Factors Affecting the Effectiveness of Litter Management Practices: An Overview
Abstract
1. Introduction
2. The Importance of Consuming Colostrum
2.1. The Amount of Colostrum Produced and Its Composition
2.2. Amount of Colostrum Consumed
3. Piglet Fostering and Behavior
3.1. Piglets’ Preference for a Particular Teat or Pair of Teats
3.2. Maternal Recognition by Piglets and Vice Versa
3.3. Influence of Age, Piglet Body Weight and Litter Size at the Time of CF on Their Aggressive Behavior
3.3.1. Reducing Aggressive Piglet Behavior Using Multi-Suckling Pens
3.3.2. Reducing Aggressive Piglet Behavior Using PigSAFE Farrowing Pens
3.4. Piglets Fighting for Teats
4. Influence of CF on Piglet Growth Performance
5. Different Management and Nutritional Strategies and Their Association with Lower Welfare in Piglets
5.1. Split-Suckling
5.2. Nurse Sow
5.3. Double Nursing
5.4. Artificial Rearing
Animal Welfare in Artificial Technologies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oliviero, C. Offspring of hyper prolific sows: Immunity, birthweight, and heterogeneous litters. Mol. Reprod. Dev. 2022, 90, 580–595. [Google Scholar] [CrossRef]
- Obermier, D.R.; Howard, J.T.; Gray, K.A.; Knauer, M.T. The impact of functional teat number on reproductive throughput in swine. Trans. Anim. Sci. 2023, 7, txad100. [Google Scholar] [CrossRef]
- Vila, R.M.; Tummaruk, P. Management strategies in farrowing house to improve piglet pre-weaning survival and growth. Thai J. Vet. Med. 2016, 46, 347–354. [Google Scholar] [CrossRef]
- Decaluwé, R.; Maes, D.; Wuyts, B.; Cools, A.; Prepers, S.; Janssens, G.P.J. Piglets’ colostrum intake associates with daily weight gain and survival until weaning. Livest. Sci. 2014, 162, 185–192. [Google Scholar] [CrossRef]
- Quiniou, N.; Dagorn, J.; Gaudré, D. Variation of piglets’ birth weight and consequences on subsequent performance. Livest. Prod. Sci. 2002, 78, 63–70. [Google Scholar] [CrossRef]
- Hawe, S.J.; Scollan, N.; Goron, A.; Magowan, E. What is the current significance of low birthweight pigs on commercial farms in Northern Ireland in terms of impaired growth and mortality? Transl. Anim. Sci. 2020, 4, txaa147. [Google Scholar] [CrossRef] [PubMed]
- Kirkwood, R.N.; Lnagendijk, P.; Carr, J. Management strategies for improving survival of piglets from hyperprolific sows. Thai J. Vet. Med. 2021, 51, 629–636. [Google Scholar] [CrossRef]
- Hurley, W.L. 9. Composition of sow colostrum and milk. In The Gestating and Lactating Sow; Farmer, C., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015; pp. 193–229. [Google Scholar]
- Devillers, N.; Le Dividich, J.; Prunier, A. Influence of colostrum intake on piglet survival and immunity. Animal 2011, 5, 1605–1612. [Google Scholar] [CrossRef]
- Oelkrug, R.; Polymeropoulos, E.T.; Jastroch, M. Brown adipose tissue: Physiological function and evolutionary significance. J. Comp. Physiol. B 2015, 185, 587–606. [Google Scholar] [CrossRef]
- Herpin, P.; Damon, M.; Le Dividich, J. Development of thermoregulation and neonatal survival in pigs. Livest. Prod. Sci. 2002, 78, 25–45. [Google Scholar] [CrossRef]
- Sangild, P.T.; Thymann, T.; Schmidt, M.; Stoll, B.; Burrin, D.G.; Buddington, R.K. Invited review: The preterm as a model in pediatric gastroenterology. J. Anim. Sci. 2013, 91, 4713–4729. [Google Scholar] [CrossRef] [PubMed]
- Theil, P.K.; Nielsen, M.O.; Sørensen, M.T.; Lauridsen, C. Lactation, Milk and Suckling. In Nutritional Physiology of Pigs: With Emphasis on Danish Production Conditions; Knudsen, K.E.B., Kjeldsen, N.J., Poulsen, H.D., Jensen, B.B., Eds.; Videncenter for Svineproduktion, Landbrug and Fødevarerđ: Copenhagen, Denmark, 2012. [Google Scholar]
- Theil, P.K.; Lauridsen, C.; Quesnel, H. Neonatal piglet survival: Impact of sow nutrition around parturition on fetal glycogen deposition and production and composition of colostrum and transient milk. Animal 2014, 8, 1021–1030. [Google Scholar] [CrossRef] [PubMed]
- Salmon, H.; Berri, M.; Gerdts, V.; Meurens, F. Humoral and cellular factors of maternal immunity in swine. Dev. Comp. Immun. 2009, 33, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Azad, M.A.K.; Ding, S.; Liu, Y.; Blachier, F.; Ye, T.; Kong, X. Metabolomics analysis reveals the potential relationship between sow colostrum and neonatal serum metabolites in different pig breeds. Mol. Nutr. Food Res. 2023, 67, 220677. [Google Scholar] [CrossRef]
- Speer, V.C.; Brown, H.; Quinn, L.Y.; Catron, D.V. Antibody absorption in the baby pig. J. Anim. Sci. 1957, 16, 1046–1047. [Google Scholar]
- Le Dividich, J.; Rooke, J.A.; Herpin, P. Nutritional and immunological importance of colostrum for the new-born pig. J. Agric. Sci. 2005, 143, 469–485. [Google Scholar] [CrossRef]
- Lončarič, A.; Prevolnik Povše, M.; Skok, J.; Škorjanc, D. Birth order, suckling behaviour and growth in piglets: A case study of the extreme delay in birth of two surviving piglets. Agricultura 2021, 18, 51–58. [Google Scholar] [CrossRef]
- Ferrari, C.V.; Sbardella, P.E.; Bernardi, M.L.; Coutinho, M.L.; Vaz, I.S.; Wentz, I., Jr.; Bortolozzo, F.P. Effect of birth weight and colostrum intake on mortality and performance of piglets after cross-fostering in sows of different parities. Prev. Vet. Med. 2014, 114, 259–266. [Google Scholar] [CrossRef]
- Vodolazska, D.; Feyera, T.; Lauridsen, C. The impact of birth weight, birth order, birth asphyxia, and colostrum intake per se on growth and immunity of the suckling piglets. Sci. Rep. 2023, 13, 8057. [Google Scholar] [CrossRef]
- Langendijk, P.; Fleuren, M.; Venrooy, K.; Ernst, K.; Page, G. Effect of low colostrum intake on gastrointestinal development and uterine and cervical morphometrical architecture in neonatal gilt. Animal 2023, 17, 100725. [Google Scholar] [CrossRef]
- Cabrera, R.A.; Lin, X.; Campbell, J.M.; Moeser, A.J.; Odle, J. Influence of birth order, birth weight, colostrum and serum immunoglobulin G on neonatal piglet survival. J. Anim. Sci. Biotechnol. 2012, 3, 42. [Google Scholar] [CrossRef]
- Slegers, Y.; Oolbekkink, Y.; Roelofs, S.; van der Staay, F.J.; Nordiquist, R.E. Effects of birth order on performance and affective state of pigs. Front. Anim. Sci. 2021, 2, 669692. [Google Scholar] [CrossRef]
- Fraser, D.; Rushen, J. Colostrum intake by newborn piglets. Can. J. Anim. Sci. 1992, 72, 1–13. [Google Scholar] [CrossRef]
- Morton, J.M.; Langemeier, A.J.; Rathbun, T.J.; Davis, D.L. Immunocrit, colostrum intake, and preweaning body gain in piglets after split suckling based on birth weight or birth order. Transl. Anim. Sci. 2019, 3, 1460–1465. [Google Scholar] [CrossRef]
- Uddin, M.K.; Hasan, S.; Peltoniemi, O.; Oliviero, C. The effect of piglet vitality, birth order, and blood lactate on the piglet growth, performances and preweaning survival. Porc. Heath. Manag. 2022, 8, 52. [Google Scholar] [CrossRef] [PubMed]
- Hornstra, J.; Puts, I.; Bruininx, E.M.A.M.; Kemp, B.; Soede, N.M. Colostrum intake of piglets in relation to birth order. In Proceedings of the Joint Conference BOLFA and ICFAE, Bern, Switzerland, 28–30 August 2024. [Google Scholar]
- Krolikowski, T.R.B.; Krolikowski, G.; Kummer, A.D.; Barden, A.; Bonavigo, A.; Guisso, C.A.; Prestes, A.M.; Bennemann, P.E. Performance of piglets according to colostrum intake and serum immunoglobulin concentration determined by the immunocrit method. Ciênc. Rural 2021, 51, e20200038. [Google Scholar] [CrossRef]
- Le Dividich, J.; Charneca, R.; Thomas, F. Relationship between birth order, birth weight, colostrum intake, acquisition of passive immunity and pre-weaning mortality of piglets. Span. J. Agric. Res. 2017, 15, e0603. [Google Scholar] [CrossRef]
- Quesnel, H.; Resmond, R.; Merlot, E.; Père, M.-C.; Gondret, F.; Louveau, I. Physiological traits of newborn piglets associated with colostrum intake, neonatal survival and preweaning growth. Animal 2023, 17, 100843. [Google Scholar] [CrossRef]
- Wijesiriwardana, U.A.; Pluske, J.R.; Craig, J.R.; Furness, J.B.; Ringuet, M.R.; Fothergill, L.J.; Dunshea, F.R.; Cottrell, J.J. A comparative analysis of gastrointestinal tract barrier function and immune markers in gilts vs. sow progeny at birth and weaning. J. Anim. Sci. 2024, 102, skae054. [Google Scholar] [CrossRef]
- Piñeiro, C.; Manso, A.; Manzailla, E.G.; Morales, J. Influence of sows’ parity on performance and humoral immune response of the offspring. Porc. Health Manag. 2019, 5, 1. [Google Scholar] [CrossRef]
- Pajžlar, L.; Skok, J. Cross-fostering into smaller or older litter makes piglets integration difficult: Suckling stability based rationale. Appl. Anim. Behav. Sci. 2019, 220, 104856. [Google Scholar] [CrossRef]
- Quesnel, H. Colostrum production by sows: Variability of colostrum yield and immunoglobulin G concentrations. Animal 2011, 5, 1546–1553. [Google Scholar] [CrossRef] [PubMed]
- Foisnet, A.; Farmer, C.; David, C.; Quesnel, H. Relationships between colostrum production by primiparous sows and sows physiology around parturition. J. Anim. Sci. 2010, 88, 1672–1683. [Google Scholar] [CrossRef] [PubMed]
- Devillers, N.; Farmer, C.; Le Dividich, J.; Prunier, A. Variability of colostrum yield and colostrum intake in pigs. Animal 2007, 1, 1033–1041. [Google Scholar] [CrossRef]
- Nuntapaitoon, M.; Juthamanee, P.; Theil, P.K.; Tummuruk, P. Impact of sow parity on yield and composition of colostrum and milk in Danish Landrace × Yorkshire crossbreed sows. Prev. Vet. Med. 2020, 181, 105085. [Google Scholar] [CrossRef]
- Klobasa, F.; Werhahn, E.; Butler, J.E. Composition of sow milk during lactation. J. Anim. Sci. 1987, 64, 1458–1466. [Google Scholar] [CrossRef]
- Maciag, S.S.; Bellaver, F.V.; Bombassaro, G.; Haach, V.; Morés, M.A.Z.; Baron, L.F.; Coldebella, A.; Bastos, A.P. On the influence of the source of porcine colostrum in the development of early immune ontogeny in piglets. Sci. Rep. 2022, 12, 15630. [Google Scholar] [CrossRef]
- Segura, M.; Martinez-Miró, S.; López, M.J.; Madrid, J.; Fernández, F. Effect of parity on reproductive performance and composition of sow colostrum during first 24 h postpartum. Animals 2020, 10, 1853. [Google Scholar] [CrossRef]
- Baxter, E.M.; Rutherford, K.M.D.; D’Eath, R.B.; Arnott, G.; Turner, S.P.; Sandøe, P.; Moustsen, V.A.; Thrup, F.; Edwards, S.A.; Lowrence, A.B. The welfare implications pf large litter size in the domestic pig II: Management factors. Anim. Welf. 2013, 22, 219–238. [Google Scholar] [CrossRef]
- Alexopoulos, J.G.; Lines, D.S.; Hallet, S.; Plush, K.J. A review of success factors for piglet fostering in lactation. Animals 2018, 8, 38. [Google Scholar] [CrossRef]
- Heim, G.; Mellagi, A.P.G.; Bierhals, T.; Piuco, P.; Souza, L.P.; Gava, D.; Canal, C.W.; Bernardi, M.L.; Wentz, I.; Bortolozzo, F.P. Absorption of IgG via colostrum in biological piglets and adopted piglets after crossfostering. Arq. Bras. Med. Vet. Zootec. 2011, 63, 1073–1078. [Google Scholar] [CrossRef]
- Quesnel, H.; Farmer, C.; Devillers, N. Colostrum intake: Influence on piglet performance and factors of variation. Livest. Sci. 2012, 146, 105–114. [Google Scholar] [CrossRef]
- Kobek-Kjeldager, C.; Moustsen, V.A.; Theil, P.K.; Pedersen, L.J. Effect of litter size, milk replacer and housing on production results of hyper-prolific sows. Animal 2020, 14, 824–833. [Google Scholar] [CrossRef] [PubMed]
- Juthamanee, P.; Tummaruk, P. Factors associated with colostrum consumption in neonatal piglets. Livest. Sci. 2021, 251, 104630. [Google Scholar] [CrossRef]
- Amdi, C.; Krogh, U.; Flummer, C.; Oksbjerg, N.; Hansen, C.F.; Theil, P.K. Intrauterine growth restricted piglets defined by their head shape ingest sufficient amounts of colostrum. J. Anim. Sci. 2013, 91, 5605–5613. [Google Scholar] [CrossRef]
- Hansen, C.F.; Hales, J.; Amdi, C.; Moustsen, V.A. Intrauterine growth-restricted piglets defined by their head shape have impaired survival and growth during the suckling period. Anim. Prod. Sci. 2018, 59, 1056–1062. [Google Scholar] [CrossRef]
- Klobasa, F.; Erhahn, E.; Habe, F. Untersuchungen über die Absorption der kolostralen Immunoglobuline bei neugeborenen Ferkeln. Berl. Münch. Tierärztl. Wschr. 1991, 104, 223–227. [Google Scholar]
- Skok, J.; Škorjanc, D. Group suckling cohesion as a prelude to the formation of teat order in piglets. Appl. Anim. Behav. Sci. 2014, 154, 15–21. [Google Scholar] [CrossRef]
- Skok, J.; Škorjanc, D. Formation of teat order and estimation of piglets’ distribution along the mammary complex using mid-domain effect (MDE) model. Appl. Anim. Behav. Sci. 2013, 144, 39–45. [Google Scholar] [CrossRef]
- Devillers, N.; Giraud, D.; Farmer, C. Neonatal piglets are able to differentiate more productive from less productive teats. Appl. Anim. Behav. Sci. 2016, 174, 24–31. [Google Scholar] [CrossRef]
- Skok, J.; Škorjanc, D. Fighting during suckling: Is it really an epiphenomenon? Ethology 2014, 120, 627–632. [Google Scholar] [CrossRef]
- Mesarec, N.; Pačnik, U.; Mesarič, A.; Skok, J.; Škorjanc, D.; Zupan Šemrov, M.; Prevolnik Povše, M. The effect of socialising piglets during lactation on performance, suckling behaviour and weaning aggression: A preliminary field study. Acta Univ. Agric. Silvic. Mendel. Brun. 2020, 68, 73–79. [Google Scholar] [CrossRef]
- Baxter, E.M.; Schmitt, O.; Pedersen, L.J. 3. Managing the litter from hyperprolific sows. In The Suckling and Weaned Piglet; Farmer, C., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Olsen, A.N.W.; Dybkjær, L.; Vestergaard, K.S. Cross-suckling and associated behaviour in piglets. Appl. Anim. Behav. Sci. 1998, 61, 13–24. [Google Scholar] [CrossRef]
- Morrow-Tesch, J.; McGlone, J.J. Sources of maternal odors and the development of odor preferences in baby pigs. J. Anim. Sci. 1990, 68, 3563–3571. [Google Scholar] [CrossRef]
- Wells, D.L.; Herpper, P.G. The role of olfaction in animal housing and as enrichment. In Olfaction in Animal Behavior and Welfare; Nielsen, B.L., Ed.; CABI: Oxfordshire, UK, 2017; pp. 151–160. [Google Scholar]
- Horrell, I.; Hodgson, J. The basis of sow-piglet identification. 1. The identification by sows of their own piglets and the presence of intruders. Appl. Anim. Behav. Sci. 1992, 33, 319–327. [Google Scholar] [CrossRef]
- Horrell, I.; Hodgson, J. The bases of sow-piglet identification. 2. Cues used by piglets to identify their dam and home pen. Appl. Anim. Behav. Sci. 1992, 33, 329–343. [Google Scholar] [CrossRef]
- Price, E.O.; Hutson, G.D.; Price, M.I.; Borgward, R. Fostering in swine as affected by age of offspring. J. Anim. Sci. 1994, 72, 1697–1701. [Google Scholar] [CrossRef]
- Rosvold, E.M.; Newberry, R.C.; Andersen, I.L. Early mother-young interactions in domestic sows–Nest building material increases maternal investment. Appl. Anim. Behav. Sci. 2019, 219, 104837. [Google Scholar] [CrossRef]
- Wischner, D.; Kemper, N.; Krieter, J. Nest-building behaviour in sows and consequences for pig husbandry. Livest. Sci. 2009, 124, 1–8. [Google Scholar] [CrossRef]
- Monteiro, M.S.; Muro, B.B.D.; Carnevale, R.F.; Poor, A.P.; Araújo, K.M.; Viana, C.H.C.; Almond, G.W.; Moreno, A.M.; Garbossa, C.A.P.; Leal, D.F. The beneficial effects of providing prepartum sows with nesting materials on farrowing traitsm piglet performance and maternal behavior: A systematic review and meta-analysis. Appl. Anim. Behav. Sci. 2023, 259, 105795. [Google Scholar] [CrossRef]
- Ocepek, M.; Andersen, I.L. Sow communication with piglets while being active is good predictor of maternal skills, piglet survival and litter quality in three different breeds of domestic pigs (Sus scrofa domesticus). PLoS ONE 2018, 13, e0206128. [Google Scholar] [CrossRef] [PubMed]
- Heim, G.; Mellagi, A.P.G.; Bierhals, T.; de Souza, L.P.; de Fries, H.C.C.; Piuco, P.; Seidel, E.; Bernard, M.L.; Wentz, I.; Bortollozo, F.P. Effects of cross-fostering within 24 h after birth on pre-weaning behaviour, growth performance and survival of biological adopted piglets. Livest. Sci. 2012, 150, 121–127. [Google Scholar] [CrossRef]
- Souza, L.P.; Fries, H.C.C.; Heim, G.; Faccin, J.E.; Hernig, L.F.; Marimon, B.T.; Bernardi, M.L.; Bortlozzo, F.P.; Wentz, I. Behaviour and growth performance of low-birth-weight piglets cross-fostered in multiparous sows with piglets oh higher birth weights. Arq. Bras. Med. Vet. Zootec. 2014, 66, 510–518. [Google Scholar] [CrossRef]
- Schmitt, O.; Baxter, E.M.; Boyle, L.A.; O’Driscoll, K. Nurse sow strategies in the domestic pig: II. Consequences for piglet growth, suckling behaviour and sow nursing behaviour. Animal 2019, 13, 590–599. [Google Scholar] [CrossRef]
- Vande Pol, K.D.; Bautista, R.O.; Olivio, A.; Harper, H.; Shull, C.M.; Brown, C.B.; Ellis, M. Effect of rearing cross-fostered piglets in litters of differing size relative to sow functional teat number on pre-weaning growth and mortality. Transl. Anim. Sci. 2021, 5, txab193. [Google Scholar] [CrossRef]
- Vande Pol, K.D.; Bautista, R.O.; Harper, H.; Shull, C.M.; Brown, C.B.; Ellis, M. Effect of within-litter birth weight variation after cross-fostering on piglet preweaning growth and mortality. Transl. Anim. Sci. 2021, 5, txab039. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, M.; He, T.; Long, S.; Guo, Y.; Chen, Z. Effect of different cross-fostering strategies on growth performance, stress status and immunoglobulin of piglets. Animals 2021, 11, 499. [Google Scholar] [CrossRef]
- Clarkson, J.M.; Baxter, E.M.; Martin, J.E. Who plays with whom: Farrowing environment influences isolation of foster piglets play. Front. Anim. Sci. 2021, 2, 724080. [Google Scholar] [CrossRef]
- Giroux, S.; Robert, S.; Martineau, G.-P. The effects of cross-fostering on growth rate and post-weaning behaviour of segregated early-weaned piglets. Can. J. Anim. Sci. 2000, 80, 533–538. [Google Scholar] [CrossRef]
- King, R.L.; Matheson, S.M.; Baxter, E.M.; Edwards, S.A. Sow behaviour and piglet weight gain after late cross-fostering in farrowing crates and pens. Animal 2020, 14, 1923–1933. [Google Scholar] [CrossRef]
- Schmitt, O.; O’Driscoll, K.; Boyle, L.A.; Baxter, E.M. Artificial rearing affects pre-weaning behaviour, welfare and growth performance. Appl. Anim. Behav. Sci. 2019, 210, 16–25. [Google Scholar] [CrossRef]
- D’Eath, R.B. Socialising piglets before weaning improves social hierarchy formation when pigs are mixed post-weaning. Appl. Anim. Behav. Sci. 2005, 93, 199–211. [Google Scholar] [CrossRef]
- Deen, M.G.H.; Bilkei, G. Cross-fostering of low-birth weight. Livest. Prod. Sci. 2004, 90, 279–284. [Google Scholar] [CrossRef]
- Van Nieuwamerongen, S.E.; Bolhuis, J.E.; van der Peet-Schwering, C.M.C.; Soede, N.M. A review of sow and piglet behaviour and performance in group housing systems for lactating sows. Animal 2014, 8, 448–460. [Google Scholar] [CrossRef] [PubMed]
- Thomsson, O.; Sjunnesson, Y.; Magnusson, U.; Eliasson-Selling, L.; Wallenbeck, A.; Bergqvist, A.S. Consequences for piglet performance of group housing lactating sows at one, two, or three weeks post-farrowing. PLoS ONE 2016, 11, e0156581. [Google Scholar] [CrossRef]
- Van Nieuwamerongen, S.E.; Soede, N.M.; van der Peet-Schwering, C.M.C.; Kemp, B.; Bolhuis, J.E. Development of piglets raised in a new multi-litter housing system vs. conventional single-litter housing until 9 weeks of age. J. Anim. Sci. 2015, 93, 5442–5454. [Google Scholar] [CrossRef]
- Dybjær, L.; Olsen, A.N.W.; Moøller, F.; Jensen, K.H. Effects of farrowing conditions on behaviour in multi-suckling pens for pigs. Acta Agric. Scand. Sect. A Anim. Sci. 2001, 51, 134–141. [Google Scholar] [CrossRef]
- Tang, T.; Gerrits, W.J.J.; van der Peet-Schwering, C.M.C.; Soede, N.M.; Reimert, I. Effects of birthweight of piglets in a multi-suckling system on mortality, growth rate, catch-up growth, feed intake and behaviour. Animals 2023, 13, 297. [Google Scholar] [CrossRef]
- Tang, T.; Gerrits, W.J.J.; Soede, N.M.; van der Peet-Schwering, C.M.C.; Reimert, I. Effects of timing of grouping and split-weaning on growth performance and behaviour of piglets in a multi-suckling system. Appl. Anim. Behav. Sci. 2023, 259, 105835. [Google Scholar] [CrossRef]
- Baxter, E.M.; Lawrence, A.B.; Edwards, S.A. Alternative farrowing systems: Design criteria for farrowing systems based on the biological needs of sows and piglets. Animal 2011, 5, 580–600. [Google Scholar] [CrossRef]
- Baxter, E.M.; Adeleye, O.O.; Jack, M.C.; Farish, M.; Ison, S.H.; Edwards, S.A. Achieving optimum performance in a loose-housed farrowing system for sows: The effects of space and temperature. Appl. Anim. Behav. Sci. 2015, 169, 9–16. [Google Scholar] [CrossRef]
- Robert, S.; Martineau, G.P. Effects of repeated cross-fosterings on preweaning behavior and growth performance of piglets and on maternal behavior of sows. J. Anim. Sci. 2001, 79, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Surek, D.; Barrilli, L.N.E.; Bueno, I.J.M.; Krabbe, E.L.; Alberton, G.C.; Maiorka, A. Growth of suckling piglets in litters standardized by weight. J. Anim. Sci. 2014, 92, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Wensley, M.R.; Tokach, M.D.; Woodworth, J.C.; Goodband, R.D.; DeRouchey, J.M.; Gebhart, J.T. Strategies to minimize fallback pigs in the nursery. J. Swine Health Prod. 2023, 31, 237–241. [Google Scholar] [CrossRef]
- Huting, A.M.S.; Huting, M.S.; Almond, K.; Wellock, I.; Kyriazakis, I. What is good for small piglets might not be good for big piglets: The consequences of cross-fostering and creep feed provision on performance to slaughter. J. Anim. Sci. 2017, 95, 4926–4944. [Google Scholar] [CrossRef]
- Huting, A.M.S.; Sakkas, P.; Kyriazakis, I. Sows in mid parity are best foster mothers for the pre- and post-weaning performance of both light and heavy piglets. J. Anim. Sci. 2019, 97, 1656–1670. [Google Scholar] [CrossRef]
- Nielsen, C.L.; Krogh, M.A.; Sørensen, J.T.; Kongsted, H. A field trial on the effect of cross-fostering on performance, clinical health and antibiotic usage during the suckling period of pigs. Prev. Vet. Med. 2022, 205, 105678. [Google Scholar] [CrossRef]
- Skovbo, D.K.F.; Hales, J.; Krstensen, A.R.; Mousten, V.A. Comparison of management strategies for confinement of sows around farrowing in sow welfare and piglet protection pens. Livest. Sci. 2022, 263, 105026. [Google Scholar] [CrossRef]
- De Vos, M.; Huygelen, V.; Willemen, S.; Michielis, J.; Van Cruchten, S.; Van Ginneken, C. Nutritional interventions to prevent and rear low-birthweight piglets. J. Anim. Physiol. Anim. Nutri. 2014, 98, 609–619. [Google Scholar] [CrossRef]
- Farmer, C.; Edwards, S.A. Review: Improwing the performance of neonatal piglets. Animal 2022, 16, 100350. [Google Scholar] [CrossRef]
- Arnaud, E.A.; Gardiner, G.E.; Lawlor, P.G. Selected nutrition and management strategies in suckling pigs to improve post-weaning outcomes. Animals 2023, 13, 1998. [Google Scholar] [CrossRef] [PubMed]
- Knap, P.W.; Knol, E.F.; Sørensen, C.; Huisman, A.E.; van der Spek, D.; Zak, L.J.; Chapatte, A.G.; Lewis, C.R.G. Genetic and phenotypic time trends of litter size, piglet mortality, and birth weight in pigs. Front. Anim. Sci. 2023, 4, 1218175. [Google Scholar] [CrossRef]
- Christensen, O.; Pedersen, L.J. New Breeding Goals to Reduce Pig Mortality. Department of Animal and Veterinary Sciences. Current News. 2024. Available online: https://anivet.au.dk/en/current-news/news/show/artikel/nye-avlsmaal-skal-reducere-grisedoedelighed (accessed on 30 August 2024).
- Škorput, D.; Luković, Z.; Karolyi, D.; Škorjanc, D.; Kaić, A.; Skok, J.; Prevolnik Povše, M. Implication of commercial cross-fostering in large litters when low body weight of piglets is the main criterion. Livest. Sci. 2024, 289, 105589. [Google Scholar] [CrossRef]
- Trost, L.S.; Zeidler, S.; Ammer, S.; Rosengart, S.; Wendt, M.; Visscher, C.; Tetens, J.; Traulsen, I. Development of a new grading system to assess the foster performance of lactating sows. Animal 2022, 16, 100655. [Google Scholar] [CrossRef]
- Johnson, A.K.; Rault, J.-L.; Marchant, J.N.; Baxter, E.M.; O’Driscoll, K. Improving young pig welfare on-farm: The Five Domains Model. J. Anim. Sci. 2022, 100, skac164. [Google Scholar] [CrossRef]
- Broom, D.M. Sentience and Animal Welfare; CABI: Oxfordshire, UK, 2017; 185p. [Google Scholar]
- Rzezniczek, M.; Gygax, L.; Wechsler, B.; Weber, R. Comparison of the behaviour of piglets raised in an artificial rearing system or reared by the sow. Appl. Anim. Behav. Sci. 2015, 165, 57–65. [Google Scholar] [CrossRef]
- Kobek-Kjeldager, C.; Moustsen, V.A.; Theil, P.K.; Pedersen, L.J. Effect of litter size, milk replacer and housing on behaviour and welfare related to sibling competition in litters of hyper-prolific sows. Appl. Anim. Behav. Sci. 2020, 230, 105032. [Google Scholar] [CrossRef]
- Han, Q.; Wang, Y.; Yang, Y.; Zhou, S.; Bao, J. Effects of artificial rearing on behaviour, welfare, and immune function in piglets. Appl. Anim. Behav. Sci. 2024, 274, 106267. [Google Scholar] [CrossRef]
- Frei, D.; Würbel, H.; Wechsler, B.; Gygax, L.; Burla, J.-B.; Weber, R. Can body nosing in artificially reared piglets be reduced by sucking and massaging dummies? Appl. Anim. Behav. Sci. 2018, 202, 20–27. [Google Scholar] [CrossRef]
- Widowski, T.M.; Yuan, Y.; Gardner, J.M. Effect of accommodating sucking and nosing on the behaviour of artificially reared piglets. Lab. Anim. 2005, 39, 240–250. [Google Scholar] [CrossRef]
- Peltoniemi, O.; Han, T.; Yun, J. Coping with large litters: Management effects on welfare and nursing capacity of the sow. J. Anim. Technol. 2021, 63, 199–210. [Google Scholar] [CrossRef]
- Vandaele, M.; Van Kerschaver, C.; Degroote, J.; Van Ginneken, C.; Michielis, J. Piglet performance and colostrum intake in litters either or not split-suckled during the first day or during the first three days of life. Livest. Sci. 2020, 241, 104265. [Google Scholar] [CrossRef]
- Osotsi, J.M.; Novotni-Danko, G.; Balogh, P. The nurse sow system–A natural process of handling large litters: A review. Czech J. Anim. Sci. 2024, 69, 89–101. [Google Scholar] [CrossRef]
- Osotsi, J.M.; Balogh, P.; Novotnine-Danko, G. Characterization of removal reasons for nurse sows and the associated removal due to their extended lactation length in hyperprolific farrow-wean herds. Animals 2024, 14, 1607. [Google Scholar] [CrossRef] [PubMed]
- Houben, M.A.M.; Tobias, T.J.; Holstege, M.M.C. The effect of double nursing, an alternative nursing strategy for the hyper-prolific sow herd, on herd performance. Porc. Health Manag. 2017, 3, 2. [Google Scholar] [CrossRef]
- Amdi, C.; Pedersen, M.L.M.; Larsen, C.; Klaaborg, J.; Williams, A.R.; Madsen, J.G. Suckling induces differential gut enzyme activity and body composition compared to feeding milk replacer in piglets. Animals 2022, 12, 3112. [Google Scholar] [CrossRef]
| Dry Matter (%) | Protein (%) | Fat (%) | Lactose (%) | Reference | |
|---|---|---|---|---|---|
| Farrowing 0 h | 29.3 | 18.3 | 6.1 | 3.0 | [41] |
| 27.3 | 17.7 | 5.1 | 3.5 | [14] | |
| After 24 h | 22.9 | 8.7 | 8.8 | 4.2 | [41] |
| 20.6 | 8.6 | 6.9 | 4.4 | [14] |
| Management and Selected Nutrition Strategies | Reference |
|---|---|
Three avenues to increase colostrum intake:
| [45] |
Preventive strategies at the sow and piglet level
| [94] |
Management strategies in farrowing houses
| [3] |
Six key principles for piglet survival and growth
| [43] |
Five approaches to increase piglet survival
| [95] |
Strategies to minimize piglet fallback
| [89] |
Selected nutrition and management strategies
| [96] |
| Item | Factors | References |
|---|---|---|
| Five-domain model of farm welfare for young pigs | [101] | |
| Domain1 | Nutrition | |
| Domain 2 | Physical environment | |
| Domain 3 | Health | |
| Domain 4 | Behavior | |
| Domain 5 | Mental state | |
| Animal welfare level of artificial piglet rearing | ||
| Poor | More fights, less play, belly nosing, oral manipulation of ears and tails of littermates, short resting time. Plastic trough, a nipple, and a nipple with an added bag of sterile water. | [103] [76] [46,104] [105] |
| Improved with dummy use | Combination of massage–suckling dummy reducing undesirable behavior and prolonging resting time. | [106] |
| Pen and feeding system | ||
| Rescue deck | Enclosure for artificial rearing (piglets are feed artificially). | [76] |
| Automatic feeding system | Automatic system for feeding piglets with colostrum. | [50] |
| Piglets feeding | Milk replacer | |
| 3 days | [107] | |
| 3–6 days | [103] | |
| 7 days | [76] | |
| 7 and 21 days | [105] |
| Item | Factors |
|---|---|
| Number of piglets born alive: number of functional teats | Number of piglets born alive must match number of functional teats. |
| Light piglet birth mass | <1000 g |
| Colostrum yield per litter | 2.4 kg to 7 kg |
| Colostrum intake per piglet | ≥200 g in 24 h |
| Make a decision on the further management strategy for sows and their piglets | Within-litter variability in birth mass (light piglets’ problem) and/or surplus piglets. |
| Time of colostrum intake postpartum (hours) | The first 6 h are very important; then, the composition of colostrum changes. |
| Split-suckling | Allow low-birth-weight piglets access to the teats to suck colostrum; at the same time, the other piglets are then unable to suck the mammary glands. |
| Cross-fostering (hours postpartum) | It is performed between 24 and 48 h postpartum, after the piglets have sucked colostrum from their biological mother. Piglet number equalization. Piglet size (birth weight) equalization. If possible, transfer piglets from primiparous to multiparous sows. |
| Nurse sow | A sow that has already weaned her own piglets; the sow nurses foreign piglets until they are weaned. Transfer piglets to mid-parity nurse sow (parities 3 to 5) to avoid poor reproductive results in younger sows in the next cycle. Total lactation should not last more than 40 days. The procedure can be carried out in two steps. |
| One step | A sow nurses her own piglets up to 21 or 28 days. On the 28th day of lactation, the sow then receives piglets from another sow that are at least 12 h old. |
| Two steps | A sow nurses her piglets up to 21 or 28 days. On the 28th day of lactation, she then receives piglets from another sow that are 4 to 7 days old; the sow who birthed these piglets receives a surplus of newborn piglets from other sows. |
| Double nursing | Double nursing sows simultaneously nurse two litters alternately from birth to weaning: their own litter, for example, half the day and newborn piglets from another litter or weaker ones during the rest of the day. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Škorjanc, D.; Skok, J.; Prevolnik Povše, M. Factors Affecting the Effectiveness of Litter Management Practices: An Overview. Agriculture 2025, 15, 2426. https://doi.org/10.3390/agriculture15232426
Škorjanc D, Skok J, Prevolnik Povše M. Factors Affecting the Effectiveness of Litter Management Practices: An Overview. Agriculture. 2025; 15(23):2426. https://doi.org/10.3390/agriculture15232426
Chicago/Turabian StyleŠkorjanc, Dejan, Janko Skok, and Maja Prevolnik Povše. 2025. "Factors Affecting the Effectiveness of Litter Management Practices: An Overview" Agriculture 15, no. 23: 2426. https://doi.org/10.3390/agriculture15232426
APA StyleŠkorjanc, D., Skok, J., & Prevolnik Povše, M. (2025). Factors Affecting the Effectiveness of Litter Management Practices: An Overview. Agriculture, 15(23), 2426. https://doi.org/10.3390/agriculture15232426

