Italian Ancient Wheats: Historical, Agronomic, and Market Characteristics: A Comprehensive Review
Abstract
1. Introduction
- RQ1: What are the characteristics of Italian ancient wheats, also compared to modern ones?
- RQ2: How can the valorization of Italian ancient wheats contribute to the sustainability and competitiveness of national cereal supply chains, with particular reference to the production of pasta and bread?
- (i)
- Durum and soft wheat represent the main raw materials for the production of pasta and bread, respectively, two foods that are deeply rooted in Italian culture and are the basis of the Mediterranean diet. Considering pasta, globally, it represents one of the main emblematic expressions of ‘Made in Italy’ and is characterized by a well-defined profile in which one can recognize high professionalism, high know-how, work, knowledge, and quality of extraordinary value. Similarly, soft wheat reinforces Italy’s rich tradition of bread and bakery products, which hold both nutritional and cultural significance. For these reasons, there could be a certain interest in improving the knowledge base regarding the healthiness, quality, and sustainability of wheat.
- (ii)
- In Italy, wheat cultivation involves a total of 2.35 million hectares, between soft and durum wheat, for a production of 6.60 million tons [20], making it one of the countries most involved in wheat cultivation at a European level.
2. Origin and History of Ancient Wheats
- Autochthonous or allochthonous varieties not previously included in national registers but integrated into local agroecosystems for at least fifty years.
- Varieties no longer listed in official registers and at risk of genetic erosion.
- Varieties no longer cultivated in Italy but preserved in germplasm banks, botanical gardens, or research centers, whose reintroduction is justified by economic, scientific, cultural, or landscape interest.
3. Ancient Wheats Characteristics
3.1. Geographical Distribution and Historical Characteristics
3.2. Agronomic Characteristics
3.2.1. Yields
3.2.2. Heights
3.2.3. Environmental Sustainability
3.3. Cultivation Characteristics
3.4. Ancient Wheats for Quality Production
3.5. Technological Parameters
3.5.1. Test Weight (TW)
3.5.2. 1000 Kernel Weight (TKW)
4. Conclusions
- Thirty-four varieties of ancient Italian wheats have been identified, with a particular concentration in Tuscany and Sicily. Saragolla is one of the most studied, probably due to its favorable nutritional composition and relatively low glycemic index, as well as the presence of a modern variant registered in 2004, which has encouraged further studies.
- Ancient wheats are characterized by greater height, good adaptability to difficult soil and climate conditions, competitiveness with weeds, and potential resistance to pathogens, qualities that make them suitable for sustainable, low-input agricultural systems. However, the scarcity of quantitative data on their environmental impact limits a full comparative assessment with modern varieties.
- Analysis of the yields of ancient Italian wheats shows considerable variability in production, with values generally lower than those of modern wheats, mainly as a result of a long selection process that has favored modern varieties, optimized to ensure high productivity and uniformity in high-intensity agricultural systems.
- Ancient wheat flours have a significantly higher market value due to artisanal production methods (e.g., stone grinding), organic cultivation, greater perceived value by consumers, and belonging to short or niche supply chains.
- There are still several gaps in research, especially regarding the agronomic, nutritional, and technological characterization of some lesser-known varieties, such as Biancolilla, Bidì, Canove, and Gamba di Ferro. Many of these wheats are mentioned in literature without sufficient details about their properties, leaving room for further study.
- There is considerable variability in the technological parameters (TW and TKW), which can negatively affect flour or semolina yields, while offering interesting opportunities for artisanal production, traditional bread-making, and products with a higher fiber content.
- Optimize cultivation techniques to improve yield without sacrificing quality.
- Further promote the link between ancient wheats and traditional products to strengthen their cultural and commercial value.
- Focus on detailed quantification of the environmental impact of ancient wheats, using Life Cycle Assessment to evaluate their real contribution to agricultural sustainability and identify strategies for improvement.
- Strategies to capitalize on the high price of ancient wheats flour, transforming it into an opportunity to guarantee greater market value for farmers and encourage the cultivation of these varieties. However, as previously discussed, higher market prices are often offset by increased production costs related to lower yields, manual processing, and smaller-scale supply chains. Therefore, it could be important to evaluate how these price differentials actually translate into farmers’ net income and long-term profitability. Future strategies should focus not only on price premiums but also on reducing production costs through optimized agronomic practices, cooperative processing systems, and enhanced market access for small producers.
- The development of short supply chains and highly profitable niche products promotes economic sustainability for farms that adopt low-impact production models.
- Create a centralized database on the agronomic, nutritional, and technological characteristics of Italian ancient wheats varieties.
- The adoption of blended cultivation systems, where ancient wheats with lower yields are cultivated together with more productive or resilient varieties. These blends could generate added value through the complementarity of agronomic and nutritional traits, while simultaneously reinforcing species’ resilience by fostering natural protection mechanisms. In practice, such systems could involve intercropping or mixed sowing of ancient and modern wheat varieties, allowing farmers to combine the high-quality and biodiversity benefits of ancient wheats with the yield stability and disease resistance of improved cultivars. This approach may also enhance soil structure and microbial diversity, reduce pest and disease pressure, and improve overall system resilience under climate variability. For example, the “BIOADAPT” project (Alma Mater University of Bologna) tested intercropping ancient wheats with modern ones in organic farming, achieving overall yields similar to modern monocultures, but with better N balance, higher nutritional quality, and greater microbial biodiversity in the soil.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cooper, R. Re-Discovering Ancient Wheat Varieties as Functional Foods. J. Tradit. Complement. Med. 2015, 5, 138–143. [Google Scholar] [CrossRef]
- Roumia, H.; Kókai, Z.; Mihály-Langó, B.; Csobod, É.C.; Benedek, C. Ancient Wheats—A Nutritional and Sensory Analysis Review. Foods 2023, 12, 2411. [Google Scholar] [CrossRef] [PubMed]
- Garvin, D.F.; Welch, R.M.; Finley, J.W. Historical Shifts in the Seed Mineral Micronutrient Concentration of US Hard Red Winter Wheat Germplasm. J. Sci. Food Agric. 2006, 86, 2213–2220. [Google Scholar] [CrossRef]
- Fan, M.S.; Zhao, F.J.; Fairweather-Tait, S.J.; Poulton, P.R.; Dunham, S.J.; McGrath, S.P. Evidence of Decreasing Mineral Density in Wheat Grain over the Last 160 Years. J. Trace Elem. Med. Biol. 2008, 22, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Shewry, P.R.; Pellny, T.K.; Lovegrove, A. Is Modern Wheat Bad for Health? Nat. Plants 2016, 2, 16097. [Google Scholar] [CrossRef]
- Cattivelli, L. Pane Nostro: Grani Antichi, Farine e Altre Bugie; Il Mulino: Bologna, Italy, 2023; ISBN 978-8815383525. [Google Scholar]
- OECD-FAO. OECD-FAO Agricultural Outlook 2021–2030; OECD-FAO: Paris, France, 2021. [Google Scholar]
- UFOP. Report on Global Market Supply 2022/2023; UFOP: Berlin, Germany, 2023; Available online: https://www.ufop.de/files/8217/0548/9837/UFOP-2116_Report_Global_Market_Supply_A5_EN_23_24_160124.pdf (accessed on 14 February 2025).
- Khalid, A.; Hameed, A.; Tahir, M.F. Wheat Quality: A Review on Chemical Composition, Nutritional Attributes, Grain Anatomy, Types, Classification, and Function of Seed Storage Proteins in Bread Making Quality. Front. Nutr. 2023, 10, 1053196. [Google Scholar] [CrossRef]
- Ann Bock, M.; Flores, N. Nutrition Information Related to Battered and Breaded Food Products. In Batters and Breadings in Food Processing; Woodhead Publishing: Cambridge, UK; AACC International Press: St. Paul, MI, USA, 2011; pp. 153–168. [Google Scholar] [CrossRef]
- Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Te Morenga, L. Carbohydrate Quality and Human Health: A Series of Systematic Reviews and Meta-Analyses. Lancet 2019, 393, 434–445. [Google Scholar] [CrossRef]
- Harris, K.A.; Kris-Etherton, P.M. Effects of Whole Grains on Coronary Heart Disease Risk. Curr. Atheroscler. Rep. 2010, 12, 368–376. [Google Scholar] [CrossRef]
- Gil, A.; Ortega, R.M.; Maldonado, J. Wholegrain Cereals and Bread: A Duet of the Mediterranean Diet for the Prevention of Chronic Diseases. Public Health Nutr. 2011, 14, 2316–2322. [Google Scholar] [CrossRef]
- Wang, Q.; Xiong, H.; Guo, H.; Zhao, L.; Xie, Y.; Gu, J.; Zhao, S.; Ding, Y.; Liu, L. Genetic Analysis and Mapping of Dwarf Gene without Yield Penalty in a γ-Ray-Induced Wheat Mutant. Front. Plant Sci. 2023, 14, 1133024. [Google Scholar] [CrossRef]
- Migliorini, P.; Spagnolo, S.; Torri, L.; Arnoulet, M.; Lazzerini, G.; Ceccarelli, S. Agronomic and Quality Characteristics of Old, Modern and Mixture Wheat Varieties and Landraces for Organic Bread Chain in Diverse Environments of Northern Italy. Eur. J. Agron. 2016, 79, 131–141. [Google Scholar] [CrossRef]
- Boukid, F.; Gentilucci, V.; Vittadini, E.; De Montis, A.; Rosta, R.; Bosi, S.; Dinelli, G.; Carini, E. Rediscovering Bread Quality of “Old” Italian Wheat (Triticum aestivum L. ssp. aestivum.) through an Integrated Approach: Physicochemical Evaluation and Consumers’ Perception. LWT 2020, 122, 109043. [Google Scholar] [CrossRef]
- Verdi, L.; Marta, A.D.; Falconi, F.; Orlandini, S.; Mancini, M. Comparison between Organic and Conventional Farming Systems Using Life Cycle Assessment (LCA): A Case Study with an Ancient Wheat Variety. Eur. J. Agron. 2022, 141, 126638. [Google Scholar] [CrossRef]
- Suo, X.; Pompei, F.; Bonfini, M.; Mustafa, A.M.; Sagratini, G.; Wang, Z.; Vittadini, E. Quality of Wholemeal Pasta Made with Pigmented and Ancient Wheats. Int. J. Gastron. Food Sci. 2023, 31, 100665. [Google Scholar] [CrossRef]
- Dinu, M.; Whittaker, A.; Pagliai, G.; Benedettelli, S.; Sofi, F. Ancient Wheat Species and Human Health: Biochemical and Clinical Implications. J. Nutr. Biochem. 2018, 52, 1–9. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 10 March 2025).
- Sollai, M. The Fascist Green Revolution. Plants People Planet. 2024, 6, 1094–1103. [Google Scholar] [CrossRef]
- Marzario, S.; Sica, R.; Taranto, F.; Fania, F.; Esposito, S.; De Vita, P.; Gioia, T.; Logozzo, G. Phenotypic Evolution in Durum Wheat (Triticum durum Desf.) Based on SNPs, Morphological Traits, UPOV Descriptors and Kernel-Related Traits. Front. Plant Sci. 2023, 14, 1206560. [Google Scholar] [CrossRef]
- Careddu, M.L.; Giunta, F.; Motzo, R. Lessons from the Varietal Evolution of Durum Wheat in Italy. Agronomy 2024, 14, 87. [Google Scholar] [CrossRef]
- Milani, P.; Torres-Aguilar, P.; Hamaker, B.; Manary, M.; Abushamma, S.; Laar, A.; Steiner, R.; Ehsani, M.; de la Parra, J.; Skaven-Ruben, D.; et al. The Whole Grain Manifesto: From Green Revolution to Grain Evolution. Glob. Food Secur. 2022, 34, 100649. [Google Scholar] [CrossRef]
- Nally, D.; Taylor, S. The Politics of Self-Help: The Rockefeller Foundation, Philanthropy and the ‘Long’ Green Revolution. Political Geogr. 2015, 49, 51–63. [Google Scholar] [CrossRef]
- Pronin, D.; Börner, A.; Scherf, K.A. Old and Modern Wheat (Triticum aestivum L.) Cultivars and Their Potential to Elicit Celiac Disease. Food Chem. 2021, 339, 127952. [Google Scholar] [CrossRef]
- French, B. Food Plants International Database of Edible Plants of the World, a Free Resource for All. Acta Hortic. 2019, 1241, 1–6. [Google Scholar] [CrossRef]
- ISTAT. Superfici e Produzione—Dati in Complesso—Prov. Available online: https://esploradati.istat.it/databrowser/#/it/dw/categories/IT1,Z1000AGR,1.0/AGR_CRP/DCSP_COLTIVAZIONI/IT1,101_1015_DF_DCSP_COLTIVAZIONI_2,1.0 (accessed on 13 October 2025).
- Blangiforti, S.; Venora, G. I Grani Antichi Siciliani—Manuale Tecnico per Il Riconoscimento delle Varietà Locali dei Frumenti Siciliani; Le Fate: Rome, Italy, 2017; ISBN 978-88-940976-6-5. [Google Scholar]
- Di Silvestro, R.; Di Loreto, A.; Bosi, S.; Bregola, V.; Marotti, I.; Benedettelli, S.; Segura-Carretero, A.; Dinelli, G. Environment and Genotype Effects on Antioxidant Properties of Organically Grown Wheat Varieties: A 3-Year Study. J. Sci. Food Agric. 2017, 97, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Regione Emilia-Romagna. L. R. N. 1/2008 Tutela del Patrimonio di Razze e Varietà Locali di Interesse Agrario del Territorio Emiliano-Romagnolo. Scheda Tecnica per L’iscrizione al Repertorio Mara Rer V 209. Available online: https://agricoltura.regione.emilia-romagna.it/produzioni-agroalimentari/agricoltura-sostenibile/agrobiodiversita/schede-specie-vegetali/cereali/allegato-10-mara.pdf/ (accessed on 13 February 2025).
- Bosi, S.; Negri, L.; Fakaros, A.; Oliveti, G.; Dinelli, G. Valorization of Wheat Production in Marginal Areas: Farmer-Centric Experimentation for Variety Choice and Evolutionary Population Development. Ital. J. Agron. 2023, 18, 2210. [Google Scholar] [CrossRef]
- Regione Toscana Varietà Bianco Nostrale. Available online: http://germoplasma.regione.toscana.it/MESI_Menu/Elemento.php?ID=1000 (accessed on 20 February 2025).
- Ghiselli, L.; Rossi, E.; Whittaker, A.; Dinelli, G.; Baglio, A.P.; Andrenelli, L.; Benedettelli, S. Nutritional Characteristics of Ancient Tuscan Varieties of Triticum aestivum L. Ital. J. Agron. 2016, 11, 237–245. [Google Scholar] [CrossRef]
- Amministrazione Provinciale di Siena—Settore Sviluppo Rurale Pane. Nuovo da Grani Antichi: Evoluzione delle Varietà di Grano, della Tecnica Molitoria e Panificatoria. Amministrazione Provinciale di Siena: Siena, Italy. Available online: https://desbri.org/sites/default/files/panenuovodagraniantichi.pdf (accessed on 9 April 2025).
- Ercoli, L.; Ciccolini, V.; Pellegrino, E. Frumenti Teneri Toscani: Caratteri Nutrizionali e Nutraceutici di Varietà Iscritte al Repertorio Regionale. 2018. Available online: http://germoplasma.arsia.toscana.it/Germo_Img/14_1_1533031619.pdf (accessed on 8 February 2025).
- Colella, A. Tra Saperi Contadini e Cultura Scientifica: Identificazione e Decodificazione delle Varietà di Grano in Età Moderna. Quad. Stor. 1994, 29, 769–804. [Google Scholar]
- Regione Sicilia—Assessorato Regionale dell’Agricoltura dello Sviluppo Rurale e della Pesca Mediterranea Manifestazione d’ Interesse e Prequalificazione per Collaborare Alla Realizzazione del Cluster Biomediterraneo in Attuazione della Convenzione Tra Expo 2015 Spa e Regione Siciliana-Assessorato Agricoltura, Sviluppo Rurale e Pesca Mediterranea Allegato 2 Prodotti di Sicilia e Biodiversità. Available online: https://web.archive.org/web/20160304094633/http://www.biomediterraneo.com/bandi/bando1/Allegato2.pdf (accessed on 8 February 2025).
- Ministero del Lavoro e delle Politiche Sociali—Direzione Generale del Terzo Settore e della Responsabilità Sociale delle Imprese Avviso N° 1/2018 “Slow Food in Azione: Le Comunità Protagoniste del Cambiamento”, Ai Sensi dell’Articolo 72 del Codice del Terzo Settore, di Cui al Decreto Legislativo n 117/2017. Available online: https://www.fondazioneslowfood.com/it/arca-del-gusto-slow-food/ciambella-di-san-cataldo/ (accessed on 8 February 2025).
- Ministero Dell’Agricoltura della Sovranità Alimentare e Delle Foreste (MASAF). Gazzetta Ufficiale. Iscrizione di Varietà da Conservazione di Specie Agrarie al Relativo Registro Nazionale; (18A02171) (GU Serie Generale n.76 del 31-03-2018); MASAF: Rome, Italy, 2025. [Google Scholar]
- Palmegiani, F. Rieti e la Regione Sabina: Storia, Arte, Vita, Usi e Costumi del Secolare Popolo Sabino: La Ricostituita Provincia Nelle Sue Attività; Latina Gens: Gravellona, Italy, 1932. [Google Scholar]
- Consorzio San Pastore Scheda Varietale: San Pastore. Available online: https://www.consorziosanpastore.it/wp-content/uploads/2022/03/compresso_san-pastore-storia-completa-_07-12-21.pdf (accessed on 21 February 2025).
- Silveri, D.D.; Dalla Ragione, I.; Porfiri, O.; Torricelli, E.; Tosti, N.; Veronesi, F. Collection, Evaluation and Conservation of Plant Genetic Resources in the Abruzzo Region, Central Italy. In IPGRI Genetic Resources Newsletter; FAO: Rome, Italy, 2001. [Google Scholar]
- De Flaviis, R.; Tumino, G.; Terzi, V.; Morcia, C.; Santarelli, V.; Sacchetti, G.; Mastrocola, D. Exploration of the Genetic Diversity of Solina Wheat and Its Implication for Grain Quality. Plants 2022, 11, 1170. [Google Scholar] [CrossRef]
- Masciarelli, E.; Di Luigi, M.; De Flaviis, R.; Beni, C.; Di Santo, M.; Silveri, D.; De Amicis, F.; Menna, O.; Casorri, L. Solina: An Example of Ancient Wheat Suitable for the Protection of Agrobiodiversity and Agricultural Workers’ Health. Agronomy 2024, 14, 2821. [Google Scholar] [CrossRef]
- Presidio Slow Food Grano Carosello. Available online: https://www.fondazioneslowfood.com/it/arca-del-gusto-slow-food/grano-carosella/ (accessed on 21 February 2025).
- Regione Emilia-Romagna. L. R. N. 1/2008 Tutela del Patrimonio di Razze e Varietà Locali di Interes-Se Agrario del Territorio Emiliano-Romagnolo. Grano Terminillo. Available online: https://agricoltura.regione.emilia-romagna.it/produzioni-agroalimentari/agricoltura-sostenibile/agrobiodiversita/schede-specie-vegetali/cereali/grano-terminillo-rer-v-172.pdf (accessed on 13 February 2025).
- AMAP. AMAP Frumento Jervicella—Accessione Di Monte Giberto; AMAP: Ancona, Italy, 2011. [Google Scholar]
- Tavoletti, S.; Pasquini, M.; Mozzon, M.; Foligni, R. Effect of Sowing Season on Fatty Acid Profile Ability to Discriminate Modern and Old Varieties of Common Wheat (Triticum aestivum L. subsp. Aestivum). J. Cereal Sci. 2024, 116, 103864. [Google Scholar] [CrossRef]
- Frison, G. I due Padri della Pioppicoltura Italiana: Jacometti e Piccarolo Lo Scienziato Dimenticato e Il Tecnico Applaudito. Arbor 2022, 3, 10–27. [Google Scholar]
- Di Silvestro, R.; Marotti, I.; Bosi, S.; Bregola, V.; Carretero, A.S.; Sedej, I.; Mandic, A.; Sakac, M.; Benedettelli, S.; Dinelli, G. Health-Promoting Phytochemicals of Italian Common Wheat Varieties Grown under Low-Input Agricultural Management. J. Sci. Food Agric. 2012, 92, 2800–2810. [Google Scholar] [CrossRef] [PubMed]
- De Cillis, E. I Grani d’Italia; Tipografia Della Camera Dei Deputati: Rome, Italy, 1927. [Google Scholar]
- Perrino, P.; Hammer, K. Sicilian Wheat Varieties. Die Kult. 1983, 31, 227–279. [Google Scholar] [CrossRef]
- De Vita, P.; Timpanaro, S.; Codianni, P. Antiche Varietà Di Cereali: Realforte, Un Altro Storico Grano Duro Siciliano. Vita Camp. 2011, 29, 35. [Google Scholar]
- Taranto, F.; Di Serio, E.; Miazzi, M.M.; Pavan, S.; Saia, S.; De Vita, P.; D’agostino, N. Intra-and Inter-Population Genetic Diversity of “Russello” and “Timilia” Landraces from Sicily: A Proxy towards the Identification of Favorable Alleles in Durum Wheat. Agronomy 2022, 12, 1326. [Google Scholar] [CrossRef]
- Romano, M.M.M. Il Grano Antico Tumminia: Storia Di Un Termine e Dei Suoi Diversi Usi Mediterranei. Riv. Di Stor. Dell’agricoltura 2023, 62, 5–37. [Google Scholar] [CrossRef]
- Di Loreto, A.; Bosi, S.; Montero, L.; Bregola, V.; Marotti, I.; Sferrazza, R.E.; Dinelli, G.; Herrero, M.; Cifuentes, A. Determination of Phenolic Compounds in Ancient and Modern Durum Wheat Genotypes. Electrophoresis 2018, 39. [Google Scholar] [CrossRef]
- Racioppi, M.; Tartaglia, M.; de la Rosa, J.M.; Marra, M.; Lopez-Capel, E.; Rocco, M. Response of Ancient and Modern Wheat Varieties to Biochar Application: Effect on Hormone and Gene Expression Involved in Germination and Growth. Agronomy 2020, 10, 5. [Google Scholar] [CrossRef]
- Rascio, A.; Fiorillo, F.; Paone, S.; De Santis, G.; Sorrentino, G. Quantitative Botanical Characterization of Saragolla Wheat Landraces from Abruzzo and Puglia Regions of Italy. Plant Genet. Resour. Characterisation Util. 2022, 20, 434–441. [Google Scholar] [CrossRef]
- Simoniello, T.; Coluzzi, R.; D’emilio, M.; Imbrenda, V.; Salvati, L.; Sinisi, R.; Summa, V. Going Conservative or Conventional? Investigating Farm Management Strategies in between Economic and Environmental Sustainability in Southern Italy. Agronomy 2022, 12, 597. [Google Scholar] [CrossRef]
- Tateo, F.; Bononi, M.; Castorina, G.; Colecchia, S.A.; De Benedetti, S.; Consonni, G.; Geuna, F. Whole-Genome Resequencing-Based Characterization of a Durum Wheat Landrace Showing Similarity to ‘Senatore Cappelli’. PLoS ONE 2023, 18, e0291430. [Google Scholar] [CrossRef]
- Regione Toscana Varietà Marzuolo. Available online: http://germoplasma.regione.toscana.it/MESI_Menu/Elemento.php?ID=1179 (accessed on 20 February 2025).
- Fiore, M.C.; Blangiforti, S.; Preiti, G.; Spina, A.; Bosi, S.; Marotti, I.; Mauceri, A.; Puccio, G.; Sunseri, F.; Mercati, F. Elucidating the Genetic Relationships on the Original Old Sicilian Triticum Spp. Collection by SNP Genotyping. Int. J. Mol. Sci. 2022, 23, 13378. [Google Scholar] [CrossRef]
- Gugino, I.M.; Alfeo, V.; Ashkezary, M.R.; Marconi, O.; Pirrone, A.; Francesca, N.; Cincotta, F.; Verzera, A.; Todaro, A. Maiorca Wheat Malt: A Comprehensive Analysis of Physicochemical Properties, Volatile Compounds, and Sensory Evaluation in Brewing Process and Final Product Quality. Food Chem. 2024, 435, 137517. [Google Scholar] [CrossRef]
- De Cillis, U. I Frumenti Siciliani; Stazione Sperimentale di Granicoltura per la Sicilia: Catania, Italy, 1942. [Google Scholar]
- Visioli, G.; Giannelli, G.; Agrimonti, C.; Spina, A.; Pasini, G. Traceability of Sicilian Durum Wheat Landraces and Historical Varieties by High Molecular Weight Glutenins Footprint. Agronomy 2021, 11, 143. [Google Scholar] [CrossRef]
- Orlandi, F.; Ranfa, A.; Fornaciari, M. Principal Morphological and Agronomic Characteristics of Some Durum Wheat Varieties in Central Italy Influenced by Meteorological Anomalies. Ital. J. Agrometeorol. 2018, 2018, 3. [Google Scholar] [CrossRef]
- Morcia, C.; De Flaviis, R.; Terzi, V.; Gasparelli, M.E.; Ghizzoni, R.; Badeck, F.W.; Rizza, F.; Santarelli, V.; Tumino, G.; Sacchetti, G. Long-Term In Situ Conservation Drove Microevolution of Solina d’Abruzzo Wheat on Adaptive, Agronomic and Qualitative Traits. Plants 2023, 12, 1306. [Google Scholar] [CrossRef] [PubMed]
- Piergiovanni, A.R. Evaluation of Genetic Variation and Grain Quality of Old Bread Wheat Varieties Introduced in North-Western Italian Environments. Genet. Resour. Crop Evol. 2013, 60, 325–333. [Google Scholar] [CrossRef]
- Regione Abruzzo Elenco Nazionale dei Prodotti Agroalimentari Tradizionali Ai Sensi dell’Articolo 12, Comma 1, della Legge 12 Dicembre 2016, n. 238. Allegato I (Di Cui All’art. 1 Comma 1). Available online: www.regione.abruzzo.it/system/files/sviluppo-economico/marchio-ristorante-tipico/prodotti_agroalimentari_tradizionali_Abruzzo.pdf (accessed on 13 February 2025).
- European Commission. Preparatory Action, EU Plant and Animal Genetic Resources in Agriculture. No 2, Final Report, Publications Office. Available online: https://op.europa.eu/en/publication-detail/-/publication/a8fcf3b6-97c2-11e9-9369-01aa75ed71a1 (accessed on 13 February 2025).
- Società Italiana Sementi (SIS) Catalogue Soft Wheat 2023/2024. Available online: https://www.sisonweb.com/wp-content/uploads/SIS-SpA-SOFT_WHEAT_EN_CATALOGUE.pdf (accessed on 30 January 2025).
- Di Renzo, T.; Cascone, G.; Crescente, G.; Reale, A.; Menga, V.; D’Apolito, M.; Nazzaro, S.; Volpe, M.G.; Moccia, S. Ancient Grain Flours with Different Degrees of Sifting: Advances in Knowledge of Nutritional, Technological, and Microbiological Aspects. Foods 2023, 12, 4096. [Google Scholar] [CrossRef]
- Grande, T.; Souid, A.; Ciardi, M.; Della Croce, C.M.; Frassinetti, S.; Bramanti, E.; Longo, V.; Pozzo, L. Evaluation of Antioxidant and Antimicrobial Activities of Whole Flours Obtained from Different Species of Triticum Genus. Eur. Food Res. Technol. 2023, 249, 1575–1587. [Google Scholar] [CrossRef]
- CREA Progetto BioDURUM—Rafforzamento dei Sistemi Produttivi del Grano Duro Biologico Italiano. MiPAAF DM n. 95989, 22 December 2016. Available online: https://www.researchgate.net/profile/Massimo-Palumbo-2/publication/351845101_RAFFORZAMENTO_DEI_SISTEMI_PRODUTTIVI_DEL_GRANO_DURO_BIOLOGICO_ITALIANO_Risultati_finali_del_progetto_BIODURUM/links/60acf85592851c168e3bdfba/RAFFORZAMENTO-DEI-SISTEMI-PRODUTTIVI-DEL-GRANO-DURO-BIOLOGICO-ITALIANO-Risultati-finali-del-progetto-BIODURUM.pdf (accessed on 12 February 2025).
- Marrelli, M.; Sprovieri, P.; Conforti, F.; Statti, G. Phytochemical Content and Antioxidant Activity of Ancient Majorca and Carosella (Triticum aestivum L.) Wheat Flours. Agronomy 2021, 11, 1217. [Google Scholar] [CrossRef]
- Ficco, D.B.M.; Beleggia, R.; Pecorella, I.; Giovanniello, V.; Frenda, A.S.; de Vita, P. Relationship between Seed Morphological Traits and Ash and Mineral Distribution along the Kernel Using Debranning in Durum Wheats from Different Geographic Sites. Foods 2020, 9, 1523. [Google Scholar] [CrossRef]
- Spina, A.; Vaccino, P. Grani “Antichi”, Alternativa Reale. Available online: https://www.granicoltura.it/manuale_riconos_grani_antichi_agg/TV28_2018_PAGG_50_53.pdf (accessed on 21 February 2024).
- Pagnani, G.; Galieni, A.; Stagnari, F.; Pellegrini, M.; Del Gallo, M.; Pisante, M. Open Field Inoculation with PGPR as a Strategy to Manage Fertilization of Ancient Triticum Genotypes. Biol. Fertil. Soils 2020, 56, 111–124. [Google Scholar] [CrossRef]
- Latini, A.; Fiorani, F.; Galeffi, P.; Cantale, C.; Bevivino, A.; Jablonowski, N.D. Phenotyping of Different Italian Durum Wheat Varieties in Early Growth Stage with the Addition of Pure or Digestate-Activated Biochars. Front. Plant Sci. 2021, 12, 782072. [Google Scholar] [CrossRef]
- Fagnano, M.; Fiorentino, N.; D’Egidio, M.G.; Quaranta, F.; Ritieni, A.; Ferracane, R.; Raimondi, G. Durum Wheat in Conventional and Organic Farming: Yield Amount and Pasta Quality in Southern Italy. Sci. World J. 2012, 2012, 973058. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Chen, L.; Huang, H.; Qu, P.; Wei, Z. Impacts of Crop Residues on Soil Health: A Review. Environ. Pollut. Bioavailab. 2021, 33, 164–173. [Google Scholar] [CrossRef]
- Friedli, C.N.; Abiven, S.; Fossati, D.; Hund, A. Modern Wheat Semi-Dwarfs Root Deep on Demand: Response of Rooting Depth to Drought in a Set of Swiss Era Wheats Covering 100 Years of Breeding. Euphytica 2019, 215, 85. [Google Scholar] [CrossRef]
- Di Cristofaro, M.; Marino, S.; Lima, G.; Mastronardi, L. Evaluating the Impacts of Different Wheat Farming Systems through Life Cycle Assessment. J. Clean. Prod. 2024, 436, 140696. [Google Scholar] [CrossRef]
- Corneli, E. Rilievi sullo Sviluppo delle Ruggini sul Frumento. Riv. Patol. Veg. 1933, 23, 17–25. [Google Scholar]
- Melini, V.; Melini, F.; Acquistucci, R. Nutritional Characterization of an Italian Traditional Bread from Ancient Grains: The Case Study of the Durum Wheat Bread “Pane di Monreale”. Eur. Food Res. Technol. 2021, 247, 193–200. [Google Scholar] [CrossRef]
- Kthiri, D.; Loladze, A.; N’Diaye, A.; Nilsen, K.T.; Walkowiak, S.; Dreisigacker, S.; Ammar, K.; Pozniak, C.J. Mapping of Genetic Loci Conferring Resistance to Leaf Rust from Three Globally Resistant Durum Wheat Sources. Front. Plant Sci. 2019, 10, 1247. [Google Scholar] [CrossRef]
- Scavo, A.; Pandino, G.; Restuccia, A.; Caruso, P.; Lombardo, S.; Mauromicale, G. Allelopathy in Durum Wheat Landraces as Affected by Genotype and Plant Part. Plants 2022, 11, 1021. [Google Scholar] [CrossRef]
- Campanella, V.; Petralia, R. Resistance Assessment of Durum Wheat Landraces to Fusarium Foot Rot. Physiol. Mol. Plant Pathol. 2022, 121, 101879. [Google Scholar] [CrossRef]
- Quartana, C.; Faddetta, T.; Anello, L.; Di Bernardo, M.; Petralia, R.; Campanella, V. Activity of Bacterial Seed Endophytes of Landrace Durum Wheat for Control of Fusarium Foot Rot. Phytopathol. Mediterr. 2022, 61, 95–106. [Google Scholar] [CrossRef]
- Guerrini, L.; Parenti, O.; Angeloni, G.; Zanoni, B. The Bread Making Process of Ancient Wheat: A Semi-Structured Interview to Bakers. J. Cereal Sci. 2019, 87, 9–17. [Google Scholar] [CrossRef]
- Consorzio di Tutela Pane Toscano DOP Filiera Del Pane Toscano DOP. Available online: https://www.panetoscanodop.it/it/filiera (accessed on 15 February 2025).
- Benanti, A.; Ashkezary, M.R.; Gugino, I.M.; Canale, M.; Yeganehzad, S.; Todaro, A. Evaluation of Biscuits Obtained from Novel Composite Flour Containing Maiorca Malt Flour. Ital. J. Food Sci. 2023, 35, 49–56. [Google Scholar] [CrossRef]
- Giancaspro, A.; Colasuonno, P.; Zito, D.; Blanco, A.; Pasqualone, A.; Gadaleta, A. Varietal Traceability of Bread ‘Pane Nero Di Castelvetrano’ by Denaturing High Pressure Liquid Chromatography Analysis of Single Nucleotide Polymorphisms. Food Control 2016, 59, 809–817. [Google Scholar] [CrossRef]
- Cabas-Lühmann, P.; Arriagada, O.; Matus, I.; Marcotuli, I.; Gadaleta, A.; Schwember, A.R. Comparison of Durum with Ancient Tetraploid Wheats from an Agronomical, Chemical, Nutritional, and Genetic Standpoints: A Review. Euphytica 2023, 219, 61. [Google Scholar] [CrossRef]
- Sissons, M.; Kadkol, G.; Taylor, J. Genotype by Environment Effects on Durum Wheat Quality and Yield-Implications for Breeding. Crop Breed. Genet. Genom. 2020, 4, e200018. [Google Scholar] [CrossRef]
- Ruisi, P.; Ingraffia, R.; Urso, V.; Giambalvo, D.; Alfonzo, A.; Corona, O.; Settanni, L.; Frenda, A.S. Influence of Grain Quality, Semolinas and Baker’s Yeast on Bread Made from Old Landraces and Modern Genotypes of Sicilian Durum Wheat. Food Res. Int. 2021, 140, 110029. [Google Scholar] [CrossRef]
- Acquistucci, R.; Melini, V.; Galli, V. Durum Wheat Grain and Pasta from Locally-Grown Crops: A Case-Study on Saragolla (Triticum turgidum ssp. Turanicum) and Senatore Cappelli (Triticum turgidum ssp. durum) Wheats. Emir. J. Food Agric. 2020, 32, 47–54. [Google Scholar] [CrossRef]
- Fatiukha, A.; Klymiuk, V.; Peleg, Z.; Saranga, Y.; Cakmak, I.; Krugman, T.; Korol, A.B.; Fahima, T. Variation in Phosphorus and Sulfur Content Shapes the Genetic Architecture and Phenotypic Associations within the Wheat Grain Ionome. Plant J. 2020, 101, 555–572. [Google Scholar] [CrossRef]
- Rachoń, L.; Bobryk-Mamczarz, A.; Kiełtyka-Dadasiewicz, A. Hulled Wheat Productivity and Quality in Modern Agriculture against Conventional Wheat Species. Agriculture 2020, 10, 275. [Google Scholar] [CrossRef]
- Dexter, J.E.; Marchylo, B.A. Recent Trends in Durum Wheat Milling and Pasta Processing: Impact on Durum Wheat Quality Requirements. In Durum Wheat, Semolina and Pasta Quality: Recent Achievements and Trends; INRA: Paris, France, 2000. [Google Scholar]
- Durazzo, A.; Casale, G.; Melini, V.; Maiani, G.; Acquistucci, R. Total Polyphenol Content and Antioxidant Properties of Solina (Triticum aestivum L.) and Derivatives Thereof. Ital. J. Food Sci. 2016, 28, 221. [Google Scholar]

| Genotype | Synonyms/ Traditional Names | Origin Region | History and Pedigree | Refs. | Traditional Use |
|---|---|---|---|---|---|
| Soft wheat (T. aestivum. spp. Aestivum) | |||||
| Andriolo | No well documented synonym | Tuscany | Tuscan wheat selected in 1945 | [30] | Bread and focaccia |
| Autonomia B | Established in 1942 by Marco Michahelles at the Fontarronco Estate (Arezzo) from the cross Frassineto 405” × Mentana | [31] | Breadmaking, flours | ||
| Benco | No information available on historical origin | [32] | Not documented | ||
| Bianco nostrale | Not well-known origin. Resistant to allurement and rust. Large plants, white aristate spikes, light red caryopses. | [33] | Traditional Tuscan white bread and rustic biscuits | ||
| Frassineto | Selected in 1922 at Frassineto (Tuscany) from Gentil Rosso. Still cultivated in Arezzo and Val di Chiana | [34,35] | Tuscan bread, schiacciata, local pastries | ||
| Gentil Bianco | Not well-known origin. It is estimated to be indigenous to Tuscany | n.a.* | Not documented | ||
| Gentil Rosso | Obtained in the mid-1800s, originating in central Tuscany | [36] | Soft wheat bread, cakes, and biscuits | ||
| Inallettabile | Dating back to 1920. Native to southern Tuscany, now grown across northern and central Italy | [36] | Bread and pizza | ||
| Sieve | Created in 1953 by Prof. Gasparini of Florence, it is indigenous to Tuscany, where it is still cultivated today. | [16] | Bread and pizza | ||
| Verna | Obtained in 1953 from Est Mottin 72 × Mont Calme 245. Grown in Casentino, Val di Chiana, and Val d’Orcia (Tuscany). | [34] | Organic wholemeal bread, pane Verna | ||
| Maiorca | Majorca | Sicily | Wheat was reported as far back as 1696. Currently grown in Agrigento, Caltanissetta, Enna, Palermo, Ragusa, Siracusa, and Trapani | [37,38,39] | hosts, bread, “Ciambella di San Cataldo”, Sicilian cannoli pastry |
| Maiorcone | no well documented synonym | Cultivated for centuries in Sicily, mainly in arid and marginal areas of Agrigento, Caltanissetta, Catania, Enna, Messina, Siracusa, and Palermo provinces. | [40] | Bread and artisanal pasta | |
| Rieti originario | No well documented synonym | Lazio | Writings from the early 1900s date its origin to the second half of the 1800s, particularly in the Rieti plain | [41] | Breadmaking |
| San Pastore | Made in 1929 by Nazareno Strampelli. Registered as ‘Bruno’ in 1940 and then ‘San Pastore’ in 1946, it is named after the Rieti company where Strampelli carried out his first experiments, while Bruno is the name of one of Mussolini’s sons | [42] | Breadmaking | ||
| Solina D’Abruzzo | Abruzzo | Cultivated at least since the 16th century, it is mentioned in some notarial deeds of purchase and sale stipulated at the Lanciano Fair. Currently cultivated in the Marsica, Peligna and Subequana Valleys | [43,44,45] | Mountain bread, pane di Solina, rustic sweets | |
| Carosello | Basilicata, Campania | It was cultivated at the end of the 19th century in many areas of Cilento (Campania) and southern Italy. | [46] | Bread and traditional pizza flours | |
| Terminillo | Emilia- Romagna | Selected in 1907 by Nazareno Strampelli from a rye × ‘Rieti’ backcross. Cultivated between 1913–1934 in high hill and mountain areas for its cold resistance. | [47] | Breadmaking | |
| Gamba di Ferro | Emilia-Romagna/Tuscany | Typically cultivated in the Tuscan-Emilian Apennines until the middle of the last century | [32] | Breadmaking | |
| Jervicella | Marche | Selected in the Marche region in the 1940s from the landrace Gentil Rosso. | [48,49] | Traditional Marche bread (pane di Jervicella) | |
| Carme Jacometti | Piedmont | Created in 1942 as a cross between ‘Villa Glori’, Strampelli’, and ‘Manitoba’. | [50] | Breadmaking, pizza | |
| Canove | Veneto | It was cultivated on the ‘Altopiano dei Sette Comuni’ in the early 1900s | [51] | Breadmaking, household use | |
| Aquilante | not documented | No information available on the historical origin | [16] | not documented | |
| Durum wheat (T. turgidum spp. Durum) | |||||
| Biancolilla | Biancuccia/ Bianculidda | Sicily | Wheat originated in the areas of Salemi and Marsala (province of Trapani), with the main information coming from the website of a Sicilian mill, as no official data on the year of origin has been found. | n.a. * | Bread and homemade pasta (e.g., busiate) |
| Bidì | Margherito/ Marrone/ Mahmoudi | Tunisian in origin. Introduced to Sicily by Prof. Tucci. According to E. De Cillis, it shares genetic kinship with Senatore Cappelli, regarded as its progenitor | [52] | Pasta | |
| Bufala nera | No well documented synonym | Until the 1970s, it was cultivated in the most inland and mountainous areas in Cesarò, Bronte and Randazzo (province of Catania) and in Novara di Sicilia (province of Messina) | [53] | Wholemeal bread and artisanal pasta | |
| Perciasacchi | Farro Lungo, Perciavisazzi, Gnolu, Farrone, Settecentanni | No official documentation. Local milling websites date its cultivation to at least 1809. | n.a.* | Wholemeal bread and artisanal pasta | |
| Realforte | No well documented synonym | No official records. Milling websites report cultivation as early as 1830 | [54] | Artisanal pasta | |
| Russello | Rossello/ Ruscio/ Russieddru | It was cultivated in Sicily as early as the early 1900s, especially in the western areas of Agrigento, Caltanissetta, and Palermo | [55] | bread, pizza, focaccia | |
| Scorsonera | Scorzonera | No official information has been found about its history. | [54] | not documented | |
| Timilia | Tumminia, Tûmìnia Nigra, Trimminia, Tummulia, Diminia, Diminè, Riminia, Marzuddu | A native Sicilian variety mentioned as early as Theophrastus (322 BC) and Plinio the Elder (23–79 AD). Currently cultivated in the areas of Agrigento, Enna, Messina, Palermo, Ragusa, and Trapani | [56] | “Pane nero di Castelvetrano” and “Pane di Monreale” | |
| Tripolino | Azizia/ Gargaresc/ Eiti/ Tripolone | Libyan landrace of Palestinian origin | [54,57] | Artisan pasta and semolina bread | |
| Saragolla | No well documented synonym | Abruzzo | Introduced to Abruzzo by Balcanian populations in 400 AD. Cultivated in northwestern Basilicata and Abruzzo. | [58,59,60] | Pasta (“sagne”), and wholegrain bread |
| Senatore Cappelli | Cappelli | Apulia | Developed in 1915 by N. Strampelli at the Foggia Cereal Research Center from North African wheat Jenah Rhetifah (genealogical selection n° 231/1915). | [61] | Artisanal pasta, bread |
| Marzuol D’Aqui | Marzuolo D’Aqui | Tuscany | Cultivated in the upper Garfagnana (province of Lucca) until the 1970s–80s, it is of unknown origin | [62] | Ferratelle abruzzesi, Bread and rural bakery |
| Genotype | Yield | Height | ||
|---|---|---|---|---|
| Range | Average | Range | Average | |
| Soft wheat (T. aestivum spp. Aestivum) | ||||
| Frassineto | 2.09 t/ha [15]–2.67 t/ha [34] | 2.38 t/ha | 131 cm [15]–133 cm [34] | 132 cm |
| Gentil Rosso | 1.57 t/ha [15]–2.01 t/ha [34] | 1.79 t/ha | 122 cm [15]–145 cm [34] | 133.5 cm |
| Inallettabile | 2.18 t/ha [34] | 2.18 t/ha | 110 cm [34] | 110 cm |
| Verna | 2.24 t/ha [34]–4.79 t/ha [16] | 3.5 t/ha | 120 cm [34]–126 cm [51] | 123 cm |
| Majorca | 1.8 t/ha [75] | 1.8 t/ha | 180 cm [76] | 180 cm |
| Solina D’Abruzzo | 2.00 t/ha [44] | 2 t/ha | 163 cm [68] | 163 cm |
| Jervicella | n.a. | 100–130 cm [49] | 115 cm | |
| Rieti originario | 3.00 t/ha [41] | 3 t/ha | n.a. | |
| Andriolo | 2.46 t/ha [34]–3.77 t/ha [16] | 3.11 t/ha | 135 cm [34] | 135 cm |
| Gamba di Ferro | 2.51 t/ha [32] | 2.51 t/ha | 141 cm [32] | 141 cm |
| Autonomia B | 4.56 t/ha [16] | 4.56 t/ha | 121 cm [51] | 121 cm |
| Gentil Bianco | 3.53 t/ha [51] | 3.53 t/ha | 124 cm [51] | 124 cm |
| San Pastore | n.a. | |||
| Maiorcone | n.a. | |||
| Benco | 3.01 t/ha [16] | 3.01 t/ha | 121 cm [32]–143 cm [51] | 132 cm |
| Bianco nostrale | 4.21 t/ha [16] | 4.21 t/ha | 120 cm [51] | 120 cm |
| Sieve | 3.29 t/ha [16] | 3.29 t/ha | 119 cm [51] | 119 cm |
| Terminillo | n.a. | |||
| Canove | n.a. | 112 [32]–138 [51] | 125 cm | |
| Carosello | 4.12 t/ha [16] | 4.12 t/ha | 92 [51] | 92 cm |
| Carme Jacometti | n.a. | |||
| Aquilante | n.a. | |||
| Durum wheat (T. turgidum spp. Durum) | ||||
| Timilia | 1.9–3.42 t/ha [77,78] | 2.66 t/ha | n.a. | |
| Perciasacchi | 2.27–3.15 t/ha [77], 2.4 t/ha [78] | 2.71 t/ha | n.a. | |
| Saragolla | 1.4 t/ha [60]–2.13 t/ha [79] | 1.75 t/ha | 86 [80]–160 [60] | 123 |
| Russello | 2.78–3.21 t/ha [77] | 2.99 t/ha | n.a. | |
| Senatore Cappelli | 2.51 t/ha [79]–3.63 t/ha [77] | 3.07 t/ha | 105–113 [79] | 109 |
| Marzuolo D’Aqui | 3.82 t/ha [16] | 3.82 t/ha | 121 [51] | 121 |
| Tripolino | 2.3 t/ha [78] | 2.3 t/ha | n.a. | |
| Biancuccia | 1.6 t/ha [78] | 1.6 t/ha | n.a. | |
| Scorsonera | 2.5 t/ha [78] | 2.5 t/ha | n.a. | |
| Realforte | n.a. | |||
| Bidì | n.a. | |||
| Bufala nera | n.a. | |||
| Soft Wheat (T. aestivum. spp. Aestivum) | |
|---|---|
| Bolero | 2.64 t/ha [15] |
| Blasco | 2.14 t/ha [15] |
| Bologna | 3.87 t/ha [15] |
| Fureka | 4.16 t/ha [15] |
| Mieti | 4.18 t/ha [15] |
| Palesio | 4.19 t/ha [15] |
| Bilancia | 5.62 t/ha [15] |
| Average | 3.83 t/ha |
| Durum wheat (T. turgidum spp. Durum) | |
| Saragolla | 4.09 t/ha [81] |
| Karalis | 3.22 t/ha [81] |
| Pablo | 2.99 t/ha [81] |
| San Carlo | 3.45 t/ha [81] |
| Benco | 3.44 t/ha [32] |
| Type of Flour | Price | |
|---|---|---|
| Range | Average | |
| ANCIENT WHEATS | ||
| Soft wheat (T. aestivum. spp. Aestivum) | ||
| Majorca | 3.20–7.00 €/kg | 5.10 €/kg |
| Andriolo | 4.09–6.00 €/kg | 5.04 €/kg |
| Sieve | 3.00–5.90 €/kg | 4.45 €/kg |
| Gentil Rosso | 2.84–5.50 €/kg | 4.17 €/kg |
| Frassineto | 2.95–5.20 €/kg | 4.08 €/kg |
| Inallettabile | 3.00–5.00 €/kg | 4.00 €/kg |
| Jervicella | 3.45–4.50 €/kg | 3.98 €/kg |
| Verna | 3.50–4.10 €/kg | 3.80 €/kg |
| Solina D’Abruzzo | 2.80–4.20 €/kg | 3.50 €/kg |
| Rieti originario | 3.47 €/kg | 3.47 €/kg |
| Carosello | 2.90–3.99 €/kg | 3.45 €/kg |
| Terminillo | 3.00–3.50 €/kg | 3.25 €/kg |
| San Pastore | 2.50–3.80 €/kg | 3.15 €/kg |
| Carme Jacometti | 3.00 €/kg | 3.00 €/kg |
| Autonomia B | 2.00–3.30 €/kg | 2.65 €/kg |
| Gamba di Ferro | n.a. | |
| Gentil Bianco | n.a. | |
| Maiorcone | n.a. | |
| Benco | n.a. | |
| Bianco Nostrale | n.a. | |
| Canove | n.a. | |
| Aquilante | n.a. | |
| Durum wheat (T. turgidum spp. Durum) | ||
| Biancolilla | 3.60–7.55 €/kg | 5.58 €/kg |
| Perciasacchi | 3.50–6.60 €/kg | 5.05 €/kg |
| Timilia | 3.00–6.00 €/kg | 4.50 €/kg |
| Senatore Cappelli | 2.40–5.50 €/kg | 3.95 €/kg |
| Bidì | 3.70–4.10 €/kg | 3.90 €/kg |
| Saragolla | 2.99–4.30 €/kg | 3.65 €/kg |
| Russello | 2.94–3.95 €/kg | 3.45 €/kg |
| Marzuolo d’Aqui | 3.20 €/kg | 3.20 €/kg |
| Bufala nera | 3.00 €/kg | 3.00 €/kg |
| Tripolino | n.a. | |
| Scorzonera | n.a. | |
| Realforte | n.a. | |
| MODERN WHEATS | ||
| Soft wheat (T. aestivum. ssp. Aestivum) | 1.12–1.29 €/kg | 1.20 €/kg |
| Durum wheat (T. turgidum ssp. Durum) | 1.29–1.80 €/kg | 1.50 €/kg |
| Genotype | Test Weight | |
|---|---|---|
| Range | Average | |
| Soft wheat (T. aestivum. spp. Aestivum) | ||
| Bianco nostrale | 82.8 kg/hL [51] | 82.80 kg/hL |
| Majorca | 82.1 kg/hL [75] | 82.10 kg/hL |
| Maiorcone | 81.6 kg/hL [75] | 81.60 kg/hL |
| Benco | 76.0 kg/hL [51]–80.1 kg/hL [32] | 78.08 kg/hL |
| Gentil Bianco | 78.5 kg/hL [51] | 78.50 kg/hL |
| Verna | 77.2 kg/hL [34]–74.5 kg/hL [51], 72.3 kg/hL [91], 76.9 kg/hL [16] | 77.05 kg/hL |
| Solina D’Abruzzo | 77.4 kg/hL [43] | 77.40 kg/hL |
| San Pastore | 77.4 kg/hL [16] | 77.40 kg/hL |
| Frassineto | 75.6 kg/hL [51], 78.2 kg/hL [15], 78.4 kg/hL [34] | 77.00 kg/hL |
| Aquilante | 77.3 kg/hL [16] | 77.30 kg/hL |
| Gamba di ferro | 75.3 kg/hL [15], 77.8 kg/hL [32] | 76.57 kg/hL |
| Gentil Rosso | 74.6 kg/hL [15], 78.1 kg/hL [51], 79.0 kg/hL [34] | 76.81 kg/hL |
| Autonomia B | 75.9 kg/hL [51] | 75.90 kg/hL |
| Inallettabile | 73.7 kg/hL [16], 77.5 kg/hL [34] | 75.60 kg/hL |
| Terminillo | 75.3 kg/hL [16] | 75.30 kg/hL |
| Andriolo | 71.83 kg/hL [91], 75.8 kg/hL [51], 77.1 kg/hL [34] | 74.47 kg/hL |
| Carme Jacometti | 74.1 kg/hL [16] | 74.10 kg/hL |
| Sieve | 72.3 kg/hL [91], 73.6 kg/hL [15] | 73.56 kg/hL |
| Canove | 72.2 kg/hL [51] | 72.20 kg/hL |
| Carosello | 70.4 kg/hL [51] | 70.40 kg/hL |
| Jervicella | n.a. | |
| Rieti originario | n.a. | |
| Durum wheat (T. turgidum. spp. Durum) | ||
| Bidì | 82.0 [97] | 82.00 kg/hL |
| Timilia | 77.4–79.8 kg/hL [77], 81.4 kg/hL [75] | 79.44 kg/hL |
| Russello | 76.9–81.1 kg/hL [77], 80.2 kg/hL [75] | 79.07 kg/hL |
| Senatore Cappelli | 77.0 kg/hL [98], 79.4–80.5 kg/hL [77] | 78.75 kg/hL |
| Saragolla | 75.0 kg/hL [98], 76.7–80.7 kg/hL [79], 81.6 kg/hL [75] | 78.33 kg/hL |
| Marzuol d’Aqui | 78.1 kg/hL [51] | 78.10 kg/hL |
| Perciasacchi | 76.0 kg/hL [75], 77.7 kg/hL [97], 78.7 kg/hL [66], 77.9–79.5 kg/hL [77] | 77.76 kg/hL |
| Tripolino | 81.00 kg/hL [97] | 81.00 kg/hL |
| Biancolilla | 80.70 kg/hL [97] | 80.70 kg/hL |
| Scorsonera | 80.60 kg/hL [97] | 80.60 kg/hL |
| Realforte | 80.10 [97] | 80.10 kg/hL |
| Bufala nera | n.a. | |
| Genotype | 1000 Kernel Weight | |
|---|---|---|
| Range | Average | |
| Soft wheat (T. aestivum. spp. Aestivum) | ||
| Solina D’Abruzzo | 43.4–54.4 g/100 g [102] | 48.9 g/100 g |
| Jervicella | 47–50 g/100 g [48] | 48.5 g/100 g |
| Gamba di ferro | 47.13 g/100 g [32] | 47.13 g/100 g |
| Benco | 34.2 [51]–53.78 g/100 g [32] | 43.99 g/100 g |
| Majorca | 41.6 g/100 g [75] | 41.6 g/100 g |
| Inallettabile | 40.5 g/100 g [34] | 40.5 g/100 g |
| Gentil Bianco | 39.8 g/100 g [51] | 39.8 g/100 g |
| Verna | 37.7 g/100 g [34]–37.46 g/100 g [91] | 37.58 g/100 g |
| Gentil Rosso | 34.1 g/100 g [51], 40.9 g/100 g [34] | 37.50 g/100 g |
| Sieve | 37.4 g/100 g [91] | 37.40 g/100 g |
| Andriolo | 26.9 g/100 g [51], 40.4 g/100 g [34]–44.32 g/100 g [91] | 35.61 g/100 g |
| Canove | 33.1 g/100 g [51] | 33.1 g/100 g |
| Frassineto | 23.4 g/100 g [51], 42.2 g/100 g [34] | 32.8 g/100 g |
| Carosello | 31.1 g/100 g [51] | 31.1 g/100 g |
| Autonomia B | 28.7 g/100 g [51] | 28.7 g/100 g |
| Bianco nostrale | 28.6 g/100 g [51] | 28.6 g/100 g |
| Aquilante | n.a. | |
| Carme Jacometti | n.a. | |
| Maiorcone | n.a. | |
| Rieti originario | n.a. | |
| San Pastore | n.a. | |
| Terminillo | n.a. | |
| Durum wheat (T. turgidum. spp. Durum) | ||
| Perciasacchi | 65.0 g/100 g [97] | 65 g/100 g |
| Senatore Cappelli | 54.0 g/100 g [97] | 54 g/100 g |
| Bidì | 49.2 g/100 g [97] | 49.2 g/100 g |
| Scorsonera | 48.2 g/100 g [97] | 48.2 g/100 g |
| Russello | 40.1 g/100 g [75]–44.2 g/100 g [97] | 42.4 g/100 g |
| Tripolino | 42.4 g/100 g [97] | 42.4 g/100 g |
| Biancolilla | 38.4 g/100 g [97] | 38.4 g/100 g |
| Timilia | 33.2 g/100 g [75]–41.2 g/100 g [97] | 37.2 g/100 g |
| Marzuolo D’Aqui | 27.2 g/100 g [51] | 27.2 g/100 g |
| Bufala nera | n.a. | |
| Realforte | n.a. | |
| Saragolla | n.a. | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruggeri, M.; Vinci, G.; Prencipe, S.A.; Vieri, S.; Maddaloni, L. Italian Ancient Wheats: Historical, Agronomic, and Market Characteristics: A Comprehensive Review. Agriculture 2025, 15, 2375. https://doi.org/10.3390/agriculture15222375
Ruggeri M, Vinci G, Prencipe SA, Vieri S, Maddaloni L. Italian Ancient Wheats: Historical, Agronomic, and Market Characteristics: A Comprehensive Review. Agriculture. 2025; 15(22):2375. https://doi.org/10.3390/agriculture15222375
Chicago/Turabian StyleRuggeri, Marco, Giuliana Vinci, Sabrina Antonia Prencipe, Simone Vieri, and Lucia Maddaloni. 2025. "Italian Ancient Wheats: Historical, Agronomic, and Market Characteristics: A Comprehensive Review" Agriculture 15, no. 22: 2375. https://doi.org/10.3390/agriculture15222375
APA StyleRuggeri, M., Vinci, G., Prencipe, S. A., Vieri, S., & Maddaloni, L. (2025). Italian Ancient Wheats: Historical, Agronomic, and Market Characteristics: A Comprehensive Review. Agriculture, 15(22), 2375. https://doi.org/10.3390/agriculture15222375

