Influence of Meteorological Factors and Sowing Dates on Growth and Yield Traits of Summer Maize in Northeastern Sichuan, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Monitoring of Growth Period and Meteorological Data
2.4. Measurement of Agronomic and Yield Traits
2.5. Data Analysis
2.6. Data Validation and Assumptions Testing
3. Results
3.1. Growth Process of Summer Maize Across Different Sowing Dates
3.2. Meteorological Condition Differences in Summer Maize Growth Periods Across Sowing Dates
3.3. Regression Analysis of Growth Process and Meteorological Factors
3.4. Agronomic Traits and Yield of Summer Maize Varieties Across Sowing Dates
3.5. Grey Relational Analysis of Agronomic Traits and Meteorological Factors
3.6. Correlation Analysis of Agronomic Traits and Meteorological Factors
3.7. Redundancy Analysis of Agronomic Traits and Meteorological Factors
4. Discussion
4.1. Stage-Specificity of Meteorological Factors Regulating Summer Maize Growth
4.2. Optimal Sowing Date and Summer Maize Varieties in Northeastern Sichuan
4.3. Implications for Climate Adaptation and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AH | Air humidity |
| AT | Average temperature |
| BTL | Bald tip length |
| EG | Ear girth |
| EL | Ear length |
| EH | Ear height |
| GDD | Growing degree days |
| GY | Grain yield |
| KRE | Kernel rows ear−1 |
| KRN | Kernel numbers row−1 |
| KW | 1000-kernel weight |
| PH | Plant height |
| PP | Precipitation |
| StD | Stem diameter |
| SuD | Duration of sunlight |
References
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global maize production, consumption and trade: Trends and R&D implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- Niu, Y.; Xie, G.; Xiao, Y.; Liu, J.; Zou, H.; Qin, K.; Wang, Y.; Huang, M.J.F. The story of grain self-sufficiency: China’s food security and food for thought. Food Energy Secur. 2022, 11, e344. [Google Scholar] [CrossRef]
- Pang, Y.-M.; Chen, C.; Pan, X.-B.; Wei, X.-Y. Impact of future climate change on climatic resources and potential productivity of maize in Sichuan basin. Chin. J. Eco-Agric. 2013, 21, 1526–1536. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, S.; Zhang, J.; Zhao, S.; Lu, H.; Li, L.; Liu, L.; Wang, G. Incorporating crop rotation into the winter wheat-summer maize system to enhance soil multifunctionality and sustainable grain production in the north China plain. Field Crop Res. 2025, 325, 109834. [Google Scholar] [CrossRef]
- Gao, Z.; Feng, H.-Y.; Liang, X.-G.; Zhang, L.; Lin, S.; Zhao, X.; Shen, S.; Zhou, L.-L.; Zhou, S.-L. Limits to maize productivity in the north China plain: A comparison analysis for spring and summer maize. Field Crop Res. 2018, 228, 39–47. [Google Scholar] [CrossRef]
- Ren, H.; Liu, M.; Zhang, J.; Liu, P.; Liu, C. Effects of agronomic traits and climatic factors on yield and yield stability of summer maize (Zea mays L.) in the huang-huai-hai plain in China. Front. Plant Sci. 2022, 13, 1050064. [Google Scholar] [CrossRef]
- Yan, Y.; Hou, P.; Duan, F.; Niu, L.; Dai, T.; Wang, K.; Zhao, M.; Li, S.; Zhou, W. Improving photosynthesis to increase grain yield potential: An analysis of maize hybrids released in different years in China. Photosynth. Res. 2021, 150, 295–311. [Google Scholar] [CrossRef]
- Li, Q.; Liu, N.; Wu, C. Novel insights into maize (Zea mays) development and organogenesis for agricultural optimization. Planta 2023, 257, 94. [Google Scholar] [CrossRef]
- Otegui, M.E.; Andrade, F.H. New relationships between light interception, ear growth, and kernel set in maize. Physiol. Model. Kernel Set Maize 2000, 29, 89–102. [Google Scholar] [CrossRef]
- Li, G.; Liang, Y.; Li, W.; Guo, J.; Lu, W.; Lu, D. Weak-light stress at different grain filling stages affects yield by reducing leaf carbon and nitrogen metabolism in fresh waxy maize. Eur. J. Agron. 2024, 158, 127216. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, X.; Gu, L.; Liu, P.; Zhao, B.; Zhang, J.; Ren, B. The effects of high temperature, drought, and their combined stresses on the photosynthesis and senescence of summer maize. Agr. Water Manag. 2023, 289, 108525. [Google Scholar] [CrossRef]
- Liu, P.; Yin, B.; Gu, L.; Zhang, S.; Ren, J.; Wang, Y.; Duan, W.; Zhen, W. Heat stress affects tassel development and reduces the kernel number of summer maize. Front. Plant Sci. 2023, 14, 1186921. [Google Scholar] [CrossRef]
- Shao, R.; Yu, K.; Li, H.; Jia, S.; Yang, Q.; Zhao, X.; Zhao, Y.; Liu, T. The effect of elevating temperature on the growth and development of reproductive organs and yield of summer maize. J. Integr. Agric. 2021, 20, 1783–1795. [Google Scholar] [CrossRef]
- Ge, T.; Sui, F.; Bai, L.; Tong, C.; Sun, N. Effects of water stress on growth, biomass partitioning, and water-use efficiency in summer maize (Zea mays L.) throughout the growth cycle. Acta Physiol. Plant 2012, 34, 1043–1053. [Google Scholar] [CrossRef]
- Kaur, R.; Kumar, S.; Das, A.; Singh, T.; Kumar, P.; Dawar, R. Response of maize (Zea mays) to different planting methods with limited irrigation at water sensitive growth stages. Indian. J. Agric. Sci. 2023, 93, 626–631. [Google Scholar] [CrossRef]
- Gao, S.; Ming, B.; Li, L.; Hou, L.; Wang, K.; Zhou, S.; Xie, R.; Li, S. Grain water weight dynamics and their relationships with grain filling in maize. Field Crop Res. 2025, 164, 127481. [Google Scholar] [CrossRef]
- Song, L.; Jin, J.; He, J. Effects of severe water stress on maize growth processes in the field. Sustainability 2019, 11, 5086. [Google Scholar] [CrossRef]
- Shekhar, M.; Singh, N. The impact of climate change on changing pattern of maize. In Maize Genetic Resources: Breeding Strategies and Recent Advances; IntechOpen Limited: London, UK, 2022; p. 151. [Google Scholar] [CrossRef]
- Chen, C.; Pang, Y. Response of maize yield to climate change in Sichuan province, China. Glob. Ecol. Conserv. 2020, 22, e00893. [Google Scholar] [CrossRef]
- Xu, T.-J.; Lyu, T.-F.; Zhao, J.-R.; Wang, R.-H.; Zhang, Y.; Cai, W.-T.; Liu, Y.-E.; Liu, X.-Z.; Chen, C.-Y.; Xing, J.-F.; et al. Grain filling characteristics of summer maize varieties under different sowing dates in the huang-huai-hai region. Acta Agron. Sin. 2020, 47, 566–574. [Google Scholar]
- Guo, D.; Chen, C.; Li, X.; Wang, R.; Ding, Z.; Ma, W.; Wang, X.; Li, C.; Zhao, M.; Li, M.; et al. Adjusting sowing date improves the photosynthetic capacity and grain yield by optimizing temperature condition around flowering of summer maize in the north China plain. Front. Plant Sci. 2022, 13, 934618. [Google Scholar] [CrossRef]
- GB/T 17315-2011; Ministry of Agriculture of the People’s Republic of China. Technical Code for Production of Maize Seed. China Standard Press: Beijing, China, 2011.
- Ghamghami, M.; Ghahreman, N.; Irannejad, P.; Ghorbani, K. Comparison of data mining and gdd-based models in discrimination of maize phenology. Int. J. Plant Prod. 2019, 13, 11–22. [Google Scholar] [CrossRef]
- Long, Y.; Zeng, Y.; Liu, X.; Yang, Y. Multivariate analysis of grain yield and main agronomic traits in different maize hybrids grown in mountainous areas. Agriculture 2024, 14, 1703. [Google Scholar] [CrossRef]
- Markelz, N.H.; Costich, D.E.; Brutnell, T.P. Photomorphogenic responses in maize seedling development. Plant Physiol. 2003, 133, 1578–1591. [Google Scholar] [CrossRef]
- Beauchamp, E.G.; Torrance, J.K. Temperature gradients within young maize plant stalks as influenced by aerial and root zone temperatures. Plant Soil. 1969, 30, 241–251. [Google Scholar] [CrossRef]
- Alam, M.R.; Nakasathien, S.; Molla, M.S.H.; Islam, M.A.; Maniruzzaman, M.; Ali, M.A.; Sarobol, E.; Vichukit, V.; Hassan, M.M.; Dessoky, E.S.; et al. Kernel water relations and kernel filling traits in maize (Zea mays L.) are influenced by water-deficit condition in a tropical environment. Front. Plant Sci. 2021, 12, 717178. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.C.; Geng, W.J.; Ren, B.Z.; Zhao, B.; Liu, P.; Zhang, J.W. Responses of the photosynthetic characteristics of summer maize to shading stress. J. Agron. Crop Sci. 2023, 209, 330–344. [Google Scholar] [CrossRef]
- Wang, L.; Liao, S.; Huang, S.; Ming, B.; Meng, Q.; Wang, P. Increasing concurrent drought and heat during the summer maize season in huang–huai–hai plain, China. Int. J. Climatol. 2018, 38, 3177–3190. [Google Scholar] [CrossRef]





| Varieties | Sowing Dates | PP (mm) | SuD (h) | AH (%) | AT (°C) | GDD (°C) | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 2023 | 2024 | 2023 | 2024 | 2023 | 2024 | 2023 | 2024 | 2023 | 2024 | ||
| Sowing to tasseling stage | |||||||||||
| Zhongyu 3 | S1 | 566.19 | 109.6 | 797.19 | 830.39 | 82.30 | 52.78 | 24.32 | 22.83 | 816.29 | 757.09 |
| S2 | 470.61 | 247.82 | 775.33 | 783.74 | 81.34 | 54.07 | 26.58 | 24.25 | 912.06 | 783.71 | |
| S3 | 622.40 | 232.22 | 774.07 | 833.11 | 79.15 | 53.78 | 28.05 | 26.22 | 992.53 | 940.82 | |
| S4 | 568.15 | 260.03 | 791.96 | 774.93 | 77.56 | 53.62 | 29.72 | 27.40 | 1124.03 | 939.38 | |
| S5 | 191.36 | 306.44 | 737.09 | 800.21 | 72.46 | 50.89 | 31.07 | 28.71 | 1138.04 | 1047.65 | |
| Xianyu 1171 | S1 | 566.19 | 109.6 | 797.19 | 830.39 | 82.30 | 52.78 | 24.32 | 22.83 | 816.29 | 757.09 |
| S2 | 470.61 | 247.82 | 775.33 | 783.74 | 81.34 | 54.07 | 26.58 | 24.25 | 912.06 | 783.71 | |
| S3 | 622.40 | 231.82 | 774.07 | 774.52 | 79.15 | 54.09 | 28.05 | 25.98 | 992.53 | 862.78 | |
| S4 | 568.15 | 260.03 | 791.96 | 774.93 | 77.56 | 53.62 | 29.72 | 27.40 | 1124.03 | 939.38 | |
| S5 | 194.42 | 306.44 | 865.34 | 800.21 | 73.70 | 50.89 | 29.94 | 28.71 | 1276.16 | 1047.65 | |
| Chengdan 716 | S1 | 566.19 | 109.6 | 768.86 | 773.08 | 82.52 | 52.59 | 24.10 | 22.61 | 775.62 | 693.51 |
| S2 | 470.61 | 247.82 | 747.26 | 754.3 | 81.79 | 54.13 | 26.34 | 24.16 | 865.95 | 750.41 | |
| S3 | 622.40 | 232.22 | 787.80 | 788.87 | 79.12 | 54.07 | 28.08 | 26.03 | 1012.23 | 881.42 | |
| S4 | 568.24 | 308.44 | 831.79 | 804.11 | 76.96 | 53.82 | 29.92 | 27.45 | 1195.23 | 977.36 | |
| S5 | 195.38 | 330.04 | 877.99 | 840.89 | 73.65 | 51.29 | 29.89 | 28.63 | 1292.71 | 1099.12 | |
| Tasseling to maturity stage | |||||||||||
| Zhongyu 3 | S1 | 201.23 | 292.04 | 701.17 | 660.73 | 74.68 | 52.11 | 30.53 | 28.56 | 1046.79 | 853.68 |
| S2 | 194.42 | 174.42 | 686.35 | 686.28 | 73.24 | 49.94 | 30.07 | 29.10 | 1023.57 | 916.94 | |
| S3 | 15.72 | 248.42 | 665.94 | 657.95 | 74.30 | 55.32 | 28.74 | 28.35 | 955.72 | 880.65 | |
| S4 | 275.88 | 322.41 | 721.84 | 697.08 | 80.82 | 59.22 | 24.12 | 26.69 | 819.04 | 884.74 | |
| S5 | 278.42 | 339.20 | 733.73 | 733.96 | 85.39 | 66.83 | 20.72 | 22.93 | 654.04 | 775.66 | |
| Xianyu 1171 | S1 | 201.23 | 306.24 | 701.17 | 731.69 | 74.68 | 52.26 | 30.53 | 28.65 | 1046.79 | 950.97 |
| S2 | 194.42 | 250.42 | 686.35 | 737.46 | 73.24 | 51.45 | 30.07 | 28.74 | 1023.57 | 974.37 | |
| S3 | 15.72 | 344.62 | 665.94 | 728.63 | 74.30 | 54.99 | 28.74 | 28.33 | 955.72 | 971.36 | |
| S4 | 275.88 | 325.21 | 721.84 | 721.00 | 80.82 | 59.99 | 24.12 | 26.47 | 819.04 | 905.68 | |
| S5 | 348.15 | 339.20 | 682.41 | 722.63 | 86.65 | 66.89 | 19.72 | 23.05 | 563.61 | 769.90 | |
| Chengdan 716 | S1 | 201.23 | 292.04 | 689.93 | 718.04 | 75.51 | 52.37 | 30.33 | 28.35 | 1016.40 | 917.26 |
| S2 | 194.42 | 174.42 | 675.99 | 729.32 | 72.32 | 50.22 | 30.73 | 28.95 | 1036.27 | 966.24 | |
| S3 | 15.72 | 248.42 | 639.90 | 702.19 | 74.05 | 54.91 | 28.80 | 28.43 | 921.17 | 940.05 | |
| S4 | 275.79 | 277.00 | 682.01 | 716.20 | 81.65 | 59.95 | 23.60 | 26.18 | 747.84 | 889.72 | |
| S5 | 347.19 | 315.60 | 669.76 | 715.66 | 86.94 | 67.26 | 19.60 | 22.54 | 547.06 | 739.92 | |
| Varieties | Sowing Dates | PH (cm) | EH (cm) | StD (mm) | EL (cm) | EG (cm) | BTL (cm) | KRE | KRN | KW (g) | GY (t ha−1) |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Zhongyu 3 | S1 | 271.23 ± 2.36 a | 91.77 ± 1.18 a | 22.16 ± 0.07 a | 21.02 ± 0.59 a | 4.64 ± 0.04 a | 2.35 ± 0.04 a | 15.93 ± 1.41 a | 39.87 ± 0.75 a | 323.8 ± 13.29 a | 9.12 ± 0.16 a |
| S2 | 266.08 ± 4.08 a | 99.18 ± 8.60 ab | 21.84 ± 0.04 b | 20.16 ± 0.88 a | 4.62 ± 0.02 a | 1.28 ± 0.48 a | 15.53 ± 0.66 a | 37.63 ± 0.38 ab | 335.82 ± 4.64 a | 7.22 ± 0.09 b | |
| S3 | 260.62 ± 3.79 a | 86.45 ± 0.68 b | 20.83 ± 0.07 c | 18.49 ± 0.75 ab | 4.48 ± 0.01 b | 1.90 ± 0.77 a | 14.53 ± 0.28 a | 32.53 ± 4.95 ab | 300.55 ± 14.36 ab | 6.52 ± 0.31 bc | |
| S4 | 248.57 ± 12.49 a | 81.35 ± 8.23 ab | 19.23 ± 0.02 e | 17.05 ± 0.18 b | 4.53 ± 0.12 ab | 2.24 ± 1.43 a | 14.80 ± 0.00 a | 26.05 ± 4.41 b | 269.46 ± 11.09 b | 5.36 ± 0.54 c | |
| S5 | 253.35 ± 9.22 a | 78.67 ± 3.82 b | 19.54 ± 0.06 d | 16.37 ± 0.26 b | 4.53 ± 0.03 ab | 1.80 ± 1.41 a | 14.67 ± 0.19 a | 31.95 ± 3.61 ab | 273.69 ± 31.7 ab | 6.05 ± 0.21 c | |
| Xianyu 1171 | S1 | 315.50 ± 8.25 a | 106.72 ± 7.14 ab | 23.61 ± 0.06 a | 22.10 ± 0.46 a | 4.65 ± 0.00 b | 2.73 ± 0.43 a | 16.80 ± 0.47 a | 37.07 ± 1.13 a | 358.17 ± 24.09 a | 9.77 ± 0.28 a |
| S2 | 301.83 ± 18.34 ab | 110.10 ± 2.55 a | 23.21 ± 0.01 b | 21.88 ± 0.21 a | 4.82 ± 0.03 a | 2.54 ± 0.22 a | 17.00 ± 1.23 a | 36.07 ± 1.74 ab | 321.30 ± 9.19 a | 7.47 ± 0.11 b | |
| S3 | 289.67 ± 12.07 ab | 105.32 ± 3.13 a | 21.02 ± 0.07 c | 18.58 ± 0.71 b | 4.65 ± 0.01 b | 2.19 ± 1.36 a | 16.73 ± 0.57 a | 30.02 ± 3.70 ab | 267.08 ± 7.95 b | 6.04 ± 0.25 c | |
| S4 | 277.68 ± 7.42 b | 94.70 ± 1.23 b | 20.25 ± 0.05 d | 16.82 ± 1.28 b | 4.67 ± 0.03 b | 3.32 ± 2.50 a | 14.80 ± 0.47 a | 21.42 ± 9.22 ab | 290.41 ± 21.90 ab | 4.87 ± 1.29 bc | |
| S5 | 264.48 ± 26.80 ab | 93.32 ± 5.87 ab | 20.39 ± 0.05 d | 17.03 ± 1.15 b | 4.66 ± 0.09 ab | 2.34 ± 1.41 a | 15.37 ± 1.18 a | 22.40 ± 4.15 b | 267.36 ± 5.58 b | 5.04 ± 0.54 c | |
| Chengdan 716 | S1 | 270.00 ± 19.00 ab | 82.45 ± 4.22 a | 21.69 ± 0.98 a | 20.25 ± 1.04 ab | 4.66 ± 0.07 a | 1.82 ± 0.22 a | 16.43 ± 1.18 a | 35.47 ± 5.09 a | 318.77 ± 34.04 a | 8.00 ± 1.36 ab |
| S2 | 270.20 ± 16.26 ab | 82.72 ± 0.54 a | 21.90 ± 0.42 ab | 20.33 ± 0.72 a | 4.74 ± 0.11 a | 2.06 ± 0.11 a | 16.70 ± 0.71 a | 35.20 ± 3.02 a | 346.72 ± 38.91 a | 7.37 ± 0.89 a | |
| S3 | 272.72 ± 4.17 a | 80.25 ± 3.04 a | 20.56 ± 0.70 ab | 16.94 ± 0.77 b | 4.67 ± 0.29 a | 3.42 ± 2.47 a | 15.30 ± 0.99 a | 29.80 ± 5.28 a | 290.02 ± 10.63 a | 5.71 ± 1.13 ab | |
| S4 | 249.68 ± 4.74 b | 76.88 ± 7.14 a | 19.07 ± 0.13 b | 16.90 ± 0.14 b | 4.69 ± 0.31 a | 2.42 ± 1.98 a | 14.43 ± 2.12 a | 20.08 ± 21.80 a | 338.90 ± 73.54 a | 2.82 ± 3.59 ab | |
| S5 | 265.47 ± 24.56 ab | 81.47 ± 22.58 a | 19.73 ± 0.35 b | 16.17 ± 1.00 b | 4.39 ± 0.13 a | 2.14 ± 0.63 a | 13.17 ± 1.18 a | 18.58 ± 9.78 a | 288.12 ± 17.98 a | 3.56 ± 0.58 b |
| Traits | PP (mm) | SuD (h) | AH (%) | AT (°C) | GDD (°C) | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| Grey Relational Degree | Sequence | Grey Relational Degree | Sequence | Grey Relational Degree | Sequence | Grey Relational Degree | Sequence | Grey Relational Degree | Sequence | |
| Sowing to tasseling stage | ||||||||||
| PH (cm) | 0.559 | 1 | 0.768 | 1 | 0.586 | 1 | 0.674 | 1 | 0.673 | 1 |
| EH (cm) | 0.547 | 3 | 0.679 | 3 | 0.558 | 2 | 0.64 | 2 | 0.662 | 2 |
| StD (mm) | 0.552 | 2 | 0.758 | 2 | 0.551 | 3 | 0.635 | 3 | 0.658 | 3 |
| Tasseling to maturity stage | ||||||||||
| EL (cm) | 0.772 | 4 | 0.857 | 4 | 0.793 | 2 | 0.886 | 2 | 0.862 | 3 |
| EG (cm) | 0.805 | 1 | 0.954 | 1 | 0.793 | 1 | 0.875 | 4 | 0.865 | 2 |
| BTL (cm) | 0.728 | 6 | 0.693 | 7 | 0.702 | 5 | 0.673 | 7 | 0.660 | 7 |
| KRE | 0.797 | 2 | 0.913 | 2 | 0.764 | 4 | 0.894 | 1 | 0.885 | 1 |
| KRN | 0.746 | 5 | 0.781 | 5 | 0.681 | 7 | 0.822 | 5 | 0.823 | 5 |
| KW (g) | 0.780 | 3 | 0.882 | 3 | 0.775 | 3 | 0.878 | 3 | 0.856 | 4 |
| GY (t/ha) | 0.724 | 7 | 0.763 | 6 | 0.698 | 6 | 0.818 | 6 | 0.809 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, Y.; Yang, Y.; He, C.; Liu, X. Influence of Meteorological Factors and Sowing Dates on Growth and Yield Traits of Summer Maize in Northeastern Sichuan, China. Agriculture 2025, 15, 2294. https://doi.org/10.3390/agriculture15212294
Long Y, Yang Y, He C, Liu X. Influence of Meteorological Factors and Sowing Dates on Growth and Yield Traits of Summer Maize in Northeastern Sichuan, China. Agriculture. 2025; 15(21):2294. https://doi.org/10.3390/agriculture15212294
Chicago/Turabian StyleLong, Yun, Yun Yang, Chuan He, and Xiaohong Liu. 2025. "Influence of Meteorological Factors and Sowing Dates on Growth and Yield Traits of Summer Maize in Northeastern Sichuan, China" Agriculture 15, no. 21: 2294. https://doi.org/10.3390/agriculture15212294
APA StyleLong, Y., Yang, Y., He, C., & Liu, X. (2025). Influence of Meteorological Factors and Sowing Dates on Growth and Yield Traits of Summer Maize in Northeastern Sichuan, China. Agriculture, 15(21), 2294. https://doi.org/10.3390/agriculture15212294

