Integration of Machine Learning and Remote Sensing to Evaluate the Effects of Soil Salinity, Nitrate, and Moisture on Crop Yields and Economic Returns in the Semi-Arid Region of Ethiopia
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site Description and Research Processes
2.2. In Situ Data Collection, Sampling Procedures, and Measurements
2.3. Statistical Data Analysis
2.4. Satellite Data Acquisition, Integration, and Index Determination
- The normalized difference vegetation index (NDVI) was calculated to identify crop health and its areal coverage in the study area using Equation (3):where NIR and RED represent the near-infrared band and red band, respectively.
- The normalized difference moisture index (NDMI) was determined to assess the vegetation soil moisture conditions across the study area [58] and is calculated using Equation (5):where NIR, RED, and MIR are the near-infrared, red, and mid-infrared bands, respectively. The NDMI value ranges from −1 to 1, and a value close to 0 indicates soil moisture stress.
2.5. Relative Yield and Deviation Determination
- (a)
- Model input and parameter set: Key explanatory variables included soil moisture, soil nitrate, and soil salinity, which were used to assess their combined effects on crop yields and farmers’ economic returns. The key soil properties included soil salinity (ds/cm), soil nitrate (mg/kg), and soil moisture (%). Remote sensing indices, including the normalized difference vegetation index (NDVI), normalized difference salinity index (NDSI), and normalized difference soil moisture index (NDSMI), were incorporated into the field-observed data. The field-based crop yields of the three major crops (banana, cotton, and maize, in kg/ha) were also included in the model. Production cost and economic gain were estimated from the current market prices of each crop.
- (b)
- Data integration: The field-observed soil moisture, nitrate, and soil salinity data were normalized using the min-max scaling approach to ensure consistency with the satellite-derived indices. The soil moisture and nitrate data were scaled according to their respective magnitudes. The relationship between the NDIVI of each crop and the soil nitrate concentration was quantified using linear regression across the sampling points [4,59]. Similarly, soil moisture content across the sampling points was estimated based on the correlation between NDSMI and field-observed soil moisture. By correlating and scaling the field-observed and satellite datasets, the crop yields, soil nitrate, soil moisture, and soil salinity of banana, maize, and cotton (N = 189, N = 128, and N = 176, respectively) were determined.
- (c)
- Machine learning models: The algorithms were selected based on their capacity to capture nonlinear relationships among factors such as yield and economic gains, computational efficiency, and robustness [61]:
- (i)
- The Ridge regressor (RR) is a suitable approach for addressing multicollinearity in regression models. Under multicollinearity, the least squares estimates are unbiased but exhibit large variance, which can lead to unstable prediction [62]. RR eliminates standard errors by introducing a level of bias into the regression estimates [62].
- (ii)
- The Random Forest Regressor(RF) is a decision tree-based ensemble method used for classification and regression [63]. Each tree is trained on a random subset of both features and samples. Compared with linear regressors, it may still face challenges such as overfitting and relatively longer prediction times.
- (iii)
- (iv)
- (v)
- The Multilayer perceprton regressor (MLP) can solve difficult nonlinear problems in a feedforward manner. It can handle massive volumes of data inputs. The power of MLP networks lies in their ability to fit numerous smooth, nonlinear functions with excellent precision.
- (vi)
- The Gradient Boosting (GB) Regressor builds the model iteratively using a boosting framework, where each stage corrects the residuals of the previous one and optimizes a differentiable loss function [65,66]. The final predictive model is an ensemble of weak learners combined to enhance accuracy and robustness [62,64].
- (vii)
- The K-Nearest Neighbors (KNN) Regressor is a nonparametric approach that estimates the target values by averaging the outcomes of neighboring samples with similar feature characteristics [65,67,68]. The optimal neighborhood size is determined through cross-validation to minimize the mean-squared error (MSE) [65,67,69].
- (d)
- (e)
- Model performance evaluation: The predictive performance of each model was evaluated using metrics: mean absolute error (MAE), root mean square error (RMSE), coefficient of determination (R2), explained variance score (EVS), and mean absolute percentage error (MAPE). MAE represents the average of the absolute differences between observed and projected values across the dataset [72], as defined in Equation (9). RMSE measures the standard deviation of the residuals [73], as given in Equation (10). R2 represents how much of the variability in the dependent variable can be accounted for by the independent variables, as indicated in Equation (11). EVS indicates how well the model predictions account for the variability observed in the dependent variable, as shown in Equation (12). MAPE measures the model accuracy as a percentage, as presented in Equation (13).where Yact is the actual value of the variables, Ypred is the predicted value of the variables, and Yavr is the grand average of the variables.
3. Results
3.1. Summary of Statistical Analysis of Crop Yield and Other Variables
3.2. Yield Prediction
3.3. Prediction of Farmers’ Economic Losses
3.4. Feature Importance for Yield and Economic Loss Prediction
4. Discussion
4.1. Yield Productivity and Models’ Predictive Capacity
4.2. Insights on Economic Losses Based on Model Estimations
4.3. Prioritization of Determinants for Remedial Strategies
4.4. Limitations and Future Interventions
- Enhancing salinity, moisture, and nitrate conditions through cover crops (e.g., legumes, salt-tolerant species) and organic amendments (e.g., compost, green manure) is supported by long-term trials and model-based optimization.
- Developing and applying crop-specific salt-leaching fractions to reduce salinity buildup in irrigated lands.
- Adapting nitrate fertilizer application to site-specific nutrient balances can improve productivity and profitability.
- Engaging farmers, water managers, and policymakers in co-developing strategies for integrated soil and water management.
- Incorporating data-driven models (e.g., RF, ensemble learners) that integrate climatic, agronomic, and socioeconomic variables for more robust prediction and decision support. These directions will help build resilient, evidence-based strategies for sustaining crop productivity and farmer livelihoods in salinity-affected semi-arid regions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daba, A.W.; Qureshi, A.S. Review of Soil Salinity and Sodicity Challenges to Crop Production in the Lowland Irrigated Areas of Ethiopia and Its Management Strategies. Land 2021, 10, 1377. [Google Scholar] [CrossRef]
- Okorogbona, A.O.M.; Managa, L.R.; Adebola, P.O.; Ngobeni, H.M.; Khosa, T.B. Salinity and Crop Productivity. Sustain. Agric. Rev. 2015, 17, 89–120. [Google Scholar]
- Qadir, M.; Qureshi, A.S.; Cheraghi, S.A.M. Extent and characterisation of salt-affected soils in Iran and strategies for their amelioration and management. Land Degrad. Dev. 2008, 19, 214–227. [Google Scholar] [CrossRef]
- Boggs, J.L.; Tsegaye, T.D.; Coleman, T.L.; Reddy, K.C.; Fahsi, A. Relationship Between Hyperspectral Reflectance, Soil Nitrate-Nitrogen, Cotton Leaf Chlorophyll, and Cotton Yield: A Step Toward Precision Agriculture. J. Sustain. Agric. 2003, 22, 5–16. [Google Scholar] [CrossRef]
- Russ, J.D.; Zaveri, E.D.; Damania, R.; Desbureaux, S.G.; Escurra, J.J.; Rodella, A.S. Salt of the Earth: Quantifying the Impact of Water Salinity on Global Agricultural Productivity; World Bank Policy Research Working Paper No. 9144; World Bank: Washington, DC, USA, 2020; Available online: https://ssrn.com/abstract=3535979 (accessed on 27 September 2025).
- Nicolas, F.; Kamai, T.; Ben-Gal, A.; Ochoa-Brito, J.; Daccache, A.; Ogunmokun, F.; Kisekka, I. Assessing salinity impacts on crop yield and economic returns in the Central Valley. Agric. Water Manag. 2023, 287, 108463. [Google Scholar] [CrossRef]
- Zhang, J.; Cai, J.; Xu, D.; Wu, B.; Chang, H.; Zhang, B.; Wei, Z. Soil salinization poses greater effects than soil moisture on field crop growth and yield in arid farming areas with intense irrigation. J. Clean. Prod. 2024, 451, 142007. [Google Scholar] [CrossRef]
- Kodur, S.; Shrestha, U.B.; Maraseni, T.N.; Deo, R.C. Environmental and economic impacts and trade-offs from simultaneous management of soil constraints, nitrogen and water. J. Clean. Prod. 2019, 222, 960–970. [Google Scholar] [CrossRef]
- Santacruz-De León, G.; Moran-Ramírez, J.; Ramos-Leal, J.A. Impact of Drought and Groundwater Quality on Agriculture in a Semi-Arid Zone of Mexico. Agriculture 2022, 12, 1379. [Google Scholar] [CrossRef]
- Heidecke, C.; Kuhn, A. Considering salinity effects on crop yields in hydroeconomic modeling: The case of a semi-arid river basin in Morocco. WIT Trans. Ecol. Environ. 2007, 103, 63–72. [Google Scholar]
- Aripov, I.; Ochildiev, O.; Majdunova, D.; Pochuzhevskyi, O. Assessing the Technical and Economic Efficiency of Improving the Ameliorative State of Saline Land: A Case Study of the Syrdarya Region. E3S Web Conf. 2024, 563, 03065. [Google Scholar] [CrossRef]
- Mekecha, B.B.; Gorbatov, A.V. Crop yield prediction in Ethiopia using gradient boosting regression. Proc. Tomsk. State Univ. Control. Syst. Radioelectron. 2024, 27, 125–129. [Google Scholar] [CrossRef]
- Shiferaw, H.; Tesfaye, G.; Sewnet, H.; Tamene, L. Crop Yield Estimation of Teff (Eragrostis tef Zuccagni) Using Geospatial Technology and Machine Learning Algorithm in the Central Highlands of Ethiopia. Sustain. Agric. Res. 2022, 11, 34–44. [Google Scholar] [CrossRef]
- Gelu, G.; Komai, K.; Dane, C.; Ayza, A.; Ayele, T. Investigating the salinity distribution using field measurements in the semi-arid region of southern Ethiopia. Environ. Monit. Assess. 2025, 197, 159. [Google Scholar] [CrossRef] [PubMed]
- Gelete, T.B.; Pasala, P.; Abay, N.G.; Woldemariam, G.W.; Yasin, K.H.; Kebede, E.; Aliyi, I. Integrated machine learning and geospatial analysis enhanced gully erosion susceptibility modeling in the Erer watershed in Eastern Ethiopia. Front. Environ. Sci. 2024, 12, 1410741. [Google Scholar] [CrossRef]
- Yimer, A.K.; Haile, A.T.; Hatiye, S.D.; Ragettli, S.; Taye, M. Comparative evaluation of the accuracy of mapping irrigated areas using Sentinel-1 images in the Bilate and Gumara watersheds in Ethiopia. Cogent Eng. 2024, 11, 2357728. [Google Scholar] [CrossRef]
- Yuan, W.; Zheng, Y.; Piao, S.; Ciais, P.; Lombardozzi, D.; Wang, Y.; Ryu, Y.; Chen, G.; Dong, W.; Hu, Z.; et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 2019, 5, eaax1396. [Google Scholar] [CrossRef]
- Haq, Y.U.; Shahbaz, M.; Asif, H.M.S.; Al-Laith, A.; Alsabban, W.H. Spatial mapping of soil salinity using machine learning and remote sensing in Kot Addu, Pakistan. Sustainability 2023, 15, 12943. [Google Scholar] [CrossRef]
- Wendemeneh, D.; Ayana, M.; Hailes, A. Spatiotemporal variation of irrigation water quality at Bochessa Watershed in Central Rift Valley of Ethiopia. Afr. J. Environ. Sci. Technol. 2020, 14, 70–82. [Google Scholar] [CrossRef]
- Kalhotra, S.K.; Prakash, K.C.; Mishra, M.K.; Kumar, M.A.K. A Study of Crop Yield Prediction Using Machine Learning Approaches. J. Adv. Zool. 2023, 44, 1260–1263. [Google Scholar] [CrossRef]
- Borena, F.R.; Hassen, J.M. Impacts of Soil Salinity on Irrigation Potential: A Case Study of Middle Awash, Ethiopia: A Review. Open Access Libr. J. 2022, 9, e8123. [Google Scholar] [CrossRef]
- Tessema, N.; Yadeta, D.; Kebede, A.; Ayele, G.T. Soil and Irrigation Water Salinity and Its Consequences for Agriculture in Ethiopia: A Systematic Review. Agriculture 2022, 13, 109. [Google Scholar] [CrossRef]
- Gezimu, G.; Katsuaki, K. Spatial Distribution of Salinity and Sodicity in Semi-arid Irrigated Lands in Ethiopia for Effective Salt-Affected Soil Management. Irrig. Drain. 2025, 74, 1730–1741. [Google Scholar]
- Gu, L.; Mu, X.; Qi, J.; Tang, B.; Zhen, W.; Xia, L. Nitrogen reduction combined with ETc Irrigation maintained summer maize yield and increased water and nitrogen use efficiency. Front. Plant Sci. 2023, 14, 1180734. [Google Scholar] [CrossRef] [PubMed]
- Bekeko, Z.; Kedir, B.; Fininsa, C. Analysis of the spatial distribution and association of banana wilt (Fusarium oxysporum f. sp. cubense) with biophysical factors in the Gamo zone, southern Ethiopia. Agrosystems Geosci. Environ. 2025, 8, e70053. [Google Scholar] [CrossRef]
- Yeshiwas, S.; Desalegn, N.H. Performance Evaluation of Cotton (Gossypium hirsutum L.) Varieties for Yield and Related Traits in Northwestern Ethiopia. EAS J. Biotechnol. Genet. 2024, 6, 7–11. [Google Scholar] [CrossRef]
- Wondim, G.B.; Daba, A.W.; Qureshi, A.S. Effects of Salinity on Producers’ Livelihoods and Socioeconomic Conditions; The Case of Afar Region, Northeastern Ethiopia. J. Sustain. Agric. Sci. 2020, 46, 35–46. [Google Scholar]
- Daliakopoulos, I.N.; Tsanis, I.K.; Koutroulis, A.; Kourgialas, N.N.; Varouchakis, A.E.; Karatzas, G.P.; Ritsema, C.J. The threat of soil salinity: A European-scale review. Sci. Total Environ. 2016, 573, 727–739. [Google Scholar] [CrossRef]
- Corwin, D.L. Climate change impacts on soil salinity in agricultural areas. Eur. J. Soil Sci. 2021, 72, 842–862. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Jin, J.; Wang, S.; Du, B. Effects of Irrigation Water Salinity on Maize (Zea may L.) Emergence, Growth, Yield, Quality, and Soil Salt. Water 2019, 11, 2095. [Google Scholar] [CrossRef]
- Salvadora, N.-T.; Pedro, G.-C.; Amaia, N.; Maria, M.; Abreu, E.S.; Ana, L.C. Ana Delaunay Caperta. Sustainable agricultural management of saline soils in arid and semi-arid Mediterranean regions through halophytes, microbial and soil-based technologies. Environ. Exp. Bot. 2023, 212, 105397. [Google Scholar]
- Ge, X.; Ding, J.; Teng, D.; Wang, J.; Huo, T.; Jin, X.; Wang, J.; He, B.; Han, L. Updated soil salinity with fine spatial resolution and high accuracy: The synergy of Sentinel-2 MSI, environmental covariates and hybrid machine learning approaches. Catena 2022, 212, 106054. [Google Scholar] [CrossRef]
- Yohannes, D.F.; Ritsema, C.; Solomon, H.; Froebrich, J.; van Dam, J. Irrigation water management: Farmers’ practices, perceptions and adaptations at Gumselassa irrigation scheme, North Ethiopia. Agric. Water Manag. 2017, 191, 16–28. [Google Scholar] [CrossRef]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Elien Prikhodko, A.; Romanova, A.S. Sergeev Sergeyev Evgeny The problem of soil salinization. Sci. Life 2022, 17, 676–685. [Google Scholar]
- Jeong, S.; Ko, J.; Ban, J.O.; Shin, T.; Yeom, J.M. Deep learning-enhanced remote sensing-integrated crop modeling for rice yield prediction. Ecol. Inform. 2024, 84, 102886. [Google Scholar] [CrossRef]
- Min, W.; Guo, H.; Zhou, G.; Zhang, W.; Ma, L.; Ye, J.; Hou, Z.; Wu, L. Soil salinity, leaching, and cotton growth as affected by saline water drip irrigation and N fertigation. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2016, 66, 489–501. [Google Scholar]
- He, P.; Li, J.; Yu, S.; Ma, T.; Ding, J.; Zhang, F.; Chen, K.; Guo, S.; Peng, S. Soil Moisture Regulation under Mulched Drip Irrigation Influences the Soil Salt Distribution and Growth of Cotton in Southern Xinjiang, China. Plants 2023, 12, 791. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, W.; Jing, B. Optimizing brackish water and nitrogen application regimes for soil salinity, yield, fertilizer and water productivity of a mulched drip irrigated cotton cropping system. Field Crops Res. 2023, 302, 109097. [Google Scholar] [CrossRef]
- Paudel, D.; Boogaard, H.; de Wit, A.; Janssen, S.; Osinga, S.; Pylianidis, C.; Athanasiadis, I.N. Machine learning for large-scale crop yield forecasting. Agric. Syst. 2021, 187, 103016. [Google Scholar] [CrossRef]
- Pham, H.T.; Awange, J.L.; Kuhn, M.; van Nguyen, B.; Bui, L.K. Enhancing Crop Yield Prediction Utilizing Machine Learning on Satellite-Based Vegetation Health Indices. Sensors 2022, 22, 719. [Google Scholar] [CrossRef]
- Muruganantham, P.; Wibowo, S.; Grandhi, S.; Samrat, N.H.; Islam, N. A Systematic Literature Review on Crop Yield Prediction with Deep Learning and Remote Sensing. Remote Sens. 2022, 14, 1990. [Google Scholar] [CrossRef]
- Sarkar, S.; Osorio Leyton, J.M.; Noa-Yarasca, E.; Adhikari, K.; Hajda, C.B.; Smith, D.R. Integrating Remote Sensing and Soil Features for Enhanced Machine Learning-Based Corn Yield Prediction in the Southern US. Sensors 2025, 25, 543. [Google Scholar] [CrossRef] [PubMed]
- Lischeid, G.; Webber, H.; Sommer, M.; Nendel, C.; Ewert, F. Machine learning in crop yield modeling: A powerful tool, but no surrogate for science. Agric. For. Meteorol. 2022, 312, 108698. [Google Scholar] [CrossRef]
- Ilyas, Q.M.; Ahmad, M.; Mehmood, A. Automated Estimation of Crop Yield Using Artificial Intelligence and Remote Sensing Technologies. Bioengineering 2023, 10, 125. [Google Scholar] [CrossRef]
- Oikonomidis, A.; Catal, C.; Kassahun, A. Hybrid deep learning-based models for crop yield prediction. Appl. Artif. Intell. 2022, 36, 2031822. [Google Scholar] [CrossRef]
- Kukartsev, V.; Orlov, V.; Khramkov, V.; Rozhkova, A. Application of machine learning algorithms for predicting agricultural crop yields. BIO Web Conf. 2024, 130, 01010. [Google Scholar] [CrossRef]
- Saruk, B.S.; Rayalu, G.M. Integrating Machine Learning for Enhanced Agricultural Productivity: A Focus on Bananas and Arecanut in the Context of India’s Economic Growth. J. Stat. Theory Appl. 2024, 23, 408–426. [Google Scholar] [CrossRef]
- Ayalew, A.T.; Lohani, T.K. Prediction of Crop Yield by Support Vector Machine Coupled with Deep Learning Algorithm Procedures in Lower Kulfo Watershed of Ethiopia. J. Eng. 2023, 2023, 6675523. [Google Scholar] [CrossRef]
- Guo, Z.; Chamberlin, J.; You, L. Smallholder maize yield estimation using satellite data and machine learning in Ethiopia. Crop Environ. 2023, 2, 165–174. [Google Scholar] [CrossRef]
- Meshesha, D.T.; Abeje, M. Developing crop yield forecasting models for four major Ethiopian agricultural commodities. Remote Sens. Appl. Soc. Environ. 2018, 11, 83–93. [Google Scholar] [CrossRef]
- Bandak, S.; Movahedi Naeini, S.A.R.; Komaki, C.B.; Verrelst, J.; Kakooei, M.; Mahmoodi, M.A. Satellite-Based Estimation of Soil Moisture Content in Croplands: A Case Study in Golestan Province, North of Iran. Remote Sens. 2023, 15, 2155. [Google Scholar] [CrossRef]
- Misebo, A.M.; Hawryło, P.; Szostak, M.; Pietrzykowski, M. Spatial estimation of soil organic carbon, total nitrogen, and soil water storage in reclaimed post-mining sites based on remote sensing data. Ecol. Indic. 2024, 166, 112228. [Google Scholar] [CrossRef]
- Senanayake, I.P.; Yeo, I.Y.; Kuczera, G.A. A Random Forest-Based Multi-Index Classification (RaFMIC) Approach to Mapping Three-Decadal Inundation Dynamics in Dryland Wetlands Using Google Earth Engine. Remote Sens. 2023, 15, 1263. [Google Scholar] [CrossRef]
- Hoque, J.; Islam, S.; Uddin, J.; Samad, A.; De Abajo, B.S.; Vargas, D.L.R.; Ashraf, I. Incorporating Meteorological Data and Pesticide Information to Forecast Crop Yields Using Machine Learning. IEEE Access 2024, 12, 47768–47786. [Google Scholar] [CrossRef]
- Allbed, A.; Kumar, L.; Aldakheel, Y.Y. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region. Geoderma 2014, 230–231, 1–8. [Google Scholar] [CrossRef]
- Golabkesh, F.; Ghanavati, N.; Nazarpour, A.; Nejad, T.B. Monitoring Soil Salinity Changes, Comparison of Different Maps and Indices Extracted from Landsat Satellite Images (Case Study: Atabieh, Khuzestan). Pol. J. Environ. Stud. 2021, 30, 1139–1154. [Google Scholar] [CrossRef]
- Walder, M.T.; de Oliveira, C.L.; Morante-Filho, J.C.; Benchimol, M. Agricultural Expansion and Landscape Heterogeneity Explain Vegetation Degradation in Brazilian Atlantic Forest Landscapes. Land Degrad. Dev. 2025, 36, 1121–1132. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, Q.; Xiong, S.; Shi, L.; Ma, X.; Du, P.; Guo, J. A spectral parameter for the estimation of soil total nitrogen and nitrate nitrogen of winter wheat growth period. Soil Use Manag. 2021, 37, 698–711. [Google Scholar] [CrossRef]
- Maas, E.V.; Hoffman, G.J. Crop Salt Tolerance–Current Assessment. J. Irrig. Drain. Div. 1977, 103, 115–134. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, Y.; Zheng, Z.; Yao, W.; Wang, W.; Guo, L. Grain Crop Yield Prediction Using Machine Learning Based on UAV Remote Sensing: A Systematic Literature Review. Drones 2024, 8, 559. [Google Scholar] [CrossRef]
- Shanmugam, V.; Sriteja2, I.; Dathu, K.S.; Raju, K.; Kumar, S.S.; Karun, G. Crop Yield Prediction using Machine Learning. Int. J. Adv. Res. Sci. Commun. Technol. IJARSCT 2023, 3, 2581–9429. [Google Scholar] [CrossRef]
- Ashwitha, A.; Latha, C.A. Crop Recommendation and Yield Estimation Using Machine Learning. J. Mob. Multimed. 2022, 18, 861–884. [Google Scholar] [CrossRef]
- Shafi, U.; Mumtaz, R.; Anwar, Z.; Ajmal, M.M.; Khan, M.A.; Mahmood, Z.; Qamar, M.; Jhanzab, H.M. Tackling Food Insecurity Using Remote Sensing and Machine Learning-Based Crop Yield Prediction. IEEE Access 2023, 11, 108640–108657. [Google Scholar] [CrossRef]
- Tripathi, A.; Tiwari, R.K.; Tiwari, S.P. A deep learning Multi-layer Perceptron and remote sensing approach for soil health-based crop yield estimation. Int. J. Appl. Earth Obs. Geoinf. 2022, 113, 102959. [Google Scholar] [CrossRef]
- Teimourian, A.; Rohacs, D.; Dimililer, K.; Teimourian, H.; Yildiz, M.; Kale, U. Airfoil aerodynamic performance prediction using machine learning and surrogate modeling. Heliyon 2024, 10, e29377. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Qin, J.; Yin, F.; Ren, Z.; Qi, J.; Zhang, J.; Wang, R. An APMLP Deep Learning Model for Bathymetry Retrieval Using Adjacent Pixels. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 15, 235–246. [Google Scholar] [CrossRef]
- Tang, J.; Deng, C.; Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 809–821. [Google Scholar] [CrossRef]
- Dai, X.; Huo, Z.; Wang, H. Simulation of crop yield response to soil moisture and salinity using artificial neural networks. J. Field Crops Res. 2011, 121, 441–449. [Google Scholar] [CrossRef]
- Attia, A.; Govind, A.; Qureshi, A.S.; Feike, T.; Rizk, M.S.; Shabana, M.M.A.; Kheir, A.M. Coupling Process-Based Models and Machine Learning Algorithms for Predicting Yield and Evapotranspiration of Maize in Arid Environments. Water 2022, 14, 3647. [Google Scholar] [CrossRef]
- Cui, W.; Lan, Y.; Li, J.; Yang, L.; Zhou, Q.; Han, G.; Xiao, X.; Zhao, J.; Qiao, Y. Apple Yield Estimation Method Based on CBAM-ECA-Deeplabv3+ Image Segmentation and Multi-Source Feature Fusion. Sensors 2025, 25, 3140. [Google Scholar] [CrossRef]
- Srinivasu, P.N.; Rao, T.S.; Srinivas, G.; Reddy, P.P. A computationally efficient skull scraping approach for brain MR images. Recent Adv. Comput. Sci. Commun. 2020, 13, 833–844. [Google Scholar] [CrossRef]
- Amani, M.; Mahdavi, S.; Afshar, M.; Brisco, B.; Huang, W.; Mohammad Javad Mirzadeh, S.; White, L.; Banks, S.; Montgomery, J.; Hopkinson, C. Canadian Wetland Inventory using Google Earth Engine: The First Map and Preliminary Results. Remote Sens. 2019, 11, 842. [Google Scholar] [CrossRef]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Kim, N.; Lee, Y.-W. Machine Learning Approaches to Corn Yield Estimation Using Satellite Images and Climate Data: A Case of Iowa State. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2016, 34, 383–390. [Google Scholar] [CrossRef]
- Huang, J.; Tian, L.; Liang, S.; Ma, H.; Becker-Reshef, I.; Huang, Y.; Su, W.; Zhang, X.; Zhu, D.; Wu, W. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model. Agric. For. Meteorol. 2015, 204, 106–121. [Google Scholar] [CrossRef]
- Butcher, K.; Wick, A.F.; DeSutter, T.; Chatterjee, A.; Harmon, J. Soil Salinity: A Threat to Global Food Security. Agron. J. 2016, 108, 2189–2200. [Google Scholar] [CrossRef]
- Jeong, J.H.; Resop, J.P.; Mueller, N.D.; Fleisher, D.H.; Yun, K.; Butler, E.E.; Timlin, D.J.; Shim, K.M.; Gerber, J.S.; Reddy, V.R.; et al. Random Forests for Global and Regional Crop Yield Predictions. PLoS ONE 2016, 11, e0156571. [Google Scholar] [CrossRef]
- Dutta, S.K.; Chakraborty, S.; Goswami, R.; Banerjee, H.; Majumdar, K.; Li, B.; Jat, M. Maize yield in smallholder agriculture systems: An approach integrating socio-economic and crop management factors. PLoS ONE 2020, 15, e0229100. [Google Scholar] [CrossRef]
- Olivares, B.O.; Vega, A.; Rueda Calderón, M.A.; Montenegro-Gracia, E.J.; Araya-Almán, M.; Marys, E. Prediction of banana production using epidemiological parameters of black Sigatoka: An application with random forest. Sustainability 2022, 14, 14123. [Google Scholar] [CrossRef]
- Badshah, A.; Alkazemi, B.Y.; Din, F.; Zamli, K.Z.; Haris, M. Crop Classification and Yield Prediction Using Robust Machine Learning Models for Agricultural Sustainability. IEEE Access 2024, 12, 162799–162813. [Google Scholar] [CrossRef]
- Li, X.; Chen, M.; He, S.; Xu, X.; He, L.; Wang, L.; Gao, Y.; Tang, F.; Gong, T.; Wang, W.; et al. Estimation of soybean yield based on high-throughput phenotyping and machine learning. Front. Plant Sci. 2024, 15, 1395760. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Ozdogan, M.; Zhu, X.; Ye, Z.; Hain, C.R.; Anderson, M.C. Comparative assessment of environmental variables and machine learning algorithms for maize yield prediction in the US Midwest. Environ. Res. Lett. 2020, 15, 064005. [Google Scholar] [CrossRef]
- Cheng, E.; Zhang, B.; Peng, D.; Zhong, L.; Yu, L.; Liu, Y.; Xiao, C.; Li, C.; Li, X.; Chen, Y.; et al. Wheat yield estimation using remote sensing data based on machine learning approaches. Front. Plant Sci. 2022, 13, 1090970. [Google Scholar] [CrossRef]
- Ahmed, S. A Software Framework for Predicting the Maize Yield Using Modified Multi-Layer Perceptron. Sustainability 2023, 15, 3017. [Google Scholar] [CrossRef]
- Rebortera, M.A.; Fajardo, A.C. An enhanced deep learning approach in forecasting banana harvest yields. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 1–617. [Google Scholar] [CrossRef]
- Ben-Gal, A.; Weikard, H.-P.; Shah, S.H.H.; Van der Zee, S.E.A.T.M. A coupled agronomic-economic model to consider allocation of brackish irrigation water. Water Resour. Res. 2013, 49, 2861–2871. [Google Scholar] [CrossRef]
- Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [Google Scholar] [CrossRef]
- Szabo, S.; Hossain, M.S.; Adger, W.N.; Matthews, Z.; Ahmed, S.; Lázár, A.N.; Ahmad, S. Soil salinity, household wealth, and food insecurity in tropical deltas: Evidence from southwest coast of Bangladesh. Sustain. Sci. 2016, 11, 411–421. [Google Scholar] [CrossRef]
- Gumma, M.K.; Nukala, R.M.; Panjala, P.; Bellam, P.K.; Gajjala, S.; Dubey, S.K.; Sehgal, V.K.; Mohammed, I.; Deevi, K.C. Optimizing Crop Yield Estimation through Geospatial Technology: A Comparative Analysis of a Semi-Physical Model, Crop Simulation, and Machine Learning Algorithms. AgriEngineering 2024, 6, 786–802. [Google Scholar] [CrossRef]
- Khan, A.A.; Khan, S.U.; Ali, M.A.S.; Khan, A.; Hayat, Y.; Luo, J. Drivers of climate variability and increasing water salinity impacts on the farmer’s income risk with future outlook mitigation. Int. J. Clim. Change Strateg. Manag. 2022, 14, 462–485. [Google Scholar] [CrossRef]
- Kishore, S.M.; Bharthisha, S.M.; Kavya, D.; Aruna, K.; Chethan, M.N.; Yashavanth, H.D. Combating Soil Salinity in Sugarcane Farming: Integrated Approaches and Biosaline Agriculture Innovations. Asian J. Res. Biochem. 2024, 14, 115–121. [Google Scholar] [CrossRef]
- Welle, P.D.; Mauter, M.S. High-resolution model for estimating the economic and policy implications of agricultural soil salinization in California. Environ. Res. Lett. 2017, 12, 094010. [Google Scholar] [CrossRef]
- Eid, A.R.; Fathy, M.; El-Sayed, A.; Hafez, M.; El Shirbeny, M.A.; Reda, A.M.; Mady, A.Y. Validation of SALTMAD model for simulating soil moisture and faba bean productivity under deficit irrigation and integrated fertilization in the semi-arid regions. Soil Environ. 2023, 42, 111–129. [Google Scholar] [CrossRef]
- Ma, T.; Zeng, W.; Li, Q.; Wu, J.; Huang, J. Effects of water, salt and nitrogen stress on sunflower (Helianthus annuus L.) at different growth stages. J. Soil Sci. Plant Nutr. 2016, 16, 1024–1037. [Google Scholar] [CrossRef]
- Pandya, U.; Mudaliar, A.; Gaikwad, A. Forecasting of Banana Crop Productivity Using Geospatial Approach: A Case Study of Anand District. Environ. Sci. Proc. 2023, 25, 38. [Google Scholar]
- Ndayitegeye, O.; Onyando, J.O.; Okwany, R.O.; Kwach, J.K. Evaluation of CROPWAT 8.0 model in predicting the yield of East Africa highland banana under different sets of irrigation scheduling. Fundam. Appl. Agric. 2020, 5, 344–352. [Google Scholar] [CrossRef]
- Panigrahi, N.; Thompson, A.J.; Zubelzu, S.; Knox, J.W. Identifying opportunities to improve management of water stress in banana production. Sci. Hortic. 2021, 276, 109735. [Google Scholar] [CrossRef]
- Wu, H.; Kang, S.; Li, X.; Guo, P.; Hu, S. Optimization-Based Water-Salt Dynamic Threshold Analysis of Cotton Root Zone in Arid Areas. Water 2020, 12, 2449. [Google Scholar] [CrossRef]
- Kar, K.K.; Haggerty, R.; Sharma, H.; Dwivedi, D.; Roy, T. Evapotranspiration Partitioning Using Flux Tower Data in a Semi-Arid Ecosystem. Hydrol. Process. 2025, 39, e70083. [Google Scholar] [CrossRef]
- Suaza-Medina, M.E.; Laguna, J.; Béjar, R.; Zarazaga -Soria, F.J.; Lacasta, J. Evaluating the efficiency of NDVI and climatic data in maize harvest prediction using machine learning. Int. J. Digit. Earth 2024, 17, 2359565. [Google Scholar] [CrossRef]








| Parameters | Mean ± SD | Minimum | Median | Maximum |
|---|---|---|---|---|
| YC | 0.92 ± 0.44 | 0.14 | 0.86 | 2.05 |
| YM | 4.50 ± 0.79 | 2.53 | 4.75 | 6.17 |
| YB | 6.81 ± 0.84 | 4.85 | 7.10 | 8.71 |
| SM | 0.25 ± 0.09 | 0.08 | 0.25 | 0.51 |
| N | 3.69 ± 2.60 | 1.05 | 2.56 | 21.67 |
| EC | 18.31 ± 4.17 | 7.63 | 18.87 | 25.61 |
| Crop | Parameter | Model | RMSE | R2 | MAE | EVS | MAPE |
|---|---|---|---|---|---|---|---|
| Cotton | Yield | RR | 0.000 | 1.000 | 0.002 | 0.999 | 0.306 |
| DT | 0.000 | 0.999 | 0.007 | 0.990 | 0.865 | ||
| RF | 0.000 | 0.998 | 0.008 | 0.999 | 0.767 | ||
| GB | 0.000 | 1.000 | 0.004 | 0.997 | 0.386 | ||
| SV | 0.005 | 0.976 | 0.048 | 0.977 | 6.252 | ||
| KNN | 0.005 | 0.974 | 0.052 | 0.977 | 6.204 | ||
| MLP | 0.003 | 0.985 | 0.043 | 0.985 | 5.896 | ||
| Economic benefits | RR | 1.888 | 0.999 | 1.336 | 0.999 | 1.074 | |
| DT | 8.031 | 0.990 | 3.641 | 0.999 | 5.201 | ||
| RF | 10.843 | 0.998 | 4.835 | 0.999 | 16.316 | ||
| GB | 4.979 | 0.997 | 1.974 | 1.000 | 4.788 | ||
| SV | 249.181 | 0.259 | 192.820 | 0.166 | 254.090 | ||
| KNN | 41.736 | 0.974 | 29.422 | 0.977 | 41.968 | ||
| MLP | 215.410 | 0.311 | 178.980 | 0.629 | 103.652 |
| Crop | Parameter | Model | RMSE | R2 | MAE | EVS | MAPE |
|---|---|---|---|---|---|---|---|
| Maize | Yield | RR | 0.479 | 0.582 | 0.334 | 0.587 | 7.395 |
| DT | 0.418 | 0.679 | 0.265 | 0.695 | 5.435 | ||
| RF | 0.344 | 0.793 | 0.230 | 0.223 | 4.556 | ||
| GB | 0.346 | 0.781 | 0.222 | 0.791 | 4.356 | ||
| SV | 0.413 | 0.689 | 0.260 | 0.708 | 5.426 | ||
| KNN | 0.335 | 0.795 | 0.258 | 0.798 | 5.540 | ||
| MLP | 0.448 | 0.633 | 0.313 | 0.635 | 6.881 | ||
| Economic benefits | RR | 285.27 | 0.582 | 199.431 | 0.587 | 33.813 | |
| DT | 783.080 | 0.685 | 159.170 | 0.697 | 59.377 | ||
| RF | 208.414 | 0.777 | 136.691 | 0.790 | 50.804 | ||
| GB | 206.576 | 0.780 | 132.280 | 0.791 | 51.350 | ||
| SV | 412.41 | 0.125 | 347.230 | 0.126 | 84.764 | ||
| KNN | 199.705 | 0.799 | 153.768 | 0.798 | 38.495 | ||
| MLP | 360.481 | 0.332 | 300.177 | 0.501 | 69.028 |
| Crop | Parameter | Model | RMSE | R2 | MAE | EVS | MAPE |
|---|---|---|---|---|---|---|---|
| Banana | Yield | RR | 0.436 | 0.687 | 0.308 | 0.696 | 4.502 |
| DT | 0.288 | 0.863 | 0.206 | 0.863 | 2.977 | ||
| RF | 0.217 | 0.922 | 0.176 | 0.923 | 2.586 | ||
| GB | 0.246 | 0.901 | 0.187 | 0.901 | 2.736 | ||
| SV | 0.277 | 0.875 | 0.214 | 0.883 | 3.107 | ||
| KNN | 0.268 | 0.881 | 0.207 | 0.884 | 3.027 | ||
| MLP | 0.361 | 0.784 | 0.257 | 0.787 | 3.764 | ||
| Economic benefits | RR | 275.920 | 0.687 | 195.329 | 0.696 | 11.278 | |
| DT | 178.720 | 0.868 | 125.129 | 0.869 | 7.385 | ||
| RF | 138.850 | 0.921 | 111.990 | 0.921 | 6.426 | ||
| GB | 155.608 | 0.901 | 118.488 | 0.901 | 6.842 | ||
| SV | 457.460 | 0.140 | 396.834 | 0.140 | 22.720 | ||
| KNN | 170.164 | 0.881 | 130.788 | 0.884 | 7.483 | ||
| MLP | 1207.720 | 0.099 | 1132.815 | 0.082 | 25.735 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otoro, G.G.; Komai, K. Integration of Machine Learning and Remote Sensing to Evaluate the Effects of Soil Salinity, Nitrate, and Moisture on Crop Yields and Economic Returns in the Semi-Arid Region of Ethiopia. Agriculture 2025, 15, 2378. https://doi.org/10.3390/agriculture15222378
Otoro GG, Komai K. Integration of Machine Learning and Remote Sensing to Evaluate the Effects of Soil Salinity, Nitrate, and Moisture on Crop Yields and Economic Returns in the Semi-Arid Region of Ethiopia. Agriculture. 2025; 15(22):2378. https://doi.org/10.3390/agriculture15222378
Chicago/Turabian StyleOtoro, Gezimu Gelu, and Katsuaki Komai. 2025. "Integration of Machine Learning and Remote Sensing to Evaluate the Effects of Soil Salinity, Nitrate, and Moisture on Crop Yields and Economic Returns in the Semi-Arid Region of Ethiopia" Agriculture 15, no. 22: 2378. https://doi.org/10.3390/agriculture15222378
APA StyleOtoro, G. G., & Komai, K. (2025). Integration of Machine Learning and Remote Sensing to Evaluate the Effects of Soil Salinity, Nitrate, and Moisture on Crop Yields and Economic Returns in the Semi-Arid Region of Ethiopia. Agriculture, 15(22), 2378. https://doi.org/10.3390/agriculture15222378

