Simulation of the Growth and Yield of Maize (Zea mays L.) on a Loosened Plinthosol Amended with Termite Mound Material in the Lubumbashi Region
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. APSIM Model Description
2.3. Parametrization and Calibration
2.3.1. Climate Data
2.3.2. Reference Evapotranspiration
2.3.3. Maize Yield
2.3.4. Soil Properties
2.3.5. Leaf Area Index
2.3.6. Crop Parameters and LAI Calibration
2.4. Cross-Validation
- -
- Coefficient of determination (R2), which measures the proportion of variance explained by the model (R2; Equation (3)). A coefficient of determination (R2) greater than 0.70 is generally considered indicative of good model performance in crop growth simulations [84]. A value close to 1 indicates a strong correlation between simulated and observed values, reflecting good model performance.
- -
- RMSE (root mean square error), quantifying the average standard deviation between simulated and observed yields (RMSE; Equation (4)). Lower RMSE values (<0.5 for LAI or <1 t ha−1 for yield) indicate higher model accuracy.
- -
- NSE (Nash–Sutcliffe efficiency), which evaluates the accuracy of the model by comparing it to the average of the observations (NSE; Equation (5)). A model is considered satisfactory for NSE > 0.50, good for NSE > 0.65, and very good for NSE > 0.75 [84].
- -
- MAE (Mean Absolute Error), which represents the average of the absolute differences between simulated and observed values, providing a complementary error measure less sensitive to outliers (MAE; Equation (6)). In crop yield simulations, MAE values below 0.5 t ha−1 are generally considered indicative of acceptable model accuracy [84].
2.5. Simulation Runs
2.6. Data Analysis
3. Results
3.1. Performance of the APSIM Model for LAI Simulation
3.2. Evaluation of APSIM Model Performance in Cross-Validation of Maize Grain Yield
3.3. Performance of the APSIM Model in Predicting Yields
4. Discussion
4.1. Evaluation of the Accuracy of LAI Derived from Sentinel-2 and Its Simulation with APSIM
4.2. Evaluation of the Performance of the APSIM Model for Simulating Maize Grain Yields
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ISS Africa. RD Congo: Special Report; futures.issafrica.org. 2024. 25p. Available online: https://futures.issafrica.org/special-reports/country/drc-french (accessed on 2 September 2025).
- Mulume, B.S.; Dontsop, N.P.M.; Nyamugira, B.A.; Jean-Jacques, M.S.; Manyong, V.; Bamba, Z. Farmers’ credit access in the democratic republic of congo: Empirical evidence from youth tomato farmers in Ruzizi Plain in South Kivu. Cogent Econ. Financ. 2022, 10, 2071386. [Google Scholar] [CrossRef]
- Mulumeoderhwa, M.F.; Maniriho, A.; Ciza, A.N.; Iyoto, E.B.; Lukeba, F.N.; Ngerizabona, S.V.; Mirindi, G.F.; Namegabe, J.L.M.; Lebailly, P. Characterization of small-scale farming as an engine of agricultural development in Mountainous South Kivu, Democratic Republic of Congo. Asian J. Agric. Rural. Dev. 2022, 12, 123–129. [Google Scholar] [CrossRef]
- Ciza, A.N.; Mubasi, C.C.; Barhumana, R.A.; Balyahamwabo, D.K.; Mastaki, J.L.N.; Lebailly, P. Impact of non-agricultural activities on food security in mountainous South Kivu. Tropicultura 2021, 39, 1–20. [Google Scholar] [CrossRef]
- Mushagalusa, B.A.; Nkulu, M.F.J. Potential threats to agricultural food production and farmers’ coping strategies in the Marshlands of Kabare in the Democratic Republic of Congo. Cogent Food Agric. 2021, 7, 1933747. [Google Scholar] [CrossRef]
- Badibanga, T.; Ulimwengu, J. Optimal investment for agricultural growth and poverty reduction in the Democratic Republic of Congo a two-sector economic growth model. Appl. Econ. 2020, 52, 135–155. [Google Scholar] [CrossRef]
- Doocy, S.; Cohen, S.; Emerson, J.; Menakuntuala, J.; Rocha, J.S.; Klemm, R.; Stron, J.; Brye, L.; Funna, S.; Nzanzu, J.P.; et al. Food security and nutrition outcomes of farmer field schools in Eastern Democratic Republic of the Congo. Glob. Health Sci. Pract. 2017, 5, 630–643. [Google Scholar] [CrossRef]
- Ochieng, J.; Ouma, E.; Birachi, E. Gender participation and decision making in crop management in Great Lakes Region of Central Africa. Gend. Technol. Dev. 2014, 18, 341–362. [Google Scholar] [CrossRef]
- Tambwe, N.; Rudolph, M.; Greenstein, R. “Instead of Begging, i Farm to Feed My Children”: Urban agriculture—An alternative to copper and cobalt in Lubumbashi. Africa 2011, 81, 391–412. [Google Scholar] [CrossRef]
- Mulimbi, W.; Nalley, L.; Dixon, B.; Snell, H.; Huang, Q. Factors influencing adoption of conservation agriculture in the Democratic Republic of the Congo. J. Agric. Appl. Econ. 2019, 51, 622–645. [Google Scholar] [CrossRef]
- Mulimbi, W.; Nalley, L.; Nayga, R.M.; Gaduh, A. Are consumers willing to pay for conservation agriculture? the case of white maize in the Democratic Republic of the Congo. Nat. Resour. Forum 2023, 47, 22–41. [Google Scholar] [CrossRef]
- Tabu, H.I.; Tshiabukole, J.P.K.; Kankolongo, A.M.; Lubobo, A.K.; Kimuni, L.N. Yield stability and agronomic performances of provitamin a maize (Zea mays L.) genotypes in South-East of DR Congo. Open Agric. 2023, 8, 20220177. [Google Scholar] [CrossRef]
- Tabu, H.I.; Kankolongo, A.M.; Lubobo, A.K.; Kimuni, L.N. Maize yield and fall armyworm damage responses to genotype and sowing date-associated variations in weather conditions. Eur. J. Agron. 2024, 161, 127334. [Google Scholar] [CrossRef]
- Kasongo, L.M.E.; Banza, M.J.; Meta, T.M.; Mukoke, T.H.; Kanyenga, F.; Mayamba, M.G.; Mwamba, K.F.; Mazinga, K.M. Sensibilité de la culture pluviale du maïs (Zea mays L.) aux effets des épisodes secs sur un ferralsol sous amendement humifère à Lubumbashi. J. Appl. Biosci. 2019, 140, 14316–14326. [Google Scholar]
- Kasongo, L.M.E. Evaluation des Terres à Multiples Échelles Pour la Détermination de L’impact de la Gestion Agricole sur La Sécurité Alimentaire Au Katanga, R.D. Congo. Ph.D. Thesis, Université de Gent, Gent, Belgium, 2008. Available online: https://biblio.ugent.be/publication/607168/file/1883108 (accessed on 22 August 2025).
- Sikuzani, Y.U.; Ilunga, G.M.; Mulembo, T.M.; Katombe, B.N.; Wa Lwalaba, J.L.; Lukangila, M.A.; Lubobo, A.K.; Longanza, L.B. Amélioration de la qualité des sols acides de Lubumbashi (Katanga, RD Congo) par l’application de différents niveaux de compost de fumiers de poules. J. Appl. Biosci. 2014, 77, 6523. [Google Scholar] [CrossRef]
- Banza, M.J.; Mwamba, K.F.; Esoma, E.B.; Meta, T.M.; Mayamba, M.G.; Kasongo, L.M.E. Evaluation de la réponse du maïs (Zea mays L.) installé entre les haies de tithonia diversifolia à Lubumbashi, R.D. Congo. J. Appl. Biosci. 2019, 134, 13643. [Google Scholar] [CrossRef]
- Ngongo, M.; Van Ranst, E.; Baert, G.; Kasongo, L.; Verdoodt, A.; Mujinya, B.B.; Mukalay, J. Guide des sols en République Démocratique du Congo, Tome I: Etude et Gestion; UGent, H.U., Ed.; Ecole Technique Salama-Don Bosco: Lubumbashi, Congo, 2009; ISBN 978-9-0767-6997-4. [Google Scholar]
- Mujinya, B.B.; Adam, M.; Mees, F.; Bogaert, J.; Vranken, I.; Erens, H.; Baert, G.; Ngongo, M.; Van Ranst, E. Spatial patterns and morphology of termite (Macrotermes falciger) mounds in the upper Katanga, D.R. Congo. CATENA 2014, 114, 97–106. [Google Scholar] [CrossRef]
- Adhikary, N.; Erens, H.; Weemaels, L.; Deweer, E.; Mees, F.; Mujinya, B.B.; Baert, G.; Boeckx, P.; Van Ranst, E. Effects of spreading out termite mound material on ferralsol fertility, Katanga, D.R. Congo. Commun Soil Sci. Plant Anal. 2016, 47, 1089–1100. [Google Scholar] [CrossRef]
- Legros, J.-P. Latérites et autres sols des régions intertropicales. Bulletin 2013, 12, 369–382. [Google Scholar]
- Sanchez, P.A. Properties and Management of Soils in the Tropics; John Wiley & Sons: New York, NY, USA, 2018; ISBN 9788578110796. [Google Scholar]
- Liu, X.N.; Hseu, Z.Y.; Chen, Z.S. Correcting the classification of plinthic ultisols on aged alluvial terraces in Taiwan. Soil. Sci. Plant Nutr. 2020, 66, 458–468. [Google Scholar] [CrossRef]
- Sarkar, A.; Bandyopadhyay, P.K. Effect of incubation duration of incorporated organics on saturated hydraulic conductivity, aggregate stability and sorptivity of alluvial and red-laterite soils. J. Indian Soc. Soil Sci. 2018, 66, 370–380. [Google Scholar] [CrossRef]
- Yaro, D.T.; Kparmwang, T.; Raji, B.A.; Chude, V.O. The extent and properties of plinthite in a landscape at Zaria, Nigeria. Int. J. Soil Sci. 2006, 1, 171–183. [Google Scholar] [CrossRef]
- Baumgartner, S.; Bauters, M.; Barthel, M.; Drake, T.W.; Ntaboba, L.C.; Bazirake, B.M.; Six, J.; Boeckx, P.; Van Oost, K. Stable isotope signatures of soil nitrogen on an environmental-geomorphic gradient within the Congo Basin. SOIL 2021, 7, 83–94. [Google Scholar] [CrossRef]
- de Lima, S.S.; Pereira, M.G.; Pereira, R.N.; DE Pontes, R.M.; Rossi, C.Q. Termite mounds effects on soil properties in the atlantic forest biome. Rev. Bras. Cienc. Solo 2018, 42, e0160564. [Google Scholar] [CrossRef]
- Enagbonma, B.J.; Babalola, O.O. Potentials of termite mound soil bacteria in ecosystem engineering for sustainable agriculture. Ann. Microbiol. 2019, 69, 211–219. [Google Scholar] [CrossRef]
- Eze, P.N.; Kokwe, A.; Eze, J.U. Advances in nanoscale study of organomineral complexes of termite mounds and associated soils: A systematic review. Appl. Environ. Soil Sci. 2019, 2020, 8087273. [Google Scholar] [CrossRef]
- Jouquet, P.; Guilleux, N.; Ramesh, R. Influence of soil type on the properties of termite mound Nests in Southern India. Appl. Soil Ecol. 2015, 96, 282–287. [Google Scholar] [CrossRef]
- Kaschuk, G.; Santos, J.C.P.; Almeida, J.A.; Sinhorati, D.C.; Berton, J.F. Termite activity in relation to natural grassland soil attributes. Sci. Agric. 2006, 63, 583–588. [Google Scholar] [CrossRef]
- Mujinya, B.B.; Mees, F.; Erens, H.; Dumon, M.; Baert, G.; Boeckx, P.; Ngongo, M.; Van Ranst, E. Clay composition and properties in termite mounds of the Lubumbashi Area, D.R. Congo. Geoderma 2013, 192, 304–315. [Google Scholar] [CrossRef]
- Padonou, E.A.; Djagoun, C.A.M.S.; Akakpo, A.B.; Ahlinvi, S.; Lykke, A.M.; Schmidt, M.; Assogbadjo, A.; Sinsin, B. Role of termites in the restoration of soils and plant richness on Bowé in West Africa. Afr. J. Ecol. 2020, 58, 828–835. [Google Scholar] [CrossRef]
- Rajeev, V.; Sanjeev, A. Impact of termite activity and its effect on soil composition. Tanzania J. Nat. Appl. Sci. 2011, 2, 399–404. [Google Scholar]
- Seymour, C.L.; Milewski, A.V.; Mills, A.J.; Joseph, G.S.; Cumming, G.S.; Cumming, D.H.M.; Mahlangu, Z. Soil biology & biochemistry do the large termite mounds of macrotermes concentrate micronutrients in addition to macronutrients in nutrient-poor African Savannas? Soil Biol. Biochem. 2014, 68, 95–105. [Google Scholar] [CrossRef]
- Holzworth, D.P.; Huth, N.I.; deVoil, P.G.; Zurcher, E.J.; Herrmann, N.I.; McLean, G.; Chenu, K.; van Oosterom, E.J.; Snow, V.; Murphy, C.; et al. APSIM—Evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 2014, 62, 327–350. [Google Scholar] [CrossRef]
- Holzworth, D.; Huth, N.I.; Fainges, J.; Brown, H.; Zurcher, E.; Cichota, R.; Verrall, S.; Herrmann, N.I.; Zheng, B.; Snow, V. APSIM Next Generation: Overcoming challenges in modernising a farming systems model. Environ. Model. Softw. 2018, 103, 43–51. [Google Scholar] [CrossRef]
- Harrison, M.T.; Roggero, P.P.; Zavattaro, L. Simple, efficient and robust techniques for automatic multi-objective function parameterisation: Case studies of local and global optimisation using APSIM. Environ. Model. Softw. 2019, 117, 109–133. [Google Scholar] [CrossRef]
- Chimonyo, V.G.P.; Modi, A.T.; Mabhaudhi, T. Simulating yield and water use of a sorghum–cowpea intercrop using APSIM. Agric. Water Manag. 2016, 177, 317–328. [Google Scholar] [CrossRef]
- Chen, C.; Lawes, R.; Fletcher, A.; Oliver, Y.; Robertson, M.; Bell, M.; Wang, E. How well can apsim simulate nitrogen uptake and nitrogen fixation of legume crops? Field Crops Res. 2016, 187, 35–48. [Google Scholar] [CrossRef]
- Ebrahimi-Mollabashi, E.; Huth, N.I.; Holzwoth, D.P.; Ordóñez, R.A.; Hatfield, J.L.; Huber, I.; Castellano, M.J.; Archontoulis, S.V. Enhancing APSIM to simulate excessive moisture effects on root Growth. Field Crops Res. 2019, 236, 58–67. [Google Scholar] [CrossRef]
- Yang, X.; Li, Z.; Cui, S.; Cao, Q.; Deng, J.; Lai, X.; Shen, Y. Cropping system productivity and evapotranspiration in the semiarid loess plateau of China under future temperature and precipitation changes: An APSIM-Based analysis of rotational vs. continuous systems. Agric. Water Manag. 2020, 229, 105959. [Google Scholar] [CrossRef]
- Correndo, A.A.; Hefley, T.J.; Holzworth, D.P.; Ciampitti, I.A. Revisiting linear regression to test agreement in continuous predicted-observed datasets. Agric. Syst. 2021, 192, 103194. [Google Scholar] [CrossRef]
- Wu, Y.; He, D.; Wang, E.; Liu, X.; Huth, N.I.; Zhao, Z.; Gong, W.; Yang, F.; Wang, X.; Yong, T.; et al. Modelling soybean and maize growth and grain yield in strip intercropping systems with different row configurations. Field Crops Res. 2021, 265, 108122. [Google Scholar] [CrossRef]
- Mohanty, M.; Probert, M.E.; Reddy, K.S.; Dalal, R.C.; Mishra, A.K.; Subba Rao, A.; Singh, M.; Menzies, N.W. Simulating soybean-wheat cropping system: APSIM Model parameterization and validation. Agric. Ecosyst. Environ. 2012, 152, 68–78. [Google Scholar] [CrossRef]
- Chauhan, Y.S.; Solomon, K.F.; Rodriguez, D. Characterization of North-Eastern Australian environments using APSIM for increasing rainfed maize production. Field Crops Res. 2013, 144, 245–255. [Google Scholar] [CrossRef]
- Adam, M.; MacCarthy, D.S.; Traoré, P.C.S.; Nenkam, A.; Freduah, B.S.; Ly, M.; Adiku, S.G.K. Which is more important to sorghum production systems in the Sudano-Sahelian Zone of West Africa: Climate change or improved management practices? Agric. Syst. 2020, 185, 102920. [Google Scholar] [CrossRef]
- Mohanty, M.; Sinha, N.K.; Somasundaram, J.; McDermid, S.S.; Patra, A.K.; Singh, M.; Dwivedi, A.K.; Reddy, K.S.; Rao, C.S.; Prabhakar, M.; et al. Soil carbon sequestration potential in a vertisol in central india- results from a 43-year long-term experiment and APSIM Modeling. Agric. Syst. 2020, 184, 102906. [Google Scholar] [CrossRef]
- Li, X.; Wang, R.; Lou, F.; Ji, P.; Wang, J.; Dong, W.; Tao, P.; Zhang, Y. Subsoiling combine with layered nitrogen application optimizes root distribution and improve grain yield and N efficiency of summer maize. Agronomy 2024, 14, 1228. [Google Scholar] [CrossRef]
- He, D.; Li, G.; Luo, Z.; Wang, E. Effects of long-term fertiliser application on cropland soil carbon dynamics mediated by potential shifts in microbial carbon use efficiency. Soil Tillage Res. 2025, 248, 106418. [Google Scholar] [CrossRef]
- Vogeler, I.; Carrick, S.; Cichota, R.; Lilburne, L. Estimation of soil subsurface hydraulic conductivity based on inverse modelling and soil morphology. J. Hydrol. 2019, 574, 373–382. [Google Scholar] [CrossRef]
- Vogeler, I.; Carrick, S.; Lilburne, L.; Cichota, R.; Pollacco, J.; Fernández-Gálvez, J. How important is the description of soil unsaturated hydraulic conductivity values for simulating soil saturation level, drainage and pasture yield? J. Hydrol. 2021, 598, 126257. [Google Scholar] [CrossRef]
- Santhoshkumar, S.; Gomathi, V.; Meenakshisundaram, P.; Kavitha Mary, J. Comparative insights of soil properties of termite hill in relation to the microbial community using culture-independent approach. Total Environ. Adv. 2024, 9, 200094. [Google Scholar] [CrossRef]
- Assani, A.A. Analyse de la variabilité temporelle des précipitations (1916–1996) à Lubumbashi (Congo-Kinshasa) en relation avec certains indicateurs de la circulation atmosphériques (Oscillation Austral) et Océaniques (El Niño/La Niña). Sécheresse 1999, 10, 245–252. [Google Scholar]
- Malaisse, F. How to Live and Survive in Zambezian Open Forest (Miombo Ecoregion); Presses Agronomiques de Gembloux: Gembloux, Belgium, 2011; Volume 23, pp. 91–97. [Google Scholar] [CrossRef]
- Keating, B.A.; Carberry, P.S.; Hammer, G.L.; Probert, M.E.; Robertson, M.J.; Holzworth, D.; Huth, N.I.; Hargreaves, J.N.G.; Meinke, H.; Hochman, Z.; et al. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 2003, 18, 267–288. [Google Scholar] [CrossRef]
- Wilson, D.R.; Muchow, R.C.; Murgatroyd, C.J. Model analysis of temperature and solar radiation limitations to maize potential productivity in a cool climate. Field Crops Res. 1995, 43, 1–18. [Google Scholar] [CrossRef]
- White, J.W.; Hoogenboom, G.; Wilkens, P.W.; Stackhouse, P.W.; Hoel, J.M. Evaluation of satellite-based, modeled-derived daily solar radiation data for the Continental United States. Agron. J. 2011, 103, 1242–1251. [Google Scholar] [CrossRef]
- Mourtzinis, S.; Rattalino Edreira, J.I.; Conley, S.P.; Grassini, P. From Grid to Field: Assessing Quality Of Gridded Weather Data For Agricultural Applications. Eur. J. Agron. 2017, 82, 163–172. [Google Scholar] [CrossRef]
- Negm, A.; Minacapilli, M.; Provenzano, G. Downscaling of American National Aeronautics and Space Administration (NASA) daily air temperature in Sicily, Italy, and effects on crop reference evapotranspiration. Agric. Water Manag. 2018, 209, 151–162. [Google Scholar] [CrossRef]
- Khatibi, A.; Krauter, S. Validation and performance of Satellite Meteorological Dataset Merra-2 for Solar and Wind Applications. Energies 2021, 14, 882. [Google Scholar] [CrossRef]
- Bosilovich, M.G.; Lucchesi, R.; Suarez, M. Global Modeling and Assimilation Office MERRA-2: File Specification; GMAO, N.G., Ed.; GMAO Office Note; GMAO: Greenbelt, MD, USA, 2016; Volume 1.1. Available online: https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich785.pdf (accessed on 15 September 2025).
- Glotter, M.J.; Moyer, E.J.; Ruane, A.C.; Elliott, J.W. Evaluating the sensitivity of agricultural model performance to different climate inputs. J. Appl. Meteorol. Clim. 2016, 55, 579–594. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Dirk, R.; Martin, S. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO: Rome, Italy, 1998; ISBN 9251042195. [Google Scholar]
- Sharifi, A.; Dinpashoh, Y. Sensitivity analysis of the penman-monteith reference crop evapotranspiration to climatic variables in Iran. Water Resour. Manag. 2014, 28, 5465–5476. [Google Scholar] [CrossRef]
- Estévez, J.; Gavilan, P.; Berengena, J. Sensitivity analysis of a penman–monteith type equation to estimate reference evapotranspiration in Southern Spain. Hydrol. Process. 2009, 23, 3342–3353. [Google Scholar] [CrossRef]
- Gong, L.; Xu, C.; Chen, D.; Halldin, S.; Chen, Y.D. Sensitivity of the penman-monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) Basin. J. Hydrol. 2006, 329, 620–629. [Google Scholar] [CrossRef]
- Jerszurki, D.; de Souza, J.L.M.; Silva, L.d.C.R. Sensitivity of ASCE-Penman–Monteith reference evapotranspiration under different climate types in Brazil. Clim. Dyn. 2019, 53, 943–956. [Google Scholar] [CrossRef]
- IUSS Working Group WRB; World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; ISBN 9798986245119. [Google Scholar]
- Saxton, K.E.; Rawls, W.J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef]
- Turner, D.P.; Cohen, W.B.; Kennedy, R.E.; Fassnacht, K.S.; Briggs, J.M. Relationships between leaf area index and landsat tm spectral vegetation indices across three temperate zone sites. Remote Sens. Environ. 1999, 70, 52–68. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Vina, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30, 4–7. [Google Scholar] [CrossRef]
- Cohrs, C.W.; Cook, R.L.; Gray, J.M.; Albaugh, T.J. Sentinel-2 leaf area index estimation for pine plantations in the Southeastern United States. Remote Sens. 2020, 12, 1406. [Google Scholar] [CrossRef]
- White, J.; Running, S.W.; Nemani, R.; Keane, R.E.; Ryan, K.C. Measurement and remote sensing of lAI in rocky mountain montane ecosystems. Can. J. For. Res. 1997, 27, 1714–1727. [Google Scholar] [CrossRef]
- Jiang, J. Leaf area index retrieval based on canopy reflectance and vegetation index in Eastern China. J. Geogr. Sci. 2005, 15, 247–254. [Google Scholar] [CrossRef]
- Deng, F.; Chen, J.M.; Plummer, S.; Chen, M.; Pisek, J. Algorithm for global leaf area index retrieval using satellite imagery. IEEE Trans. Geosci. Remote. Sens. 2006, 44, 2219–2229. [Google Scholar] [CrossRef]
- Blinn, C.E.; House, M.N.; Wynne, R.H.; Thomas, V.A.; Fox, T.R.; Sumnall, M. Landsat 8 based leaf area index estimation in loblolly pine plantations. Forests 2019, 10, 222. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Foody, G.M. Explaining the Unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sens. Environ. 2020, 239, 111630. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote. Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Nguy-Robertson, A.; Gitelson, A.; Peng, Y.; Viña, A.; Arkebauer, T.; Rundquist, D. Green leaf area index estimation in maize and soybean: Combining vegetation indices to achieve maximal sensitivity. Agron. J. 2012, 104, 1336–1347. [Google Scholar] [CrossRef]
- Sheng, M.; Liu, J.; Zhu, A.X.; Rossiter, D.G.; Liu, H.; Liu, Z.; Zhu, L. Comparison of GLUE and DREAM for the estimation of cultivar parameters in the APSIM-Maize Model. Agric. For. Meteorol. 2019, 278, 107659. [Google Scholar] [CrossRef]
- Chauhdary, J.N.; Li, H.; Akbar, N.; Javaid, M.; Rizwan, M.; Akhlaq, M. Evaluating corn production under different plant spacings through integrated modeling approach and simulating its future response under climate change scenarios. Agric. Water Manag. 2024, 293, 108691. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Jin, Z.; Prasad, R.; Shriver, J.; Zhuang, Q. Crop model- and satellite imagery-based recommendation tool for variable rate n fertilizer application for the US Corn System. Precis. Agric. 2017, 18, 779–800. [Google Scholar] [CrossRef]
- Prudnikova, E.; Savin, I.; Vindeker, G.; Grubina, P.; Shishkonakova, E.; Sharychev, D. Influence of soil background on spectral reflectance of winter wheat crop canopy. Remote Sens. 2019, 11, 1932. [Google Scholar] [CrossRef]
- Song, G.; Wang, J.; Zhao, Y.; Yang, D.; Lee, C.K.F.; Guo, Z.; Detto, M.; Alberton, B.; Morellato, P.; Nelson, B.; et al. Scale matters: Spatial resolution impacts tropical leaf phenology characterized by multi-source satellite remote sensing with an ecological-constrained deep learning model. Remote Sens. Environ. 2024, 304, 114027. [Google Scholar] [CrossRef]
- Santos, M.V.C.; de Carvalho, A.L.; de Souza, J.L.; da Silva, M.B.P.; Medeiros, R.P.; Junior, R.A.F.; Lyra, G.B.; Teodoro, I.; Lyra, G.B.; Lemes, M.A.M. A modelling assessment of the maize crop growth, yield and soil water dynamics in the Northeast of Brazil. Aust. J. Crop Sci. 2020, 14, 897–904. [Google Scholar] [CrossRef]
- Dilla, A.; Smethurst, P.J.; Barry, K.; Parsons, D.; Denboba, M. Potential of the APSIM Model to simulate impacts of shading on maize productivity. Agrofor. Syst. 2018, 92, 1699–1709. [Google Scholar] [CrossRef]
- Song, Y.; Birch, C.; Qu, S.; Doherty, A.; Hanan, J. Analysis and modelling of the effects of water stress on maize growth and yield in dryland conditions. Plant Prod. Sci. 2010, 13, 199–208. [Google Scholar] [CrossRef]
- Robertson, M.J.; Sakala, W.; Benson, T.; Shamudzarira, Z. Simulating response of maize to previous velvet bean (Mucuna pruriens) crop and nitrogen fertiliser in Malawi. Field Crops. Res. 2005, 91, 91–105. [Google Scholar] [CrossRef]
- Host, T.K.; Russell, M.B.; Windmuller-Campione, M.A.; Slesak, R.A.; Knight, J.F. ash presence and abundance derived from composite landsat and sentinel-2 time series and lidar surface models in Minnesota, USA. Remote Sens. 2020, 12, 1341. [Google Scholar] [CrossRef]
- Jouquet, P.; Guilleux, N.; Caner, L.; Chintakunta, S.; Ameline, M.; Shanbhag, R.R. Influence of soil pedological properties on termite mound stability. Geoderma 2016, 262, 45–51. [Google Scholar] [CrossRef]
- Ackerman, I.L.; Teixeira, W.G.; Riha, S.J.; Lehmann, J.; Fernandes, E.C.M. The impact of mound-building termites on surface soil properties in a secondary forest of Central Amazonia. Appl. Soil Ecol. 2007, 37, 267–276. [Google Scholar] [CrossRef]
- Chisanga, K.; Mbega, E.R.; Ndakidemi, P.A. Prospects of using termite mound soil organic amendment for enhancing soil nutrition in Southern Africa. Plants 2020, 9, 649. [Google Scholar] [CrossRef]
- Ramadhan, M.N.; Alfaris, M.A.A. Soil properties and maize growth as affected by subsoiling and traffic-induced compaction. IOP Conf. Ser. Earth Environ. Sci. 2023, 1225, 012077. [Google Scholar] [CrossRef]
- Brauman, A. Effect of gut transit and mound deposit on soil organic matter transformations in the soil feeding termite: A review. Eur. J. Soil Biol. 2000, 36, 117–125. [Google Scholar] [CrossRef]
- Duponnois, R.; Paugy, M.; Thioulouse, J.; Masse, D.; Lepage, M. Functional diversity of soil microbial community, rock phosphate dissolution and growth of acacia seyal as influenced by grass-, litter- and soil-feeding termite nest structure amendments. Geoderma 2005, 124, 349–361. [Google Scholar] [CrossRef]
- Duponnois, R.; Assikbetse, K.; Ramanankierana, H.; Kisa, M.; Thioulouse, J.; Lepage, M. Litter-Forager termite mounds enhance the ectomycorrhizal symbiosis between Acacia holosericea A. Cunn. Ex G. Don and Scleroderma Dictyosporum Isolates. FEMS Microbio. Ecol. 2006, 56, 292–303. [Google Scholar] [CrossRef]
- Chen, C.; Singh, A.K.; Yang, B.; Wang, H.; Liu, W. Effect of termite mounds on soil microbial communities and microbial processes: Implications for soil carbon and nitrogen cycling. Geoderma 2023, 431, 116368. [Google Scholar] [CrossRef]
- De Azevedo, J.R.; Bueno, C.R.P. Potencialidades e limitações agrícolas de solos em assentamento de reforma agrária no município de Chapadinha-Ma. Sci. Agrar. 2017, 17, 1. [Google Scholar] [CrossRef]
- Dos Anjos, J.C.R.; De Andrade, A.S.; Bastos, E.A.; Da Silva, E.M. Changes in temperature of a plinthosol cultivated with sugarcane under straw levels. Comun. Sci. 2019, 10, 213–217. [Google Scholar] [CrossRef]









| Maize Blocks | Season 2016–2017 | Season 2022–2023 | Season 2023–2024 | |||
|---|---|---|---|---|---|---|
| Sowing | Harvest | Sowing | Harvest | Sowing | Harvest | |
| B1 | 22 November 2022 | 23 June 2023 | 23 November 2023 | 23 June 2024 | ||
| B2 | 24 November 2022 | 21 June 2023 | 23 November 2023 | 22 June 2024 | ||
| B3 | 30 November 2022 | 25 June 2023 | 30 November 2023 | 25 June 2024 | ||
| B4 | 2 December 2022 | 27 June 2023 | 30 November 2023 | 27 June 2024 | ||
| B5 | 5 December 2022 | 24 June 2023 | 2 December 2023 | 24 June 2024 | ||
| B6 | 7 December 2022 | 27 June 2023 | 30 December 2023 | 30 June 2024 | ||
| B7 | 3 December 2022 | 24 June 2023 | 30 November 2023 | 26 May 2024 | ||
| B8 | 4 December 2022 | 26 June 2023 | 2 December 2023 | 26 June 2024 | ||
| B9 | 25 November 2022 | 22 June 2023 | 22 November 2023 | 24 June 2024 | ||
| B10 | 27 November 2022 | 24 June 2023 | 22 November 2023 | 24 June 2024 | ||
| B0 | 9 December 2016 | 24 June 2017 | ||||
| Soil Depth | SAT | DUL | LL | PAWC | BD | Ksat | pH | TOC |
|---|---|---|---|---|---|---|---|---|
| (cm) | (m3 m−3) | (g cm−3) | (mm day−1) | Water | (%) | |||
| Block 1 | ||||||||
| 0–26 | 0.49 | 0.26 | 0.16 | 0.10 | 1.4 | 7780 | 8.2 | 0.9 |
| 26–50 | 0.45 | 0.18 | 0.08 | 0.11 | 1.5 | 86 | 8.0 | 0.4 |
| Block 2 | ||||||||
| 0–27 | 0.42 | 0.22 | 0.16 | 0.06 | 1.5 | 51.7 | 6.9 | 0.8 |
| 27–79 | 0.43 | 0.24 | 0.20 | 0.04 | 1.5 | 664 | 5.6 | 0.2 |
| Block 3 | ||||||||
| 0–30 | 0.41 | 0.19 | 0.11 | 0.08 | 1.6 | 86 | 7.9 | 1.1 |
| 30–43 | 0.30 | 0.19 | 0.08 | 0.07 | 1.9 | 6130 | 6.0 | 0.6 |
| 43–80 | 0.28 | 0.14 | 0.08 | 0.06 | 1.9 | 7780 | 5.5 | 0.4 |
| Block 4 | ||||||||
| 0–20 | 0.45 | 0.23 | 0.18 | 0.05 | 1.5 | 125 | 8.4 | 1.2 |
| 20–35 | 0.55 | 0.26 | 0.19 | 0.07 | 1.2 | 126 | 8.0 | 1.8 |
| Block 5 | ||||||||
| 0–46 | 0.55 | 0.30 | 0.24 | 0.06 | 1.2 | 625 | 6.1 | 2.0 |
| 46–92 | 0.36 | 0.24 | 0.20 | 0.04 | 1.7 | 276 | 7.2 | 0.4 |
| 92–150 | 0.33 | 0.27 | 0.23 | 0.04 | 1.8 | 63.9 | 7.8 | 0.2 |
| Block 6 | ||||||||
| 0–25 | 0.48 | 0.21 | 0.14 | 0.08 | 1.4 | 333 | 5.9 | 1.2 |
| 25–132 | 0.38 | 0.19 | 0.15 | 0.047 | 1.7 | 32.9 | 6.1 | 0.2 |
| Block 7 | ||||||||
| 0–20 | 0.46 | 0.26 | 0.176 | 0.10 | 1.4 | 1210 | 8.0 | 1.2 |
| 20–30 | 0.37 | 0.18 | 0.09 | 0.10 | 1.7 | 4320 | 6.5 | 0.2 |
| 30–75 | 0.28 | 0.15 | 0.09 | 0.060 | 1.9 | 864 | 5.6 | 0.2 |
| Block 8 | ||||||||
| 0–35 | 0.45 | 0.16 | 0.10 | 0.07 | 1.5 | 44.7 | 6.0 | 0.7 |
| 35–110 | 0.34 | 0.12 | 0.06 | 0.05 | 1.7 | 400 | 5.8 | 0.2 |
| Block 9 | ||||||||
| 0–30 | 0.56 | 0.26 | 0.09 | 0.17 | 1.8 | 1810 | 7.1 | 1.4 |
| 30–70 | 0.45 | 0.19 | 0.09 | 0.10 | 1.5 | 892 | 5.3 | 0.7 |
| Block 10 | ||||||||
| 0–27 | 0.45 | 0.18 | 0.13 | 0.06 | 1.5 | 1410 | 7.5 | 2.3 |
| 27–130 | 0.39 | 0.21 | 0.16 | 0.05 | 1.6 | 767 | 7.0 | 0.3 |
| Block 0 | ||||||||
| 0–27 | 0.30 | 0.16 | 0.09 | 0.07 | 1.9 | 398 | 5.3 | 0.7 |
| 27–44 | 0.28 | 0.11 | 0.07 | 0.04 | 1.9 | 91.5 | 5.0 | 0.3 |
| Blocks | Horizons | Depth | Clay | Silt | Sand |
|---|---|---|---|---|---|
| (cm) | (%) | ||||
| B1 | Ap | 0–26 | 19.4 | 33.2 | 47.4 |
| AB | 26–50 | 18.0 | 50.7 | 31.3 | |
| B2 | Ap | 0–27 | 21.1 | 40.4 | 38.5 |
| AB | 27–79 | 28.4 | 37.7 | 33.9 | |
| B3 | Ap | 0–30 | 22.2 | 47.6 | 30.2 |
| AB | 30–43 | 20.0 | 45.2 | 34.8 | |
| Bs | 43–80 | 30.6 | 44.5 | 24.9 | |
| B4 | Ap | 0–20 | 24.1 | 57.9 | 18.0 |
| AB | 20–35 | 16.1 | 52.3 | 31.6 | |
| B5 | Ap | 0–46 | 18.6 | 56.0 | 25.4 |
| AB | 46–92 | 37.6 | 30.2 | 32.2 | |
| Bs | 92–150 | 44.0 | 27.2 | 28.8 | |
| B6 | Ap | 0–25 | 19.7 | 32.9 | 47.4 |
| AB | 25–132 | 40.2 | 28.1 | 31.7 | |
| Bs | 132–201 | 34.6 | 38.0 | 27.4 | |
| B7 | Ap | 0–20 | 20.6 | 50.5 | 28.9 |
| AB | 20–30 | 18.0 | 51.7 | 30.3 | |
| Bs | 30–75 | 24.3 | 51.3 | 24.4 | |
| B8 | Ap | 0–35 | 18.8 | 41.2 | 40.0 |
| Bcs | 35–110 | 34.1 | 45.0 | 20.9 | |
| B9 | Ap | 0–30 | 22.2 | 53.2 | 24.6 |
| Bcs1 | 30–70 | 27.8 | 49.6 | 22.6 | |
| B10 | Ap | 0–27 | 12.0 | 43.5 | 44.5 |
| Bs | 27–130 | 21.8 | 46.4 | 31.8 |
| Year | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2016 | 2 | |||||||||||
| 2017 | 2 | 2 | 2 | 2 | 3 | 4 | ||||||
| 2022 | 3 | 3 | ||||||||||
| 2023 | 2 | 2 | 2 | 7 | 7 | 3 | 3 | |||||
| 2024 | 4 | 3 | 3 | 7 | 5 | 4 | 2 | |||||
| No image | Image |
| Cultivar Parameters | Description | Unit | Values | Source |
|---|---|---|---|---|
| Density | Plants m−2 | 6 | Adjusted | |
| Juvenile. Target | Development time of the juvenile phase | °Cd | 170 | Adjusted |
| FloweringToGrainFilling. Target | Time required to transition from flowering to grain filling | °Cd | 175 | Adapted |
| FlagLeafToFlowering. Target | Time from flag leaf appearance to flowering | °Cd | 50 | Adjusted |
| GrainFilling. Target | Time required for grain filling | °Cd | 860 | Default |
| MaturityToHarvestRipe | Time from maturity to harvest | °Cd | 10 | Default |
| Photosensitive. Target. | Photoperiod sensitivity | - | 0; 12.5; 24 | Default |
| Height | Height crop | cm | 243 | Adjusted |
| MaximumGrainsPerCob | Maximum number of grains per ear | number | 1050 | Adjusted |
| MaximumPotentialGrainSize | Maximum theoretical grain size | g | 0.80 | Adjusted |
| Root. SpecificRootLength | Specific root length | Cm g−1 | 100 | Default |
| Proportion of plant mortality | Proportion of plant mortality (dimensionless, between 0 and 1) | - | 0.02 | Adapted |
| LAI | Leaf area index | m2 leaf m−2 soil | X a | Calibrated |
| Fertilizer | ||||
| N Fertilization | Urea (45% N) | kg ha−1 | 200 | Adapted |
| Set | LAI (m2 m−2) | Metrics | |||||
|---|---|---|---|---|---|---|---|
| Observed Mean | Simulated Mean | R2 | NSE | RMSE | MAE | n | |
| (m2 m−2) | |||||||
| Calibration | 0.50 | 0.39 | 0.87 | 0.71 | 0.32 | 0.25 | 220 |
| Validation | 0.51 | 0.42 | 0.85 | 0.70 | 0.35 | 0.27 | 148 |
| Overall | 0.50 | 0.40 | 0.86 | 0.67 | 0.33 | 0.26 | 368 |
| Set | Maize Grain Yield (t ha−1) | Metrics | |||||
|---|---|---|---|---|---|---|---|
| Observed Mean | Simulated Mean | R2 | NSE | RMSE | MAE | n | |
| (t ha−1) | |||||||
| Calibration | 7.3 | 7.4 | 0.92 | 0.99 | 0.48 | 0.47 | 12 |
| Validation | 7.5 | 7.5 | 0.89 | 0.88 | 0.46 | 0.44 | 9 |
| Overall | 7.4 | 7.4 | 0.91 | 0.90 | 0.47 | 0.45 | 21 |
| Maize Grain Yield (t ha−1) | ||||||
|---|---|---|---|---|---|---|
| Block | 2022–2023 | 2023–2024 | 2016–2017 | |||
| Obs | Pred | Obs | Pred | Obs | Pred | |
| B0 | (-) | (-) | (-) | (-) | 4.1 | 4.4 |
| B1 | 7.1 | 7.6 | 8.7 | 8.1 | (-) | (-) |
| B2 | 8.1 | 8.5 | 8.9 | 9.4 | (-) | (-) |
| B3 | 7.3 | 7.9 | 8.2 | 7.8 | (-) | (-) |
| B4 | 8.9 | 9.4 | 10.4 | 10.9 | (-) | (-) |
| B5 | 6.7 | 6.1 | 9.7 | 9.1 | (-) | (-) |
| B6 | 6.1 | 6.5 | 6.1 | 6.4 | (-) | (-) |
| B7 | 8.0 | 8.4 | 8.7 | 8.1 | (-) | (-) |
| B8 | 5.1 | 5.0 | 5.8 | 5.3 | (-) | (-) |
| B9 | 7.7 | 8.1 | 6.1 | 5.8 | (-) | (-) |
| B10 | 6.2 | 6.7 | 7.5 | 7.0 | (-) | (-) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukalay, J.B.; Wellens, J.; Meersmans, J.; Sikuzani, Y.U.; Lenge Mukonzo, E.K.; Colinet, G. Simulation of the Growth and Yield of Maize (Zea mays L.) on a Loosened Plinthosol Amended with Termite Mound Material in the Lubumbashi Region. Agriculture 2025, 15, 2272. https://doi.org/10.3390/agriculture15212272
Mukalay JB, Wellens J, Meersmans J, Sikuzani YU, Lenge Mukonzo EK, Colinet G. Simulation of the Growth and Yield of Maize (Zea mays L.) on a Loosened Plinthosol Amended with Termite Mound Material in the Lubumbashi Region. Agriculture. 2025; 15(21):2272. https://doi.org/10.3390/agriculture15212272
Chicago/Turabian StyleMukalay, John Banza, Joost Wellens, Jeroen Meersmans, Yannick Useni Sikuzani, Emery Kasongo Lenge Mukonzo, and Gilles Colinet. 2025. "Simulation of the Growth and Yield of Maize (Zea mays L.) on a Loosened Plinthosol Amended with Termite Mound Material in the Lubumbashi Region" Agriculture 15, no. 21: 2272. https://doi.org/10.3390/agriculture15212272
APA StyleMukalay, J. B., Wellens, J., Meersmans, J., Sikuzani, Y. U., Lenge Mukonzo, E. K., & Colinet, G. (2025). Simulation of the Growth and Yield of Maize (Zea mays L.) on a Loosened Plinthosol Amended with Termite Mound Material in the Lubumbashi Region. Agriculture, 15(21), 2272. https://doi.org/10.3390/agriculture15212272

