 13, 1517836. [Google Scholar] [CrossRef]
- Sun, Y.L.; Wang, L.P.; Liu, Z.T.; Jia, Y.L.; Qu, Z.Y. Impact of a Saline Soil Improvement Project on the Spatiotemporal Evolution of Groundwater Dynamic Field and Hydrodynamic Process Simulation in the Hetao Irrigation District. Agronomy 2025, 15, 1346. [Google Scholar] [CrossRef]
- Mao, W.; Zhu, Y.; Huang, S.; Han, X.D.; Sun, G.F.; Ye, M.; Yang, J.Z. Assessment of spatial and temporal seepage losses in large canal systems under current and future water-saving conditions: A case study in the Hetao Irrigation District, China. Agric. Water Manag. 2024, 291, 108615. [Google Scholar] [CrossRef]
- Zhang, Y.; Miao, Q.F.; Li, R.P.; Sun, M.H.; Yang, X.M.; Wang, W.; Huang, Y.P.; Feng, W.Y. Distribution and Variation of Soil Water and Salt before and after Autumn Irrigation. Land 2024, 13, 773. [Google Scholar] [CrossRef]
- Ramos, T.B.; Liu, M.H.; Paredes, P.; Shi, H.B.; Feng, Z.Z.; Lei, H.M.; Pereira, L.S. Salts dynamics in maize irrigation in the Hetao plateau using static water table lysimeters and HYDRUS-1D with focus on the autumn leaching irrigation. Agric. Water Manag. 2023, 283, 108306. [Google Scholar] [CrossRef]
- Liu, J.W.; Huang, Q.Z.; Li, Z.; Liu, N.; Li, J.S.; Huang, G.H. Effect of Autumn Irrigation on Salt Leaching under Subsurface Drainage in an Arid Irrigation District. Water 2023, 15, 2296. [Google Scholar] [CrossRef]
- Liu, J.W.; Sun, L.; Zhu, X.J.; Deng, H.X.; Fan, Y.M.; Huang, Q.Z.; Huang, G.H. Effects of different annual irrigation strategies on soil water, salt, nitrogen leaching, and sunflower growth in saline soils of arid regions. Agric. Water Manag. 2025, 318, 109692. [Google Scholar] [CrossRef]
- Liu, M.H.; Paredes, P.; Shi, H.B.; Ramos, T.B.; Dou, X.; Dai, L.P.; Pereira, L.S. Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc. Agric. Water Manag. 2022, 273, 107887. [Google Scholar] [CrossRef]
- Wang, C.Z.; Luo, Y.Y.; Huo, Z.L.; Liu, Z.Y.; Liu, G.; Wang, S.; Lin, Y.F.; Wu, P.J. Salt Accumulation during Cropping Season in an Arid Irrigation Area with Shallow Water Table Depth: A 10-Year Regional Monitoring. Water 2022, 14, 1664. [Google Scholar] [CrossRef]
- Kim, N.W.; Chung, I.M.; Won, Y.S.; Arnold, J.G. Development and application of the integrated SWAT-MODFLOW model. J. Hydrol. 2008, 356, 1–16. [Google Scholar] [CrossRef]
- Molina-Navarro, E.; Bailey, R.T.; Andersen, H.E.; Thodsen, H.; Nielsen, A.; Park, S.; Jensen, J.S.; Jensen, J.B.; Trolle, D. Comparison of abstraction scenarios simulated by SWAT and SWAT-MODFLOW. Hydrolog. Sci. J. 2019, 64, 434–454. [Google Scholar] [CrossRef]
- Bailey, R.T.; Wible, T.C.; Arabi, M.; Records, R.M.; Ditty, J. Assessing regional-scale spatio-temporal patterns of groundwater-surface water interactions using a coupled SWAT-MODFLOW model. Hydrol. Process. 2016, 30, 4420–4433. [Google Scholar] [CrossRef]
- Aliyari, F.; Bailey, R.T.; Tasdighi, A.; Dozier, A.; Arabi, M.; Zeiler, K. Coupled SWAT-MODFLOW model for large-scale mixed agro-urban river basins. Environ. Modell. Softw. 2019, 115, 200–210. [Google Scholar] [CrossRef]
- Qu, Z.; Yang, X.; Huang, Y. Analysis and assessment of water-saving project of in Hetao Irrigation District in Inner Mongolia. Trans. Chin. Soc. Agric. Mach. 2015, 46, 70–76+112, (In Chinese with English Abstract). [Google Scholar]
- Xue, J.; Ren, L. Simulating the impact of subsurface pipe drainage systems on crop water productivity at a regional scale in the upper Yellow River Basin. Irrig. Drain. 2024, 73, 627–648. [Google Scholar] [CrossRef]
- Li, M.; Wang, L.J.; Singh, V.P.; Chen, Y.S.; Li, H.Y.; Li, T.X.; Zhou, Z.Q.; Fu, Q. Green and efficient fine control of regional irrigation water use coupled with crop growth-carbon emission processes. Eur. J. Agron. 2025, 164, 127442. [Google Scholar] [CrossRef]
- Zhou, H.; Dai, M.; Wei, M.; Luo, Z.C. Quantitative Assessment of Shallow Groundwater Sustainability in North China Plain. Remote Sens. 2023, 15, 474. [Google Scholar] [CrossRef]
- Wei, D.; Wang, X.L.; Luo, N.; Zhu, Y.P.; Wang, P.; Meng, Q.F. Alleviating groundwater depletion while realizing food security for sustainable development. J. Clean. Prod. 2023, 393, 136351. [Google Scholar] [CrossRef]
- Jiang, D.L.; Ao, C.; Bailey, R.T.; Zeng, W.Z.; Huang, J.S. Simulation of water and salt transport in the Kaidu River Irrigation District using the modified SWAT-Salt. Agric. Water Manag. 2022, 272, 107845. [Google Scholar] [CrossRef]
- He, H.J.; Liu, L. Study on irrigation scheme and nitrogen application to sunflower (Helianthus annuus L.) in saline farmland in the arid/semi-arid region of Hetao Irrigation District. Irrig. Sci. 2025, 43, 203–219. [Google Scholar] [CrossRef]
- Li, C.; Feng, H.; Luo, X.Q.; Li, Y.; Wang, N.J.; Wu, W.J.; Zhang, T.B.; Dong, Q.G.; Siddique, K. Limited irrigation and fertilization in sand-layered soil increases nitrogen use efficiency and economic benefits under film mulched ridge-furrow irrigation in arid areas. Agric. Water Manag. 2022, 262, 107406. [Google Scholar] [CrossRef]
- Qi, Z.; Gao, Y.; Sun, C.; Ramos, T.B.; Mu, D.N.; Xun, Y.H.; Huang, G.H.; Xu, X. Assessing water-nitrogen use, crop growth and economic benefits for maize in upper Yellow River basin: Feasibility analysis for border and drip irrigation. Agric. Water Manag. 2024, 295, 108771. [Google Scholar] [CrossRef]
- Hou, L.Y.; Liu, X.T.; Luo, J.H.; Zhao, Y.; Zhang, X.J.; Lei, Q.L.; Liu, H.B.; Zou, P.; Liu, Z.J. Nitrogen rate is more important than irrigation rate in mitigating nitrogen leaching in flood-irrigated maize: A 6-year lysimeter experiment. Geoderma 2024, 447, 116940. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, T.B.; Hu, X.L.; Liu, Z.Y.; Liang, Q.; Yan, S.H.; Feng, H.; Siddique, K. Drip fertigation triggered by soil matric potential reduces residual soil nitrate content and improves maize nitrogen uptake and yield stability in an arid area. Eur. J. Agron. 2023, 150, 126932. [Google Scholar] [CrossRef]
- Li, H.; Miao, Q.F.; Shi, H.B.; Li, X.Y.; Zhang, S.W.; Zhang, F.X.; Bu, H.L.; Wang, P.; Yang, L.; Wang, Y.L.; et al. Remote sensing monitoring of irrigated area in the non-growth season and of water consumption analysis in a large-scale irrigation district. Agric. Water Manag. 2024, 303, 109020. [Google Scholar] [CrossRef]
- Fu, C.; Xue, J.; Chen, J.F.; Cui, L.H.; Wang, H. Evaluating spatial and temporal variations of soil water, heat, and salt under autumn irrigation in the Hetao Irrigation District based on distributed SHAW model. Agric. Water Manag. 2024, 293, 108707. [Google Scholar] [CrossRef]
- Sun, G.F.; Zhu, Y.; Mao, W.; Li, Y.H.; Yang, J.Z.; Gao, Z.L. Development and application of a monthly water and salt balance model for seasonally frozen agricultural and non-agricultural areas with shallow groundwater table. Catena 2024, 235, 107701. [Google Scholar] [CrossRef]
- Xue, J.; Fu, C.; Chen, J.F.; Cui, L.H. Evaluating the influence of different straw mulch-autumn irrigation patterns on soil water, heat, and salt in seasonally frozen regions with distributed SHAW model. Agric. Water Manag. 2025, 311, 109377. [Google Scholar] [CrossRef]
- Hu, Z.Y.; Miao, Q.F.; Shi, H.B.; Feng, W.Y.; Hou, C.; Yu, C.C.; Mu, Y.F. Spatial Variations and Distribution Patterns of Soil Salinity at the Canal Scale in the Hetao Irrigation District. Water 2023, 15, 3342. [Google Scholar] [CrossRef]
- Feng, Z.Z.; Miao, Q.F.; Shi, H.B.; Gonçalves, J.M.; Li, X.Y.; Feng, W.Y.; Yan, J.W.; Yu, D.D.; Yan, Y. AquaCrop model-based sensitivity analysis of soil salinity dynamics and productivity under climate change in sandy-layered farmland. Agric. Water Manag. 2025, 307, 109244. [Google Scholar] [CrossRef]
- Dai, J.L.; Li, R.P.; Miao, Q.F.; Li, C.C.; Lu, Y.Z.; Hua, Z.M. Shallow groundwater enhances water productivity of maize in arid area. Irrig. Sci. 2022, 40, 885–908. [Google Scholar] [CrossRef]
- Lv, M.Z.; Tian, D.L.; Wang, G.S.; Fan, T.; Li, W.P.; Hou, C.L.; Zhou, J.; Miao, X.Y. Selection of alfalfa water and nitrogen management regimes based on the DSSAT model. Sci. Rep. 2025, 15, 12108. [Google Scholar] [CrossRef] [PubMed]







| Crop Type | Date | Irrigation Water Volume/mm |
|---|---|---|
| Wheat | 1 May | 100 |
| 20 May | 100 | |
| 10 June | 100 | |
| 5 July | 100 | |
| 15 October | 180 | |
| Corn | 1 May | 150 |
| 20 May | 100 | |
| 10 June | 100 | |
| 5 July | 100 | |
| 15 October | 180 | |
| Sunflower | 20 May | 150 |
| 10 June | 70 | |
| 5 July | 50 | |
| 15 October | 150 |
| Parameter_Name | Fitted_Value | Min_Value | Max_Value | |
|---|---|---|---|---|
| 1 | CN2.mgt | 83.93533 | 82.66339 | 84.1254 |
| 2 | ALPHA_BF.gw | 0.791006 | 0.770526 | 0.812322 |
| 3 | GW_DELAY.gw | 463.2236 | 441.3506 | 473.9969 |
| 4 | GWQMN.gw | 1429.13 | 1340.703 | 1455.543 |
| 5 | CANMX.hru | 94.1308 | 92.4105 | 96.4112 |
| 6 | CH_K2.rte | 0.820076 | 0 | 1.822392 |
| 7 | CH_N2.rte | 0.245579 | 0.227985 | 0.246505 |
| 8 | ALPHA_BNK.rte | 0.28985 | 0.263896 | 0.291216 |
| 9 | GW_REVAP.gw | 0.06869 | 0.061079 | 0.068925 |
| 10 | REVAPMN.gw | 330.451 | 322.6138 | 336.8633 |
| 11 | RCHRG_DP.gw | 0.811538 | 0.787403 | 0.914427 |
| 12 | ESCO.hru | 0.22788 | 0.191906 | 0.238626 |
| 13 | SOL_AWC(..).sol | 0.924843 | 0.911426 | 0.934166 |
| 14 | SOL_K(..).sol | 360.2079 | 359.7607 | 404.4818 |
| 15 | SFTMP.bsn | 11.82323 | 10.86907 | 11.89505 |
| 16 | SURLAG.bsn | 12.22519 | 11.44029 | 12.77062 |
| Hydrological Year Scenario | Year |
|---|---|
| Dry year | 2008, 2009, 2011, 2014 |
| Normal year | 2013, 2015, 2016 |
| Wet year | 2010, 2012 |
| Sim | Water Saving Range (%) | ||
|---|---|---|---|
| Spring | Summer | Autumn | |
| 1 | 50 | 50 | 0 |
| 2 | 50 | 0 | 50 |
| 3 | 0 | 50 | 50 |
| 4 | 100 | 0 | 0 |
| 5 | 0 | 100 | 0 |
| 6 | 0 | 0 | 100 |
| 7 | 33 | 33 | 33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, C.; Fang, Q.; Wang, K.; Hu, X.; Zan, Z.; Zhao, H.; Yue, W. Quantifying Dynamic Water-Saving Thresholds Through Regulating Irrigation: Insights from an Integrated Hydrological Model of the Hetao Irrigation District. Agriculture 2025, 15, 2563. https://doi.org/10.3390/agriculture15242563
Cao C, Fang Q, Wang K, Hu X, Zan Z, Zhao H, Yue W. Quantifying Dynamic Water-Saving Thresholds Through Regulating Irrigation: Insights from an Integrated Hydrological Model of the Hetao Irrigation District. Agriculture. 2025; 15(24):2563. https://doi.org/10.3390/agriculture15242563
Chicago/Turabian StyleCao, Changming, Qingqing Fang, Kun Wang, Xinli Hu, Ziyi Zan, Hangzheng Zhao, and Weifeng Yue. 2025. "Quantifying Dynamic Water-Saving Thresholds Through Regulating Irrigation: Insights from an Integrated Hydrological Model of the Hetao Irrigation District" Agriculture 15, no. 24: 2563. https://doi.org/10.3390/agriculture15242563
APA StyleCao, C., Fang, Q., Wang, K., Hu, X., Zan, Z., Zhao, H., & Yue, W. (2025). Quantifying Dynamic Water-Saving Thresholds Through Regulating Irrigation: Insights from an Integrated Hydrological Model of the Hetao Irrigation District. Agriculture, 15(24), 2563. https://doi.org/10.3390/agriculture15242563

