Climate Change, Factor Inputs and Cotton Yield Growth: Evidence from the Main Cotton Producing Areas in China
Abstract
1. Introduction
2. Theoretical Analysis
3. Materials and Methods
3.1. Research Methods
3.1.1. Trend Analysis
3.1.2. Transcendental Logarithmic Production Function
3.2. Data Sources and Basic Statistics
3.2.1. Input Variables
3.2.2. Output Variables
4. Results
4.1. Trend Analysis of Climate Factors in Cotton Growing Season in Major Cotton Producing Provinces of China
4.2. Analysis of Factors Affecting the Cotton Yield per Unit Area in China
4.2.1. Model Selection
4.2.2. Empirical Results
5. Discussion
5.1. Similarities and Differences with Existing Studies
5.2. Mechanisms and Heterogeneity
5.3. Limitations and Future Recommendations
6. Conclusions and Recommendations
6.1. Conclusions
6.2. Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Contractor, S.; Donat, M.G.; Alexander, L.V. Changes in Observed Daily Precipitation over Global Land Areas since 1950. J. Clim. 2021, 34, 3–19. [Google Scholar] [CrossRef]
 - IPCC. Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Singapore, 2023; ISBN 978-1-009-15789-6. [Google Scholar]
 - Liepert, B.G. Observed Reductions of Surface Solar Radiation at Sites in the United States and Worldwide from 1961 to 1990. Geophys. Res. Lett. 2002, 29, 61-1–61-4. [Google Scholar] [CrossRef]
 - Wild, M.; Gilgen, H.; Roesch, A.; Ohmura, A.; Long, C.N.; Dutton, E.G.; Forgan, B.; Kallis, A.; Russak, V.; Tsvetkov, A. From Dimming to Brightening: Decadal Changes in Solar Radiation at Earth’s Surface. Science 2005, 308, 847–850. [Google Scholar] [CrossRef]
 - Chen, L.; Zhou, X.; Li, W.; Luo, Y.; Zhu, W. Characteristics of the Climate Change and Its Formation Mechanism in China in Last 80 Years. J. Meteorol. 2004, 62, 634–646. [Google Scholar] [CrossRef]
 - Wang, Z.; Ding, Y.; He, J.; Yu, J. Reanalysis of Climate Change Characteristics in China over the Past 50 Years. J. Meteorol. 2004, 62, 228–236. [Google Scholar]
 - Zhou, X.J.; Wang, F.L.; Wu, Y.Y.; Na, J.H.; Pan, H.S.; Wang, Y. Analysis of temperature change characteristics in Heilongjiang Province, Northeast China and the whole country over the past 60 years. J. Nat. Disasters 2013, 22, 124–129. [Google Scholar] [CrossRef]
 - Editorial Committee of the Third National Assessment Report on Climate Change. Third National Assessment Report on Climate Change; Science Press: Beijing, China, 2015. Available online: https://www.cma.gov.cn/en2014/news/News/201511/t20151123_298038.html (accessed on 1 January 2025).
 - Wang, Y.; Cao, M.; Tao, B.; Li, K. Characteristics of Spatial Pattern Changes in Precipitation in China Under the Background of Global Climate Change. Geogr. Res. 2006, 1148, 1031–1040. [Google Scholar]
 - Liang, F.; Xia, X.A. Long-Term Trends in Solar Radiation and the Associated Climatic Factors over China for 1961–2000. Ann. Geophys. 2005, 23, 2425–2432. [Google Scholar] [CrossRef]
 - Liu, K.; Harrison, M.T.; Meinke, H.; Yan, H.; Liu, D.L.; Hoogenboom, G.; Wang, B.; Peng, B.; Guan, K.; Jaegermeyr, J.; et al. Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. Nat. Commun. 2023, 14, 765. [Google Scholar] [CrossRef] [PubMed]
 - Li, Q.; Huang, W.; Wang, J.; Zhang, Z.; Li, Y.; Han, Y.; Feng, L.; Li, X.; Yang, B.; Wang, G.; et al. Quantitative Evaluation of Variation and Driving Factors of the Regional Water Footprint for Cotton Production in China. Sustain. Prod. Consum. 2023, 35, 684–696. [Google Scholar] [CrossRef]
 - Huang, W.; Wu, F.; Han, W.; Li, Q.; Han, Y.; Wang, G.; Feng, L.; Li, X.; Yang, B.; Lei, Y.; et al. Carbon Footprint of Cotton Production in China: Composition, Spatiotemporal Changes and Driving Factors. Sci. Total Environ. 2022, 821, 153407. [Google Scholar] [CrossRef]
 - Wang, Y.; Peng, S.; Huang, J.; Zhang, Y.; Feng, L.; Zhao, W.; Qi, H.; Zhou, G.; Deng, N. Prospects for Cotton Self-Sufficiency in China by Closing Yield Gaps. Eur. J. Agron. 2022, 133, 126437. [Google Scholar] [CrossRef]
 - Li, M.; Li, Z.; Wang, D.; Yang, X.; Zhong, X.; Li, Z.; Li, Y. Impact of Natural Disaster Change on Grain Yield in China in the Past 50 Years. J. Nat. Disaster Res. 2005, 14, 55–60. [Google Scholar]
 - Jiang, F.; Yang, D. Analysis on the Factors Affecting the Cotton Yield in Xinjiang. Arid. Zone Res. 2003, 2, 104–109. [Google Scholar] [CrossRef]
 - Huang, G.; Wang, X.; Qian, H.; Zhang, T.; Zhao, Q. Negative Impact of Inorganic Fertilizers Application on Agricultural Environment and its Countermeasures. Ecology. Environment. 2004, 4, 656–660. [Google Scholar] [CrossRef]
 - Feng, Y.; Yao, S.; Guo, Y. The Impact of Effective Irrigation on China’s Grain Yield per Unit Area Based on Panel Data. Resour. Sci. 2012, 34, 1734–1740. [Google Scholar]
 - Wang, H.; Yin, Z.; Zhang, L.; Zhao, F.; Huang, W.; Wang, X.; Gao, Y. Irrigation Modulates the Effect of Increasing Temperatures under Climate Change on Cotton Production of Drip Irrigation under Plastic Film Mulching in Southern Xinjiang. Front. Plant Sci. 2022, 13, 1069190. [Google Scholar] [CrossRef]
 - Adeleke, A.A. Technological advancements in cotton agronomy: A review and prospects. Technol. Agron. 2024, 4, e008. [Google Scholar] [CrossRef]
 - Sharma, R.K.; Kumar, S.; Vatta, K.; Bheemanahalli, R.; Dhillon, J.; Reddy, K.N. Impact of Recent Climate Change on Corn, Rice, and Wheat in Southeastern USA. Sci. Rep. 2022, 12, 16928. [Google Scholar] [CrossRef]
 - Yuan, R.; Wang, K.; Ren, D.; Chen, Z.; Guo, B.; Zhang, H.; Li, D.; Zhao, C.; Han, S.; Li, H.; et al. An Analysis of Uncertainties in Evaluating Future Climate Change Impacts on Cotton Production and Water Use in China. Agronomy 2025, 15, 1209. [Google Scholar] [CrossRef]
 - Lin, Y. The Main Issues and Prospects of China’s Rural Reform in the 1990s. Manag. World 1994, 3, 139–144. [Google Scholar] [CrossRef]
 - Zhu, X.; Zhang, S.; Zhao, Z. Analysis of Changes in Cotton Productivity in China. Agric. Econ. Issues 2007, 110, 9–13. [Google Scholar]
 - Liu, R.; Du, M.; Chen, J. Analysis of Technological Progress in China’s Cotton Production. Agric. J. Agrotech. Econ. 2010, 11, 100–107. [Google Scholar] [CrossRef]
 - Song, Y.; Zhou, Y.; Yan, B. A Study on the Growth Path of China’s Cotton Production from the Perspective of Factor Contributions. Stat. Decis. 2013, 12, 95–98. [Google Scholar] [CrossRef]
 - Khan, M.A.; Anwar, S.; Abbas, M.; Aneeq, M.; de Jong, F.; Ayaz, M.; Wei, Y.; Zhang, R. Impacts of climate change on cotton production and advancements in genomic approaches for stress resilience enhancement. J. Cotton Res. 2025, 8, 17. [Google Scholar] [CrossRef]
 - Ayankojo, I.T.; Thorp, K.R.; Morgan, K.; Kothari, K.; Ale, S. Assessing the impacts of future climate on cotton production in the Arizona low desert. Trans. ASABE 2020, 63, 1087–1098. [Google Scholar] [CrossRef]
 - Broughton, K.; Nunn, C.; Bange, M. The here and now of climate change: Climatic trends throughout Australian cotton regions and implications for the growing season. Field Crops Res. 2024, 315, 109491. [Google Scholar] [CrossRef]
 - Li, Y.; Xie, G.; Wang, R.; Wang, H. Climatic change during Apr.to Oct.in recent 47 years and its effects on growing period of cotton in Beijiang cotton planting region. J. Agric. Res. Arid Reg. 2011, 29, 253–258. [Google Scholar]
 - Maimaiti, Y.; Waram, M.; Sabiti, M. The Impact of Climate Change on Cotton Production in the Weigan-Kuche River Delta Oases. Geogr. Res. 2014, 33, 251–259. [Google Scholar]
 - Yue, W.; Cao, W.; Yao, Y.; Wang, X.; Duan, C.; Wang, S. Climatic Characteristics of Cotton Growing Season and Their Impact on Yield in the Yangtze River Basin. J. Resour. Environ. 2014, 23, 1308–1314. [Google Scholar]
 - Esterby, S.R. Trend Analysis Methods for Environmental Data. Environmetrics 1993, 4, 459–481. [Google Scholar] [CrossRef]
 - Wei, F. Modern Climate Statistics and Prediction Technology; Meteorological Press: Beijing, China, 2007. [Google Scholar]
 - Christensen, L.R.; Jorgenson, D.W.; Lau, L.J. Transcendental logarithmic production frontiers. Rev. Econ. Stat. 1973, 55, 28–45. [Google Scholar] [CrossRef]
 - Cobb, C.W.; Douglas, P.H. A theory of production. Am. Econ. Rev. 1928, 18, 139–165. [Google Scholar]
 - Arrow, K.J.; Chenery, H.B.; Minhas, B.S.; Solow, R.M. Capital-labor substitution and economic efficiency. Rev. Econ. Stat. 1961, 43, 225–250. [Google Scholar] [CrossRef]
 - Li, N.; Li, Y.; Yang, Q.; Biswas, A.; Dong, H. Simulating climate change impacts on cotton using AquaCrop model in China. Agric. Syst. 2024, 216, 103897. [Google Scholar] [CrossRef]
 - Zhu, Y.; Zheng, B.; Luo, Q.; Jiao, W.; Yang, Y. Uncovering the Drivers and Regional Variability of Cotton Yield in China. Agriculture 2023, 13, 2132. [Google Scholar] [CrossRef]
 - Patil, A.M.; Pawar, B.D.; Wagh, S.G.; Shinde, H.; Shelake, R.M.; Markad, N.R.; Bhute, N.K.; Červený, J.; Wagh, R.S. Abiotic Stress in Cotton: Insights into Plant Responses and Biotechnological Solutions. Agriculture 2024, 14, 1638. [Google Scholar] [CrossRef]
 - Han, W.; Liu, S.; Wang, J.; Lei, Y.; Zhang, Y.; Han, Y.; Wang, G.; Feng, L.; Li, X.; Li, Y.; et al. Climate Variation Explains More than Half of Cotton Yield Variability in China. Ind. Crops Prod. 2022, 190, 115905. [Google Scholar] [CrossRef]
 - Li, N.; Lin, H.; Wang, T.; Li, Y.; Liu, Y.; Chen, X.; Hu, X. Impact of Climate Change on Cotton Growth and Yields in Xinjiang, China. Field Crops Res. 2020, 247, 107590. [Google Scholar] [CrossRef]
 - Liu, J.-C. Fertilizer Supply and Grain Production in Communist China. J. Farm Econ. 1965, 47, 915. [Google Scholar] [CrossRef]
 - He, H.; Lou, X.; Liu, J. Nitrogen Reduction and Organic Fertiliser Application Benefits Growth, Yield, and Economic Return of Cotton. Agriculture 2024, 14, 1073. [Google Scholar] [CrossRef]
 - Zhang, Y.; Long, H.; Wang, M.Y.; Li, Y.; Ma, L.; Chen, K.; Zheng, Y.; Jiang, T. The Hidden Mechanism of Chemical Fertiliser Overuse in Rural China. Habitat Int. 2020, 102, 102210. [Google Scholar] [CrossRef]
 - Khan, Z.A.; Koondhar, M.A.; Ma, T.; Khan, A.; Nurgazina, Z.; Liu, T.; Ma, F. Do Chemical Fertilizers, Area under Greenhouses, and Renewable Energies Drive Agricultural Economic Growth Owing the Targets of Carbon Neutrality in China? Energy Econ. 2022, 115, 106397. [Google Scholar] [CrossRef]
 - Xu, M.; Wang, X.; Chen, K. Leveraging Agricultural Production Organizations to Reduce Fertilizer Use: Evidence from China. Food Policy 2025, 133, 102891. [Google Scholar] [CrossRef]
 - Van Wesenbeeck, C.F.A.; Keyzer, M.A.; Van Veen, W.C.M.; Qiu, H. Can China’s Overuse of Fertilizer Be Reduced without Threatening Food Security and Farm Incomes? Agric. Syst. 2021, 190, 103093. [Google Scholar] [CrossRef]
 - Meng, M.; Yu, L.; Yu, X. Machinery Structure, Machinery Subsidies, and Agricultural Productivity: Evidence from China. Agric. Econ. 2024, 55, 223–246. [Google Scholar] [CrossRef]
 - Wang, X.; Yamauchi, F.; Huang, J.; Rozelle, S. What Constrains Mechanization in Chinese Agriculture? Role of Farm Size and Fragmentation. China Econ. Rev. 2020, 62, 101221. [Google Scholar] [CrossRef]
 - Lu, Q.; Du, X.; Qiu, H. Adoption Patterns and Productivity Impacts of Agricultural Mechanization Services. Agric. Econ. 2022, 53, 826–845. [Google Scholar] [CrossRef]
 - Zhu, Y.; Wang, G.; Du, H.; Liu, J.; Yang, Q. The Effect of Agricultural Mechanization Services on the Technical Efficiency of Cotton Production. Agriculture 2025, 15, 1233. [Google Scholar] [CrossRef]
 - He, Y.; Leng, B.; Feng, Z. Climate Effects of the “Beyond Logarithmic Production Function” on Rapeseed Growth and Yield in Hubei Province. J. Resour. Sci. 2015, 37, 1465–1473. [Google Scholar]
 - Shi, X.; Wang, C.; Zhao, J.; Wang, K.; Chen, F.; Chu, Q. Increasing inconsistency between climate suitability and production of cotton (Gossypium hirsutum L.) in China. Ind. Crops Prod. 2021, 171, 113959. [Google Scholar] [CrossRef]
 - Crofils, C.; Gallic, E.; Vermandel, G. The dynamic effects of weather shocks on agricultural production. J. Environ. Econ. Manag. 2025, 130, 103078. [Google Scholar] [CrossRef]
 

| Variable Name | Mean | Standard Deviation | Minimum Value | Maximum Value | Median | 
|---|---|---|---|---|---|
| Cotton yield per unit area (kg/hm2) | 1050.480 | 284.970 | 346.900 | 2056.840 | 485.81 | 
| Accumulated temperature (°C) | 2613.990 | 259.980 | 2067.880 | 3756.980 | 2613.99 | 
| Precipitation (mm) | 641.060 | 313.400 | 22.170 | 1531.380 | 641.06 | 
| Sunshine duration (h) | 1376.463 | 249.570 | 831.280 | 2054.080 | 1376.46 | 
| Fertilizer input (kg/hm2) | 330.560 | 86.330 | 132.570 | 496.420 | 330.56 | 
| Agricultural machinery input (kw·h/hm2) | 4.830 | 2.810 | 1.490 | 12.700 | 4.83 | 
| Labor input (ren/hm2) | 5.115 | 1.238 | 2.030 | 6.730 | 5.12 | 
| Time trend | 17 | 7.807 | 1 | 33 | 17 | 
| Estimation Method | Test Method | Test Result | |
|---|---|---|---|
| Mixed OLS and fixed effect | F test: F(7, 191) = 18.87 | Prob > F = 0.00 | fixed effect | 
| Mixed OLS and random effect | LM test: χ2 = 0.00 | Prob > χ2 = 1.00 | Mixed OLS | 
| Fixed effect and random effect | Hausman test: χ2= 97.95 | Prob > χ2 = 0.00 | fixed effect | 
| Test | p-Value (5% Significance Level) | Conclusion | |
|---|---|---|---|
| Modified Wald Test | chi2(192) = 4089.38 | Prob > chi2 = 0.0000 | Reject the null hypothesis | 
| Wooldridge Test | F(6, 191) = 64.235 | Prob > F = 0.0000 | Reject the null hypothesis | 
| Pesaran CD Test | Pr = 0.0000 | Reject the null hypothesis | |
| Variable Name | Levin, Lin & Chu t | Im, Pesaran and Shin W-Stat | ADF-Fisher Chi-Square | PP-Fisher Chi-Square | 
|---|---|---|---|---|
| Accumulated temperature | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 
| Precipitation | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 
| Sunshine duration | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 
| Fertilizer input | 0.2280 | 0.0083 | 0.0158 | 0.0068 | 
| Agricultural machinery input | 0.5849 | 0.4967 | 0.6738 | 0.6895 | 
| Labor input | 0.6819 | 0.6812 | 0.8236 | 0.8265 | 
| Cotton Yield unit area | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 
| Variable Name | Levin, Lin & Chu t | Im, Pesaran, and Shin W-Stat | ADF-Fisher Chi-Square | PP-Fisher Chi-Square | 
|---|---|---|---|---|
| Agricultural machinery input | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 
| Labor input | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 
| Independent Variable | Coefficient | Independent Variable | Coefficient | 
|---|---|---|---|
| Ln (AT) | 30.805 ** (2.248)  | Ln2(FT) | −0.616 (−1.256)  | 
| Ln (RF) | 0.216 (1.354)  | Ln2(AM) | 0.254 * (1.955)  | 
| Ln (IT) | 12.626 ** (2.347)  | Ln2(LA) | 0.961 ** (2.418)  | 
| Ln (FT) | 3.624 (1.477)  | Ln (FT) × Ln (AM) | 0.223 (0.933)  | 
| Ln (AM) | 1.349 (−1.106)  | Ln (FT) × Ln (LA) | −0.325 (−1.325)  | 
| Ln (LA) | 0.585 (0.356)  | Ln (AM) × Ln (LA) | −0.029 (−0.147)  | 
| Ln2(AT) | −3.786 ** (−2.00)  | t | 0.027 ** (2.015)  | 
| Ln2(RF) | −0.050 * (−1.725)  | t2 | −0.002 ** (−2.845 )  | 
| Ln2(IT) | −1.787 ** (−2.374)  | c | −173.337 *** (−2.848)  | 
| R2 = 0.6249 | F(17, 191) = 26.71 Prob > F = 0.000  | ||
| Output Elasticity (1) | Marginal Effect (%) (2) | Percentage of Change (%) (3) | Contribution Rate (%) (4) = (1) × (3) | |
|---|---|---|---|---|
| Accumulated temperature | 1.0155 | −0.0001~0.0009 | 4.8945 | 4.9704 | 
| Precipitation | −0.1103 | −0.0001~0.0027 | 16.0355 | −1.7689 | 
| Sunshine hours | −0.2882 | −0.0005~0.0007 | −16.4800 | 4.7490 | 
| Fertilizer input | −0.1272 | −0.0008~0.0033 | 111.9093 | −14.2298 | 
| Agricultural Machinery input | 0.2979 | −0.0008~0.0428 | 226.3900 | 67.4489 | 
| Labor input | 0.2206 | −0.0329~0.0719 | −40.8269 | −9.0058 | 
| Factor | Elasticity Result | Interpretation | Inverted U-Shape Interpretation | 
|---|---|---|---|
| Accumulated Temperature (AT) | +ve (1.0155) | Positive impact on cotton yield; higher temperature generally promotes growth. | Negative U-shape: After a certain temperature threshold, the impact becomes negative. | 
| Precipitation (RF) | −ve (−0.1103) | Negative impact on cotton yield; excessive rainfall hampers growth. | Negative U-shape: More precipitation has a diminishing or negative effect on yield. | 
| Sunshine Duration (IT) | −ve (−0.2882) | Negative impact on cotton yield; excess sunlight may damage plants. | Negative U-shape: Increasing sunshine hours beyond a threshold reduces yield. | 
| Agricultural Machinery Input (AM) | +ve (0.2979) | Positive impact on cotton yield; better machinery improves efficiency. | Positive U-shape: Optimal use of machinery leads to higher yield. | 
| Labor Input (LA) | +ve (0.2206) | Positive impact on cotton yield; more labor increases production efficiency. | Positive U-shape: Optimal labor input enhances yield, but excessive labor beyond a certain point may reduce efficiency. | 
| Fertilizer Input (FT) | −ve (−0.1272) | Negative impact on cotton yield; excessive fertilizer can harm plant health. | Negative U-shape: Over-fertilization reduces yield after a certain point. | 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Ma, W.; Li, H.; Li, Q. Climate Change, Factor Inputs and Cotton Yield Growth: Evidence from the Main Cotton Producing Areas in China. Agriculture 2025, 15, 2271. https://doi.org/10.3390/agriculture15212271
Yang H, Ma W, Li H, Li Q. Climate Change, Factor Inputs and Cotton Yield Growth: Evidence from the Main Cotton Producing Areas in China. Agriculture. 2025; 15(21):2271. https://doi.org/10.3390/agriculture15212271
Chicago/Turabian StyleYang, Honghong, Wenwen Ma, Hua Li, and Qi Li. 2025. "Climate Change, Factor Inputs and Cotton Yield Growth: Evidence from the Main Cotton Producing Areas in China" Agriculture 15, no. 21: 2271. https://doi.org/10.3390/agriculture15212271
APA StyleYang, H., Ma, W., Li, H., & Li, Q. (2025). Climate Change, Factor Inputs and Cotton Yield Growth: Evidence from the Main Cotton Producing Areas in China. Agriculture, 15(21), 2271. https://doi.org/10.3390/agriculture15212271
        