Evaluating the Productivity of Jambu (Acmella oleracea) with Effluent from Tambaqui Culture: An Integrated Aquaculture—Agriculture Approach for the Amazon
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Seedling Preparation
2.2. Soil Preparation and Fertilization
2.3. Aquaculture
2.4. Experimental Design
2.5. Analysis of the Water
2.6. Fish Growth
2.7. Plant Growth
2.8. Statistical Analysis
3. Results
3.1. Water Quality
3.2. Plant Growth
3.3. Tambaqui Growth
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fanzo, J.; Haddad, L.; McLaren, R.; Marshall, Q.; Davis, C.; Herforth, A.; Jones, A.; Beal, T.; Tschirley, D.; Bellows, A.; et al. The Food Systems Dashboard is a new tool to inform better food policy. Nat. Food 2020, 1, 243–246. [Google Scholar] [CrossRef]
- Tittonell, P.; Klerkx, L.; Baudron, F.; Félix, G.F.; Ruggia, A.; van Apeldoorn, D.; Dogliotti, S.; Mapfumo, P.; Rossing, W.A.H. Ecological Intensification: Local Innovation to Address Global Challenges. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer International Publishing: Cham, Switzerland, 2016; Volume 19, pp. 1–34. [Google Scholar]
- Aktar, M.A.; Bhuia, M.S.; Molla, S.; Chowdhury, R.; Sarkar, C.; Al Shahariar, M.; Roy, P.; Reiner, Ž.; Sharifi-Rad, J.; Calina, D.; et al. Pharmacological and phytochemical review of Acmella oleracea: A comprehensive analysis of its therapeutic potential. Discov. Appl. Sci. 2024, 6, 412. [Google Scholar] [CrossRef]
- Costa-Pierce, B.A. Ecology as the Paradigm for the Future of Aquaculture. In Ecological Aquaculture; Wiley: Hoboken, NJ, USA, 2002; pp. 337–372. [Google Scholar]
- Uthpala, T.G.G.; Navaratne, S.B. Acmella oleracea Plant; Identification, Applications and Use as an Emerging Food Source—Review. Food Rev. Int. 2021, 37, 399–414. [Google Scholar] [CrossRef]
- Ramsewak, R.S.; Erickson, A.J.; Nair, M.G. Bioactive N-isobutylamides from the flower buds of Spilanthes acmella. Phytochemistry 1999, 51, 729–732. [Google Scholar] [CrossRef] [PubMed]
- Dubey, S.; Maity, S.; Singh, M.; Saraf, S.A.; Saha, S. Phytochemistry, Pharmacology and Toxicology of Spilanthes acmella: A Review. Adv. Pharmacol. Pharm. Sci. 2013, 2013, 423750. [Google Scholar]
- Spinozzi, E.; Pavela, R.; Bonacucina, G.; Perinelli, D.R.; Cespi, M.; Petrelli, R.; Cappellacci, L.; Fiorini, D.; Scortichini, S.; Garzoli, S.; et al. Spilanthol-rich essential oil obtained by microwave-assisted extraction from Acmella oleracea (L.) R.K. Jansen and its nanoemulsion: Insecticidal, cytotoxic and anti-inflammatory activities. Ind. Crops Prod. 2021, 172, 114027. [Google Scholar] [CrossRef]
- Franzen, F.d.L.; Boscariol Rasera, G.; Silva, K.F.C.e.; Castro, R.J.S.d.; Oliveira, M.S.R.d.; Bolini, H.M.A. Physicochemical characterization and antioxidant potential of plant extracts for use in foods. Braz. J. Food Technol. 2025, 28, e2024085. [Google Scholar] [CrossRef]
- Gerbino, A.; Schena, G.; Milano, S.; Milella, L.; Barbosa, A.; Armentano, M.; Procino, G.; Svelto, M.; Carmosino, M. Spilanthol from Acmella oleracea Lowers the Intracellular Levels of cAMP Impairing NKCC2 Phosphorylation and Water Channel AQP2 Membrane Expression in Mouse Kidney. PLoS ONE 2016, 11, e0156021. [Google Scholar] [CrossRef]
- Jayashan, S.S.; Darai, N.; Rungrotmongkol, T.; Dasuni Wasana, P.W.; Nwe, S.Y.; Thongphichai, W.; Suriyakala, G.; Towiwat, P.; Sukrong, S. Exploring the Therapeutic Potential of Spilanthol from Acmella paniculata (Wall ex DC.) R. K. Jansen in Attenuating Neurodegenerative Diseases: A Multi-Faceted Approach Integrating In Silico and In Vitro Methodologies. Appl. Sci. 2024, 14, 3755. [Google Scholar] [CrossRef]
- Shivananda, S.; Doddawad, V.G.; Bhuyan, L.; Shetty, A.; Pushpa, V.H. Assessment of the Antibacterial Activity of Spilanthes acmella Against Bacteria Associated with Dental Caries and Periodontal Disease: An In-vitro Microbiological Study. J. Pure Appl. Microbiol. 2024, 18, 476–482. [Google Scholar] [CrossRef]
- Spelman, K.; Depoix, D.; McCray, M.; Mouray, E.; Grellier, P. The traditional medicine Spilanthes acmella, and the alkylamides spilanthol and undeca-2E-ene-8,10-diynoic acid isobutylamide, demonstrate in vitro and in vivo antimalarial activity. Phytother. Res. 2011, 25, 1098–1101. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Liu, H.; Zhang, Y.; Zhou, Q.; Wen, X.; Guo, W.; Zhang, Z. A systematic review on aquaculture wastewater: Pollutants, impacts, and treatment technology. Environ. Res. 2024, 262, 119793. [Google Scholar] [CrossRef]
- Petillo, E.C.; Ferreira, A.d.C.; Oliveira, C.P.F.d.; Brandão, L.V.; Marinho-Pereira, T.; Cavero, B.A.S. Tambaqui (Colossoma macropomum) in RAS Technology: Zootechnical, Hematological, Biochemical and Kn Profiles at Different Stocking Densities During the Initial Grow-Out Phase. Aquac. J. 2025, 5, 1. [Google Scholar] [CrossRef]
- Masi, M.; Adinolfi, F.; Vecchio, Y.; Agnusdei, G.P.; Coluccia, B. Toward the Circular Economy in the Aquaculture Sector: Bibliometric, Network and Content Analyses. Sustainability 2024, 16, 5405. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.F.; Mendoza, J.M.F.; Aznar-Sánchez, J.A.; Gallego-Schmid, A. Circular economy implementation in the agricultural sector: Definition, strategies and indicators. Resour. Conserv. Recycl. 2021, 170, 105618. [Google Scholar] [CrossRef]
- Nascimento, E.T.d.S.; Pereira, R.F., Jr.; Reis, V.S.d.; Gomes, B.d.J.F.; Owatari, M.S.; Luz, R.K.; Melo, N.F.A.C.d.; Santos, M.d.L.S.; Palheta, G.D.A.; Sterzelecki, F.C. Production of Late Seedlings of Açai (Euterpe oleraceae) in an Aquaponic System with Tambaqui (Colossoma macropomum, Curvier, 1818). Agriculture 2023, 13, 1581. [Google Scholar] [CrossRef]
- Klar, A.E.; Villa Nova, N.A.; Marcos, Z.Z.; Cervellini, A. Determinação da umidade do solo pelo método das pesagens. An. Esc. Super. Agric. "Luiz Queiroz" 1966, 23, 15–30. [Google Scholar] [CrossRef]
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater, 19th ed.; American Public Health Association: Washington, DC, USA, 1995. [Google Scholar]
- Bolleter, W.T.; Bushman, C.J.; Tidwell, P.W. Spectrophotometric determination of ammonia as indophenol. Anal. Chem. 1961, 33, 592–594. [Google Scholar] [CrossRef]
- Sterzelecki, F.C.; Santos, G.R.; de Gusmão, M.T.A.; de Carvalho, T.C.C.; dos Reis, A.R.; Guimarães, R.; Santos, M.d.L.S.; de Melo, N.F.A.C.; Luz, R.K.; Palheta, G.D.A. Effects of hydroponic supplementation on Amazon river prawn (Macrobrachium amazonicum Heller, 1862) and lettuce seedling (Lactuca sativa L.) development in aquaponic system. Aquaculture 2021, 543, 736916. [Google Scholar] [CrossRef]
- Rakocy, J.E.; Masser, M.; Losordo, T. Recirculating Aquaculture Tank Production Systems: Aquaponics-Integrating Fish and Plant Culture; SRAC Publication No. 454; SRAC: Penrith, Australia, 2006. [Google Scholar]
- Wongkiew, S.; Hu, Z.; Chandran, K.; Lee, J.W.; Khanal, S.K. Nitrogen transformations in aquaponic systems: A review. Aquacult. Eng. 2017, 76, 9–19. [Google Scholar] [CrossRef]
- Santos, F.A.C.; da Costa Julio, G.S.; Luz, R.K. Stocking density in Colossoma macropomum larviculture, a freshwater fish, in recirculating aquaculture system. Aquacult. Res. 2021, 52, 1185–1191. [Google Scholar] [CrossRef]
- Da Costa, J.A.S.; Sterzelecki, F.C.; Natividade, J.; Souza, R.J.F.; de Carvalho, T.C.C.; de Melo, N.F.A.C.; Luz, R.K.; Palheta, G.D.A. Residue from Açai Palm, Euterpe oleracea, as substrate for cilantro, Coriandrum sativum, seedling production in an aquaponic system with tambaqui, Colossoma macropomum. Agriculture 2022, 12, 1555. [Google Scholar] [CrossRef]
- Somerville, C.; Cohen, M.; Pantanella, E.; Stankus, A.; Lovatelli, A. Small-Scale Aquaponic Food Production: Integrated Fish and Plant Farming; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014. [Google Scholar]
- Espinosa-Moya, A.; Alvarez-Gonzalez, A.; Albertos-Alpuche, P.; Guzman-Mendoza, R.; Martínez-Yáñez, R. Growth and development of herbaceous plants in aquaponic systems. Acta Univ. 2018, 28, 1–8. [Google Scholar] [CrossRef]
- Yep, B.; Zheng, Y. Aquaponic trends and challenges—A review. J. Clean. Prod. 2019, 228, 1586–1599. [Google Scholar] [CrossRef]
- Goddek, S.; Joyce, A.; Kotzen, B.; Burnell, G. Aquaponics Food Production Systems—Combined Aquaculture and Hydroponic Production Technologies for the Future; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Quaresma, F.d.S.; Santos, F.L.B.d.; Ribeiro, P.F.; Leite, L.A.; Sampaio, A.H. Acute toxicity of non-ionized ammonia on tambacu (Colossoma macropomum x Piaractus mesopotamicus). Rev. CiÊncia AgronÔmica 2020, 51, e20186277. [Google Scholar] [CrossRef]
- Ferreira da Costa, O.T.; dos Santos Ferreira, D.J.; Presti Mendonça, F.L.; Fernandes, M.N. Susceptibility of the Amazonian fish, Colossoma macropomum (Serrasalminae), to short-term exposure to nitrite. Aquaculture 2004, 232, 627–636. [Google Scholar] [CrossRef]
- Araújo, T.P.d.; Brighenti, L.S.; Santos, H.B.d.; Castro, A.H.F.; Thomé, R.G. Toxicidade de compostos nitrogenados em peixes influenciada por parâmetros físico-químicos da água: Uma revisão narrativa. Res. Soc. Dev. 2021, 10, e359101119779. [Google Scholar] [CrossRef]
- Kimera, F.; Sewilam, H.; Fouad, W.M.; Suloma, A. Efficient utilization of aquaculture effluents to maximize plant growth, yield, and essential oils composition of Origanum majorana cultivation. Ann. Agric. Sci. 2021, 66, 1–7. [Google Scholar] [CrossRef]
- Turcios, A.E.; Papenbrock, J. Sustainable Treatment of Aquaculture Effluents—What Can We Learn from the Past for the Future? Sustainability 2014, 6, 836–856. [Google Scholar] [CrossRef]
- Mortensen, L. The Effect of Air Temperature on Growth of Eight Herb Species. Am. J. Plant Sci. 2014, 5, 1542–1546. [Google Scholar] [CrossRef]
- Nendel, C.; Schmutz, U.; Venezia, A.; Piro, F.; Rahn, C.R. Converting simulated total dry matter to fresh marketable yield for field vegetables at a range of nitrogen supply levels. Plant Soil 2009, 325, 319–334. [Google Scholar] [CrossRef]
- Alves Peçanha, D.; Mendonça Freitas, M.; Evangelista Vieira, M.; Capato Lima, T.; de Souza Gonçalves, Y. Characterization of deficiency symptoms and mineral nutrient content in Acmella oleracea cultivated under macronutrient and boron omissions. J. Plant Nutr. 2019, 42, 879–890. [Google Scholar] [CrossRef]
- Carmo, A.P.M.d.; Freitas, M.S.M.; Machado, L.C.; Silva, L.d.S.; Petri, D.J.C.; Vimercati, J.C.; Matos, C.R.R.; Mathias, L.; Vieira, I.J.C.; de Carvalho, A.J.C. Electrical conductivity of nutrient solutions affects the growth, nutrient levels, and content and composition of essential oils of Acmella oleracea (L.) R. K. Jansen from southeastern Brazil. J. Agric. Food Res. 2024, 15, 100968. [Google Scholar] [CrossRef]
- Sampaio, I.M.G.; Silva Júnior, M.L.; Bittencourt, R.F.P.M.; Santos, G.A.M.d.; Nunes, F.K.M.; Costa, V.C.N. Productive and physiological responses of jambu (Acmella oleracea) under nutrient concentrations in nutrient solution. Hortic. Bras. 2021, 39, 65–71. [Google Scholar] [CrossRef]


| Sample | pH | P-Total | Pmeh−1 | P rem | P res | K+ | S | K+ | Ca2+ | Mg2+ | Al3+ | H + Al | M.O. | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MATA Soils (profundity 0–20 cm) | H2O | CaCl2 | mg.kg−1 | cmolc.kg−1 | % | |||||||||
| 3.8 | 3.3 | ns | 2.9 | ns | ns | 12 | 5 | 0.03 | 0.3 | 0.1 | 1.6 | 5.5 | 2.1 | |
| Parameter | Local of Sampling |
|---|---|
| Dissolved Oxygen (mg/L) | 5.3 ± 0.6 (4.19–6.70) |
| Temperature (°C) | 28.7 ± 0.7 (27.3–29.4) |
| Electrical Conductivity (µS/cm) | 259.0 ± 30.0 (206–310) |
| Total Dissolved Solids (mg/L) | 288.0 ± 118.0 (189–758) |
| pH | 7.18 ± 0.44 (6.8–9.07) |
| Treatments | APL (cm) | NL (cm) | SD (cm) | DAPW (g) | DRW (g) |
|---|---|---|---|---|---|
| 100% fertilizer | 17 ± 1.7 a | 35.25 ± 4.7 a | 3.59 ± 0.5 a | 1.329 ± 0.4 a | 0.42 ± 0.3 a |
| 75%fertilizer | 14.5 ± 4.3 a | 25.58 ± 11.2 ab | 2.97 ± 0.6 b | 0.966 ± 0.6 ab | 0.29 ± 0.3 a |
| 50% fertilizer | 14.6 ± 3.9 a | 26 ± 6.1 ab | 2.93 ± 0.5 b | 0.959 ± 0.5 ab | 0.22 ± 0.1 a |
| 25% fertilizer | 10.2 ± 2.7 b | 21.83 ± 10.2 bc | 2.5 ± 0.8 bc | 0.642 ± 0.5 ab | 0.26 ± 0.3 a |
| 0% fertilizer | 8.08 ± 4.4 c | 11.33 ± 6.6 c | 1.84 ± 0.6 c | 0.237 ± 0.2 b | 0.12 ± 0.1 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palheta, G.D.A.; Jesus, A.M.B.S.d.; Lima, L.M.; Guerreiro, S.L.d.M.; Melo, N.F.A.C.d.; Luz, R.K.; Sterzelecki, F.C.; Galvão, J.R. Evaluating the Productivity of Jambu (Acmella oleracea) with Effluent from Tambaqui Culture: An Integrated Aquaculture—Agriculture Approach for the Amazon. Agriculture 2025, 15, 2332. https://doi.org/10.3390/agriculture15222332
Palheta GDA, Jesus AMBSd, Lima LM, Guerreiro SLdM, Melo NFACd, Luz RK, Sterzelecki FC, Galvão JR. Evaluating the Productivity of Jambu (Acmella oleracea) with Effluent from Tambaqui Culture: An Integrated Aquaculture—Agriculture Approach for the Amazon. Agriculture. 2025; 15(22):2332. https://doi.org/10.3390/agriculture15222332
Chicago/Turabian StylePalheta, Glauber David Almeida, Andreza Mayra Baena Souza de Jesus, Larissa Matos Lima, Sávio Lucas de Matos Guerreiro, Nuno Filipe Alves Correia de Melo, Ronald Kennedy Luz, Fábio Carneiro Sterzelecki, and Jessivaldo Rodrigues Galvão. 2025. "Evaluating the Productivity of Jambu (Acmella oleracea) with Effluent from Tambaqui Culture: An Integrated Aquaculture—Agriculture Approach for the Amazon" Agriculture 15, no. 22: 2332. https://doi.org/10.3390/agriculture15222332
APA StylePalheta, G. D. A., Jesus, A. M. B. S. d., Lima, L. M., Guerreiro, S. L. d. M., Melo, N. F. A. C. d., Luz, R. K., Sterzelecki, F. C., & Galvão, J. R. (2025). Evaluating the Productivity of Jambu (Acmella oleracea) with Effluent from Tambaqui Culture: An Integrated Aquaculture—Agriculture Approach for the Amazon. Agriculture, 15(22), 2332. https://doi.org/10.3390/agriculture15222332

