Nitrogen Fertiliser Reduction at Different Rice Growth Stages and Increased Density Improve Rice Yield and Quality in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
2.2. Measurements and Methods
2.2.1. Filling Dynamics
2.2.2. Yield and Yield Components
2.2.3. Rice Processing Quality and Appearance Quality
2.2.4. Steam Cooking Flavour Quality and Nutritional Quality
2.3. Data Analysis
3. Results
3.1. Effect of Nitrogen Reduction and Density Increase on Grain Filling Dynamics
3.1.1. N Reduction and Density Increase on Grain Weight Change at Grain Filling Stage
3.1.2. Effect of N Reduction and Density Increase on Grain Filling Rate of Superior and Inferior Grains
3.1.3. Effect of N Reduction and Density Increase on Coefficients of Richards Equation for Superior and Inferior Grains
3.1.4. Effect of N Reduction and Density Increase on Characteristic Parameters of the Filling of Superior and Inferior Grains
3.2. Effect of N Reduction and Density Increase on Rice Yield and Yield Components
3.3. Effect of N Reduction and Density Increase on Rice Quality
3.3.1. Processing Quality
3.3.2. Appearance Quality
3.3.3. Cooking Flavour and Nutritional Quality
3.3.4. Correlation Analysis of Rice Quality
4. Discussion
4.1. Effect of N Reduction and Density Increase on Grain Filling and Rice Yield
4.2. Effects of N Reduction and Density Increase on Grain Filling and Rice Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, L. Development of hybrid rice to ensure food security. Rice Sci. 2014, 21, 1–2. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Yang, X.; Bai, H.; Tang, J.; Tao, F. Trends and climate response in the yield of staple crops across Northeast China. Front. Sustain. Food Syst. 2024, 7, 1246347. [Google Scholar] [CrossRef]
- Fan, M.; Shen, J.; Yuan, L.; Jiang, R.; Chen, X.; Davies, W.; Zhang, F. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. J. Exp. Bot. 2012, 63, 13–24. [Google Scholar] [CrossRef]
- Zhang, Y.; Long, H.; Wang, Y.; Li, Y.; Ma, L.; Chen, K.; Zheng, Y.; Jiang, T. The hidden mechanism of chemical fertiliser overuse in rural China. Habitat Int. 2020, 102, 102210. [Google Scholar] [CrossRef]
- Huang, M.; Yang, C.; Ji, Q.; Jiang, L.; Tan, J.; Li, Y. Tillering responses of rice to plant density and nitrogen rate in a subtropical environment of Southern China. Field Crops Res. 2013, 149, 187–192. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, X.; Xie, J.; Deng, G.; Tu, T.; Guan, X.; Yang, Z.; Huang, S.; Chen, X.; Qiu, C.; et al. Reducing nitrogen application with dense planting increases nitrogen use efficiency by maintaining root growth in a double-rice cropping system. Crop J. 2021, 9, 805–815. [Google Scholar] [CrossRef]
- Huang, M.; Zou, Y. Integrating mechanization with agronomy and breeding to ensure food security in China. Field Crops Res. 2018, 224, 22–27. [Google Scholar] [CrossRef]
- Yu, T.; Jiang, W.; Ham, T.; Chu, S.; Lestari, P.; Lee, J.; Kim, M.; Xu, F.; Han, L.; Dai, L.; et al. Comparison of grain quality traits between japonica rice cultivars from Korea and Yunnan province of China. J. Crop Sci. Biotechnol. 2008, 11, 135–140. [Google Scholar]
- Bao, J. Toward understanding the genetic and molecular bases of the eating and cooking qualities of rice. Cereal Food World. 2012, 57, 148–156. [Google Scholar] [CrossRef]
- Gu, J.; Chen, J.; Chen, L.; Wang, Z.; Zhang, H.; Yang, J. Grain quality changes and responses to nitrogen fertilizer of japonica rice cultivars released in the Yangtze River Basin from the 1950s to 2000s. Crop J. 2015, 3, 285–297. [Google Scholar] [CrossRef]
- Gong, Y.; Lei, Y.; Zhang, X.; Zhang, X.; Yan, B.; Ju, X.; Cheng, X.; Zhang, J.; Sun, X.; Xu, H.; et al. Nitrogen rate and plant density interaction enhances grain yield by regulating the grain distribution of secondary branches on the panicle axis and photosynthesis in japonica rice. Photosynthetica 2022, 60, 179. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Shan, S.; Wang, Y.; Cao, F.; Chen, J.; Huang, M.; Zou, Y. Dense planting with reducing nitrogen rate increased grain yield and nitrogen use efficiency in two hybrid rice varieties across two light conditions. Field Crops Res. 2019, 236, 24–32. [Google Scholar] [CrossRef]
- Zhou, T.; Zhou, Q.; Li, E.; Yuan, L.; Wang, W.; Zhang, H.; Liu, L.; Wang, Z.; Yang, J.; Gu, J. Effects of nitrogen fertilizer on structure and physicochemical properties of ‘super’rice starch. Carbohydr. Polym. 2020, 239, 116237. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.; Zhang, Y.; Gu, J.; Zhu, K.; Wang, Z.; Yang, J. The synergistic optimization of rice yield, quality, and profit by the combined application of organic and inorganic nitrogen fertilizers. Agronomy 2024, 14, 2665. [Google Scholar] [CrossRef]
- He, X.; Zhu, H.; Shi, A.; Wang, X. Optimizing nitrogen fertilizer management enhances rice yield, dry matter, and nitrogen use efficiency. Agronomy 2024, 14, 919. [Google Scholar] [CrossRef]
- Zhou, C.; Huang, Y.; Jia, B.; Wang, Y.; Wang, Y.; Xu, Q.; Li, R.; Wang, S.; Do, F. Effects of cultivar, nitrogen rate, and planting density on rice-grain quality. Agronomy 2018, 8, 246. [Google Scholar] [CrossRef]
- Xiong, J.; Geng, C.; Ding, Y.; Wang, S. Influence of source bank structure on chalkiness of hybrid early indica rice varieties with different bank types. Chinese Agric. Sci. 2011, 44, 3970–3980. (In Chinese) [Google Scholar]
- Jiang, Y.; Chen, Y.; Zhao, C.; Liu, G.; Shi, Y.; Zhao, L.; Wang, Y.; Wang, W.; Xu, K.; Li, G.; et al. The starch physicochemical properties between superior and inferior grains of japonica rice under panicle nitrogen fertilizer determine the difference in eating quality. Foods 2022, 11, 2489. [Google Scholar] [CrossRef]
- MacMillan, K.P.; Gulden, R.H. Effect of seeding date, environment and cultivar on soybean seed yield, yield components, and seed quality in the northern great plains. Agron. J. 2020, 112, 1666–1678. [Google Scholar] [CrossRef]
- Jiang, Q.; Du, Y.; Tian, X.; Wang, Q.; Xiong, R.; Xu, G.; Yan, C.; Ding, Y. Effect of panicle nitrogen on grain filling characteristics of high-yielding rice cultivars. Eur. J. Agron. 2016, 74, 185–192. [Google Scholar] [CrossRef]
- Bian, J.; Xu, F.; Han, C.; Qiu, S.; Ge, J.; Xu, J.; Zhang, H.; Wei, H. Effects of planting methods on yield and quality of different types of japonica rice in Northern Jiangsu plain, China. J. Integr. Agric. 2018, 17, 2624–2635. [Google Scholar] [CrossRef]
- Dou, Z.; Tang, S.; Li, G.; Liu, Z.; Ding, C.; Chen, L.; Wang, S.; Ding, Y. Application of nitrogen fertilizer at heading stage improves rice quality under elevated temperature during grain-filling stage. Crop Sci. 2017, 57, 2183–2192. [Google Scholar] [CrossRef]
- Li, Q.; Deng, F.; Zeng, Y.; Li, B.; He, C.; Zhu, Y.; Zhou, X.; Zhang, Z.; Wang, L.; Tao, Y.; et al. Low light stress increases chalkiness by disturbing starch synthesis and grain filling of rice. Int. J. Mol. Sci. 2022, 23, 9153. [Google Scholar] [CrossRef]
- Zhao, D.; Li, Q.; Zhang, C.; Zhang, C.; Yang, Q.; Pan, L.; Ren, X.; Lv, J.; Gu, M.; Liu, Q. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nature 2018, 9, 1240. [Google Scholar] [CrossRef]
- Bao, J.; Sun, M.; Corke, H. Analysis of the genetic behavior of some starch properties in indica rice (Oryza sativa L.): Thermal properties, gel texture, swelling volume. Theor. Appl. Genet. 2002, 104, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Meng, T.; Ge, J.; Zhang, X.; Shi, T.; Ding, E.; Lu, Y.; Li, X.; Tao, Y.; Chen, Y.; et al. Reduced nitrogen application rate with dense planting improves rice grain yield and nitrogen use efficiency: A case study in East China. Crop J. 2021, 9, 954–961. [Google Scholar] [CrossRef]
- Zhu, Q.; Cao, X.; Luo, Y. Growth analysis of rice grain filling. J. Crop. Sci. 1988, 14, 182–189. (In Chinese) [Google Scholar]
- Ju, X.; Gu, B. Current situation, problems and trends of nitrogen fertilizer application in farmland in China. J. Plant. Nutr. 2014, 20, 783–795. (In Chinese) [Google Scholar]
- Xiao, X.; Li, C.; Tang, H.; Tang, W.; Cheng, K.; Guo, L.; Wang, K.; Pan, X. Effects of nitrogen reduction and density increase on soil nitrogen pooling and nitrogen utilisation in double-season rice fields under straw return. Chin. J. Eco-Agric. 2019, 27, 422–430. (In Chinese) [Google Scholar]
- Zhu, X.; Zhang, Z.; Zhang, J.; Deng, A.; Zhang, W. Effects of nitrogen reduction and density increase on yield, nitrogen fertilizer use efficiency and greenhouse effect of rice in Northeast China. J. Appl. Ecol. 2016, 27, 453–461. (In Chinese) [Google Scholar]
- Wang, Y.; Wang, X.; Zhai, L.; Sundus, Z.; Shen, C.; Zhu, S.; Chen, K.; Xu, J. A novel effective panicle number per plant 4 haplotype enhances grain yield by coordinating panicle number and grain number in rice. Crop J. 2024, 12, 202–212. [Google Scholar] [CrossRef]
- Zheng, Y.; Ding, Y.; Liu, Z.; Wang, S. Effects of panicle nitrogen fertilization on non-structural carbohydrate and grain filling in indica rice. Agric. Sci. China 2010, 9, 1630–1640. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Song, N.; Chen, Q.; Sun, H.; Peng, T.; Huang, S.; Zhao, Q. Response of grain-filling rate and grain quality of mid-season indica rice to nitrogen application. J. Integr. Agric. 2021, 20, 1465–1473. [Google Scholar] [CrossRef]
- Qian, Y.; Zhang, H.; Wu, W.; Chen, Y.; Li, J.; Guo, Z.; Zhang, Q.; Dai, Q.; Huo, Z.; Xu, K.; et al. Effects of seedlings number per hill on grain yield and quality indifferent panicle types of mechanical transplanted japonica rice. J. Agric. 2009, 35, 1698–1707. (In Chinese) [Google Scholar]
- Del Rosario, A.R. Composition and endosperm structure of developing and mature rice kernel. Cereal Chem. 1968, 45, 225–235. [Google Scholar]
- Chen, L.; Gao, J.; Zhang, W.; Jiang, H.; Liu, Y.; Yan, B.; Wan, X. Nitrogen and potassium application effects on grain-filling and rice quality in different japonica rice cultivars. Agronomy 2024, 14, 1629. [Google Scholar] [CrossRef]
- Xi, M.; Xu, Y.; Sun, X.; Wu, W.; Zhou, Y. Effects of nitrogen panicle fertilizer on rice chalky white grain filling and its relationship with processing quality. J. Agric. Sci. Tech. 2021, 23, 144–151. (In Chinese) [Google Scholar]
- Fitzgerald, M.A.; Mccouch, S.R.; Hall, R.D. Not just a grain of rice: The quest for quality. Trends Plant Sci. 2009, 14, 133–139. [Google Scholar] [CrossRef]
- Liang, H.; Gao, S.; Ma, J.; Zhang, T.; Wang, T.; Zhang, S.; Wu, Z. Effect of nitrogen application rates on the nitrogen utilization, yield and quality of rice. Food. Nutr. Sci. 2021, 12, 13. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, H.; Guo, B.; Xu, K.; Dai, Q.; Wei, H.; Gao, H.; Hu, Y.; Cui, P.; Huo, Z. Effects of nitrogen level on yield and quality of japonica soft super rice. J. Agric. Sci. 2017, 16, 1018–1027. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, G.; Chen, Y.; Jiang, Y.; Shi, Y.; Zhao, L.; Liao, P.; Wang, W.; Xu, K.; Dai, Q.; et al. Excessive nitrogen application leads to lower rice yield and grain quality by inhibiting the grain filling of inferior grains. Agriculture 2022, 12, 962. [Google Scholar] [CrossRef]
- Hu, Q.; Jiang, W.; Qiu, S.; Xing, Z.; Hu, Y.; Guo, B.; Liu, G.; Gao, H.; Zhang, H.; Wei, H. Effect of wide-narrow row arrangement in mechanical pot-seedling transplanting and plant density on yield formation and grain quality of japonica rice. J. Integr. Agric. 2020, 19, 1197–1214. [Google Scholar] [CrossRef]
- Tang, J.; Tang, C.; Guo, B.; Zhang, C.; Zhang, Z.; Wang, K.; Zhang, H.; Chen, H.; Sun, M. Effect of nitrogen application on yield and rice quality of mechanical transplanting high quality late rice. Acta Agron. Sin. 2020, 46, 117–130. [Google Scholar] [CrossRef]
- Huang, J.; Pan, Y.; Chen, H.; Zhang, Z.; Fang, C.; Shao, C.; Amjad, H.; Lin, W.; Lin, W. Physiochemical mechanisms involved in the improvement of grain-filling, rice quality mediated by related enzyme activities in the ratoon cultivation system. Field Crops Res. 2020, 258, 107962. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, Y.; Xing, Y.; Chen, L. Points of cultivation technology of original ecological rice. Jilin Agric. 2018, 1, 56. (In Chinese) [Google Scholar]
- Wang, X.; Wang, K.; Yin, T.; Zhao, Y.; Liu, W.; Shen, Y.; Ding, Y.; Tang, S. Nitrogen fertilizer regulated grain storage protein synthesis and reduced chalkiness of rice under actual field warming. Front. Plant Sci. 2021, 12, 715436. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Dong, S.; Liu, J.; Wang, Y.; Hussain, S.; Wei, H.; Huo, Z.; Xu, K.; Dai, Q. Response of rice yield and grain quality to combined nitrogen application rate and planting density in saline area. Agriculture 2022, 12, 1788. [Google Scholar] [CrossRef]
- Bett-Garber, K.L.; Lea, J.M.; McClung, A.M.; Chen, M. Correlation of sensory, cooking, physical, and chemical properties of whole grain rice with diverse bran color. Cereal Chem. 2013, 90, 521–528. [Google Scholar] [CrossRef]
- Gao, H.; Ma, Q.; Li, G.; Yang, X.; Li, X.; Yin, C.; Li, M.; Zhang, Q.; Zhang, H.; Dai, Q.; et al. Effect of nitrogen application rate on cooking and eating qualities of different growth-development types of japonica rice. Sci. Agric. 2010, 43, 4543–4552. [Google Scholar]
- Zhang, K.; Chen, M.; Liu, Q. Effects of nitrogen reduction and density increase on yield and rice quality of indica-japonica hybrid rice. Henan Agric. Sci. 2023, 52, 14–21. (In Chinese) [Google Scholar]
- Ma, Y.; Wang, H.; Liu, J.; Wang, R.; Che, Z. Effects of root trace nitrogen reduction in arid areas on sucrose–starch metabolism of flag leaves and grains and yield of drip-irrigated spring wheat. Agronomy 2024, 14, 312. [Google Scholar] [CrossRef]
- Wei, H.; Chen, Z.; Xing, Z.; Zhou, L.; Liu, Q.; Zhang, Z.; Jiang, Y.; Hu, Y.; Zhu, J.; Cui, P.; et al. Effects of slow or controlled release fertilizer types and fertilization modes on yield and quality of rice. J. Integr. Agric. 2018, 17, 2222–2234. [Google Scholar] [CrossRef]
- Mariem, S.B.; Gonzalez-Torralba, J.; Collar, C.; Aranjuelo, I.; Morales, F. Durum wheat grain yield and quality under low and high nitrogen conditions: Insight into natural variation in low-and high-yielding genotypes. Plants 2020, 9, 1636. [Google Scholar] [CrossRef]
Treatment | Density | N Application Rate (kg ha−1) | |||
---|---|---|---|---|---|
Basal | Tillering | Panicle | Total | ||
CK | 30 cm × 13.3 cm | 72 | 54 | 54 | 180 |
NN+ID | 30 cm × 10 cm | 72 | 54 | 54 | 180 |
RPN+ID | 30 cm × 10 cm | 72 | 54 | 18 | 144 |
RBN+ID | 30 cm × 10 cm | 36 | 54 | 54 | 144 |
Grain Type | Year | Treatment | a | b | c | d | r2 | 1000-Grain Weight (g) |
---|---|---|---|---|---|---|---|---|
Superior Grains | 2023 | CK | 26.37 | 6.18 | 0.35 | 2.75 | 0.98 | 26.91 ± 0.17 a |
NN+ID | 26.05 | 3.75 | 0.25 | 1.70 | 0.97 | 26.34 ± 0.38 a | ||
RPN+ID | 25.86 | 9.30 | 0.48 | 4.46 | 0.98 | 25.95 ± 0.37 a | ||
RBN+ID | 26.27 | 3.60 | 0.26 | 1.55 | 0.98 | 26.98 ± 0.36 a | ||
2024 | CK | 27.17 | 1.83 | 0.21 | 0.89 | 0.99 | 26.68 ± 0.20 ab | |
NN+ID | 26.70 | 4.39 | 0.35 | 2.02 | 0.99 | 26.98 ± 0.08 a | ||
RPN+ID | 27.08 | 2.77 | 0.28 | 1.18 | 0.98 | 27.09 ± 0.25 a | ||
RBN+ID | 26.94 | 4.96 | 0.38 | 2.25 | 0.99 | 26.43 ± 0.24 b | ||
Inferior Grains | 2023 | CK | 22.79 | 4.57 | 0.17 | 1.97 | 0.97 | 23.90 ± 0.59 a |
NN+ID | 23.16 | 7.58 | 0.28 | 3.36 | 0.97 | 24.10 ± 0.77 a | ||
RPN+ID | 23.94 | 6.46 | 0.23 | 2.83 | 0.97 | 24.00 ± 0.21 a | ||
RBN+ID | 22.49 | 6.92 | 0.25 | 3.10 | 0.97 | 23.70 ± 0.31 a | ||
2024 | CK | 22.15 | 21.70 | 0.66 | 10.25 | 0.98 | 22.22 ± 0.13 a | |
NN+ID | 21.10 | 7.51 | 0.26 | 3.44 | 0.97 | 20.71 ± 0.38 a | ||
RPN+ID | 21.31 | 18.90 | 0.56 | 9.99 | 0.97 | 21.43 ± 0.63 a | ||
RBN+ID | 23.71 | 4.83 | 0.17 | 2.05 | 0.98 | 22.32 ± 0.73 a |
Grain Type | Year | Treatment | GR0 | GR0/W0 | GRm | Tpoi | Wpoi | T99 | Va |
---|---|---|---|---|---|---|---|---|---|
Superior Grains | 2023 | CK | 0.35 | 0.13 | 1.51 | 14.89 | 16.31 | 28.12 | 0.94 |
NN+ID | 0.40 | 0.14 | 1.32 | 13.08 | 14.53 | 31.72 | 0.82 | ||
RPN+ID | 0.34 | 0.11 | 1.55 | 16.28 | 17.67 | 25.83 | 1.00 | ||
RBN+ID | 0.42 | 0.17 | 1.48 | 11.96 | 14.36 | 29.36 | 0.89 | ||
2024 | CK | 0.61 | 0.21 | 1.51 | 9.08 | 13.27 | 30.49 | 0.89 | |
NN+ID | 0.52 | 0.17 | 1.81 | 10.44 | 15.44 | 23.43 | 1.14 | ||
RPN+ID | 0.54 | 0.22 | 1.77 | 9.45 | 13.98 | 26.13 | 1.05 | ||
RBN+ID | 0.49 | 0.17 | 1.85 | 10.99 | 15.96 | 23.17 | 1.16 | ||
Inferior Grains | 2023 | CK | 0.19 | 0.08 | 0.74 | 23.35 | 13.11 | 50.91 | 0.45 |
NN+ID | 0.20 | 0.08 | 0.96 | 22.82 | 14.94 | 39.24 | 0.59 | ||
RPN+ID | 0.20 | 0.08 | 0.88 | 23.84 | 14.90 | 44.01 | 0.54 | ||
RBN+ID | 0.20 | 0.08 | 0.88 | 22.81 | 14.27 | 40.88 | 0.55 | ||
2024 | CK | 0.17 | 0.06 | 1.02 | 29.38 | 17.49 | 36.28 | 0.61 | |
NN+ID | 0.19 | 0.08 | 0.77 | 23.36 | 13.37 | 48.73 | 0.47 | ||
RPN+ID | 0.18 | 0.06 | 0.84 | 29.52 | 16.68 | 38.62 | 0.56 | ||
RBN+ID | 0.18 | 0.08 | 0.76 | 24.41 | 13.76 | 51.68 | 0.46 |
Year | Treatment | Effective Panicle Number (×104 Panicles ha−1) | Number of Grains per Spike (Grains Spike−1) | Seed-Setting Rate (%) | 1000-Grain Weight (g) | Grain Yield (t ha−1) |
---|---|---|---|---|---|---|
2023 | CK | 446.97 ± 13.78 b | 85.86 ± 3.75 a | 95.06 ± 0.98 a | 27.69 ± 0.88 a | 8.47 ± 0.05 bc |
NN+ID | 511.13 ± 18.89 a | 79.96 ± 1.59 a | 95.44 ± 0.62 a | 26.95 ± 0.43 b | 8.21 ± 0.41 c | |
RPN+ID | 498.17 ± 9.92 a | 79.93 ± 0.78 a | 95.40 ± 0.59 a | 27.01 ± 0.11 b | 9.14 ± 0.29 ab | |
RBN+ID | 529.65 ± 16.00 a | 80.21 ± 2.93 a | 95.61 ± 0.45 a | 27.70 ± 0.13 a | 9.30 ± 0.05 a | |
2024 | CK | 476.21 ± 11.82 a | 102.38 ± 0.69 a | 91.97 ± 0.60 a | 26.87 ± 0.25 a | 8.77 ± 0.14 b |
NN+ID | 483.35 ± 7.86 a | 99.13 ± 4.99 a | 92.86 ± 1.58 a | 26.88 ± 0.21 a | 9.53 ± 0.10 a | |
RPN+ID | 461.13 ± 4.54 a | 96.05 ± 3.77 a | 95.20 ± 0.40 a | 27.63 ± 0.05 a | 8.61 ± 0.01 b | |
RBN+ID | 466.68 ± 0.00 a | 104.54 ± 3.29 a | 92.75 ± 1.11 a | 27.09 ± 0.18 a | 8.81 ± 0.07 b |
Year | Treatment | Chalkiness Degree (%) | Chalkiness Rate (%) |
---|---|---|---|
2023 | CK | 0.76 ± 0.02 b | 4.10 ± 0.11 a |
NN+ID | 1.09 ± 0.08 a | 5.57 ± 0.73 a | |
RPN+ID | 0.78 ± 0.10 b | 4.19 ± 0.39 a | |
RBN+ID | 1.03 ± 0.14 ab | 5.42 ± 0.55 a | |
2024 | CK | 1.38 ± 0.14 a | 7.14 ± 0.58 a |
NN+ID | 1.47 ± 0.17 a | 7.94 ± 0.92 a | |
RPN+ID | 1.16 ± 0.12 a | 6.24 ± 0.72 a | |
RBN+ID | 0.83 ± 0.14 a | 4.58 ± 0.62 a |
Year | Treatment | Flavour Values | Straight-Chain Amylose Content (%) | Protein Content (%) |
---|---|---|---|---|
2023 | CK | 78.67 ± 0.27 b | 17.17 ± 0.10 b | 8.43 ± 0.07 a |
NN+ID | 77.00 ± 0.47 c | 16.83 ± 0.19 b | 8.70 ± 0.09 a | |
RPN+ID | 82.00 ± 0.01 a | 17.83 ± 0.03 a | 7.70 ± 0.01 b | |
RBN+ID | 79.00 ± 0.47 b | 16.93 ± 0.14 b | 8.70 ± 0.22 a | |
2024 | CK | 79.00 ± 0.47 bc | 18.20 ± 0.19 a | 7.65 ± 0.02 ab |
NN+ID | 78.67 ± 0.27 c | 18.33 ± 0.05 a | 7.90 ± 0.12 a | |
RPN+ID | 81.67 ± 0.27 a | 18.63 ± 0.11 a | 7.17 ± 0.07 c | |
RBN+ID | 80.00 ± 0.47 b | 18.53 ± 0.10 a | 7.43 ± 0.07 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, W.; Zhang, Y.; Danso, F.; Zhang, J.; Tang, A.; Liu, Y.; Liu, K.; Meng, Y.; Wang, L.; Yang, Z.; et al. Nitrogen Fertiliser Reduction at Different Rice Growth Stages and Increased Density Improve Rice Yield and Quality in Northeast China. Agriculture 2025, 15, 892. https://doi.org/10.3390/agriculture15080892
Dong W, Zhang Y, Danso F, Zhang J, Tang A, Liu Y, Liu K, Meng Y, Wang L, Yang Z, et al. Nitrogen Fertiliser Reduction at Different Rice Growth Stages and Increased Density Improve Rice Yield and Quality in Northeast China. Agriculture. 2025; 15(8):892. https://doi.org/10.3390/agriculture15080892
Chicago/Turabian StyleDong, Wenjun, Yuhan Zhang, Frederick Danso, Jun Zhang, Ao Tang, Youhong Liu, Kai Liu, Ying Meng, Lizhi Wang, Zhongliang Yang, and et al. 2025. "Nitrogen Fertiliser Reduction at Different Rice Growth Stages and Increased Density Improve Rice Yield and Quality in Northeast China" Agriculture 15, no. 8: 892. https://doi.org/10.3390/agriculture15080892
APA StyleDong, W., Zhang, Y., Danso, F., Zhang, J., Tang, A., Liu, Y., Liu, K., Meng, Y., Wang, L., Yang, Z., & Jiao, F. (2025). Nitrogen Fertiliser Reduction at Different Rice Growth Stages and Increased Density Improve Rice Yield and Quality in Northeast China. Agriculture, 15(8), 892. https://doi.org/10.3390/agriculture15080892