Monitoring Agricultural Land Use Intensity with Remote Sensing and Traits
Abstract
1. Introduction
2. Definition, Standards, and Programmes for Monitoring the A-LUI
2.1. Definition of A-LUI
2.2. Programmes for Monitoring A-LUI at National, European and Global Scale
- National scale
- Land Register: The land register records the types of land and their use in Germany. It is maintained by the state surveying and land registry offices. Most countries have detailed land register records of land type and ownership, maintained by the state surveying and land registry offices.
- Agricultural Structure Survey: Regular surveys of agricultural land use, yields, livestock, etc., by National Statistical Offices.
- IACS (Integrated Administration and Control System for Management Aid): In agriculture, the IACS system plays a central role in monitoring and managing data such as information on the use of plant protection products, fertiliser data, soil and water data, and yield and production data, as well as environmental and health data. The monitoring and control of IACS data in agriculture is carried out by different institutions and authorities, mainly at regional, national, and European level.
- Europe
- Corine: The European Environment Agency (EEA) coordinates various land use monitoring projects, including the production of Corine Land Cover maps.
- LUCAS (Land Use/Cover Area Frame Survey): This is a regular statistical survey of land use and land cover in the EU.
- Copernicus data: Copernicus is the European Earth Observation Programme (ESA) and provides extensive data on land use from satellite data (Sentinel-1-3).
- Farm structure survey datasets (https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Farm_structure_survey_(FSS) accessed on 19 October 2025)
- Agricultural census data (e.g., production, environmental indicators) at national levels and at sub-national levels (NUTS 1, NUTS 2, NUTS3). https://ec.europa.eu/eurostat/web/agriculture/information-data#Agricultural%20production accessed on 19 October 2025.
- World
- Global Land Cover (GLC): Several international initiatives produce global land cover maps, including projects supported by FAO and the United Nations Environment Programme (UNEP).
- MODIS (Moderate Resolution Imaging Spectroradiometer): An instrument on NASA’s Terra and Aqua satellites that provides global data on land cover and land use change.
- Global Land Analysis and Discovery (GLAD): A University of Maryland project to monitor global land use using high-resolution satellite imagery.
- FAO (Food and Agriculture Organisation of the United Nations), OECD (Organisation for Economic Co-operation and Development), and World Bank (World Bank) use indicators to monitor A-LUI worldwide.
3. Approaches to Monitoring A-LUI
3.1. In Situ Approaches
3.2. RS Approach
3.2.1. Principles of Monitoring A-LUI Using RS
3.2.2. Challenges of Monitoring A-LUI Using RS
- (1)
- Limited coverage of agricultural practices
- (2)
- Seasonal dynamics
- (3)
- Irrigation and water management
- (4)
- Fertiliser and pesticide use
- (5)
- Small-scale agricultural structures
- (6)
- Agroforestry and mixed cropping:
- (7)
- Limited spectral information of RS data
- (8)
- Climatic and topographical influences
3.2.3. Separating A-LUI Indicators from Productivity and Spectral Signals
- Management intensity signals—captured by traits and functional indicators (e.g., leaf nitrogen content, irrigation proxies, yield per unit input).
- Biophysical potential signals—separated through normalisation with soil and climate data (e.g., adjusting NDVI or yield proxies for rainfall and soil fertility), or through modelling and domain adaptation approaches.
- Land cover change dynamics—treated as a separate dimension under genesis indicators, where RS time series are used to track expansion, abandonment, or rotations.
4. Definition of A-LUI Using RS
- (I)
- Trait Indicators of A-LUI: “Trait indicators describe measurable biophysical and biochemical properties of plants, soils, or water that respond directly to management intensity”. Examples using RS include leaf chlorophyll or nitrogen content derived from hyperspectral sensors (e.g., EnMAP, Sentinel-2 red-edge indices), leaf area index (LAI), or biomass estimated from multispectral vegetation indices such as NDVI or EVI, water stress, or photosynthetic activity monitored through solar-induced chlorophyll fluorescence (SIF) from the FLEX mission.
- (II)
- Genesis Indicators of A-LUI: “Genesis indicators capture the temporal development and history of agricultural management practices, i.e., how intensity evolves over time”. Examples using RS include detect crop rotations, tillage events, or multiple harvests (Sentinel-1/2 time series); long-term Landsat archives documenting intensification trends such as the expansion of irrigated areas or the transition to monocultures.
- (III)
- Structural Indicators of A-LUI: “Structural indicators describe the spatial configuration and arrangement of agricultural land, including field geometry and landscape elements”. Examples using RS include field size and shape derived from high-resolution optical imagery (e.g., PlanetScope); hedgerows and boundary elements identified through LiDAR or UAV mapping; landscape diversity indices (e.g., number of crop types per hectare) based on classified RS data.
- (IV)
- Taxonomic Indicators of A-LUI: “Taxonomic indicators refer to the diversity and composition of crop species or land use types within an agricultural landscape”. Examples using RS include crop type classification using spectral signatures (e.g., distinguishing wheat vs. maize with Sentinel-2); detection of mixed cropping or agroforestry systems with hyperspectral UAV imagery; regional crop mapping from multi-temporal Sentinel-2 and Landsat data.
- (V)
- Functional Indicators of A-LUI: “Functional indicators represent the ecological processes and services affected by agricultural intensity”. Examples using RS include crop productivity (e.g., yield estimates per hectare) derived from vegetation indices and biomass models; soil moisture inferred from radar backscatter (Sentinel-1) as a proxy for irrigation intensity; carbon sequestration potential or emission estimates based on biomass and soil models combined with RS observations.
4.1. Monitoring the Trait Indicators of A-LUI Using RS
4.1.1. Trait Indicators of A-LUI—Spectranometric Approach
4.1.2. Trait Indicators of A-LUI—Chlorophyll Content
4.1.3. Trait Indicators of A-LUI—Chlorophyll Fluorescence
4.1.4. Trait Indicators of A-LUI—Leaf Nitrogen Content
4.2. Monitoring the Genesis Indicators of A-LUI with RS
4.2.1. Genesis Indicators of A-LUI—Subsurface Drainage
4.2.2. Genesis Indicators of A-LUI—Terrace Mapping
4.2.3. Genesis Indicators of A-LUI—Allmenden
4.2.4. Genesis Indicators of A-LUI—Deforestation
4.3. Monitoring the Structural Indicators of A-LUI with RS
4.3.1. Structural A-LUI Indicators—Crop Composition and Configuration
4.3.2. Structural A-LUI Indicators—Surface Roughness of the Vegetation
4.3.3. Structural A-LUI Indicators—Soil Roughness
4.4. Monitoring the Taxonomic A-LUI Indicators with RS
4.4.1. Taxonomic A-LUI Indicators—Cropping Patterns
4.4.2. Taxonomic A-LUI Indicators—Crop Classifications
4.4.3. Taxonomic A-LUI Indicators—Intensification of Grassland
4.5. Monitoring the Functional A-LUI Indicators with RS
4.5.1. Functional A-LUI Indicators—Plant Density and Biomass Production
4.5.2. Functional A-LUI Indicators—Pesticide, Herbicide, and Fungicide
4.5.3. Functional A-LUI Indicators—Fertilisation Intensity
4.5.4. Functional A-LUI Indicators—Soil Organic Carbon (SOC)
5. Examples of Trait–Sensor Linkages
6. Linking Management, Traits, and RS to A-LUI Indicators, Validation, and Policy
7. From Inputs–Outputs–Impacts to A-LUI Indicators: Advancing the Framework
8. New Approaches for the Quantification and Evaluation of A-LUI Using RS
8.1. RS and AI for Recording A-LUI
8.2. Semantic Web and Linked Open Data for the Monitoring of A-LUI
9. Conclusions and Further Research
- The design of multi-scale validation protocols to quantify uncertainty and improve indicator robustness.
- The integration of hyperspectral, thermal, and radar missions with AI-based approaches for trait retrieval and intensity mapping.
- The differentiation of management intensity signals from biophysical potential and land cover dynamics through coupled RS–model frameworks.
- The systematic assessment of smallholder and heterogeneous landscapes, where high-resolution data and advanced image analysis are crucial.
- The establishment of specialised studies focusing on cultivar-specific effects, phenological corrections, and management practices that cannot yet be robustly inferred from RS alone.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| A-LUI | Agricultural Land-Use Intensity |
| AGROVOC | Agricultural Vocabulary (FAO controlled vocabulary) |
| AI | Artificial Intelligence |
| CHIME | Copernicus Hyperspectral Imaging Mission for the Environment |
| EnMAP | Environmental Mapping and Analysis Programme |
| ET | Evapotranspiration |
| EUROSTAT | Statistical Office of the European Union |
| EVI | Enhanced Vegetation Index |
| FAO | Food and Agriculture Organisation of the United Nations |
| FLEX | Fluorescence Explorer |
| GEDI | Global Ecosystem Dynamics Investigation |
| GHG | Greenhouse Gas |
| GIS | Geographic Information System |
| GLAD | Global Land Analysis and Discovery |
| GLC | Global Land Cover |
| GPP | Gross Primary Productivity |
| HISUI | Hyperspectral Imager Suite |
| HyspIRI | Hyperspectral Infrared Imager |
| IACS | Integrated Administration and Control System |
| IPCC | Intergovernmental Panel on Climate Change |
| LAI | Leaf Area Index |
| Landsat | Land Satellite (USGS/NASA Earth observation programme) |
| LiDAR | Light Detection and Ranging |
| LUCAS | Land Use/Cover Area Frame Survey |
| ML | Machine Learning |
| MODIS | Moderate Resolution Imaging Spectroradiometer |
| NDVI | Normalised Difference Vegetation Index |
| OECD | Organisation for Economic Co-operation and Development |
| PlanetScope | High-resolution satellite constellation operated by Planet Labs |
| PRISMA | PRecursore IperSpettrale della Missione Applicativa |
| RS | Remote Sensing |
| SAR | Synthetic Aperture Radar |
| SDG | Sustainable Development Goal |
| Sentinel-1 | C-band Synthetic Aperture Radar mission (Copernicus) |
| Sentinel-2 | Multispectral optical imaging mission (Copernicus) |
| Sentinel-3 | Ocean and land monitoring mission (Copernicus) |
| Sentinel-5P | Tropospheric monitoring mission (Copernicus) |
| SHALOM | Spaceborne Hyperspectral Applicative Land and Ocean Mission |
| SIF | Solar-Induced Fluorescence |
| SOC | Soil Organic Carbon |
| UAV | Unmanned Aerial Vehicle |
| World Bank | World Bank (International Financial Institution) |
Appendix A

| FAO | OECD | World Bank | EUROSTAT | |
|---|---|---|---|---|
| Geographical area of monitoring |
|
|
|
|
| Time availability of the indicators |
|
|
|
|
| Link |
|
|
|
|
| Indicators (selective examples) | ||||
| Indicator | FAO | OECD | World Bank | EUROSTAT |
| Agricultural area | Total area for agriculture (arable land, permanent grassland, permanent crops) | Agricultural land, including arable land, permanent crops, and pastures | Agricultural land (sq. km) | Utilised agricultural area (UAA) |
| Arable land | Land for crops, including repeatedly cultivated soils and fallow land | Arable land, including temporary crops and fallow land | Arable land (hectares) | Arable land |
| Permanent grassland | Land for perennial grasses and forage plants | Permanent pastures and meadows | Permanent meadows and pastures (hectares) | Permanent grassland |
| Permanent crops | Land for perennial crops such as fruit trees and vineyards | Permanent crops, such as orchards and vineyards | Permanent crops (hectares) | Permanent crops |
| Harvest yields | Amount of crop per unit area | Crop yields, measured by specific crop outputs per hectare | Cereal yield (kg per hectare) | Crop production per unit area |
| Use of fertilisers | Amount of fertiliser per hectare | Fertiliser consumption (kg per hectare of arable land) | Fertiliser consumption (kg per hectare of arable land) | Consumption of fertilisers per unit area of agricultural land |
| Pesticide use | Amount of pesticides per hectare | Pesticide sales and usage | Pesticide consumption (kg per hectare of arable land) | Pesticide sales and consumption |
| Irrigated area | Proportion of artificially irrigated agricultural land | Area equipped for irrigation (hectares) | Irrigated land (% of total agricultural land) | Irrigated area |
| Machine inventory | Number and type of machines per unit area | Agricultural machinery, such as tractors per hectare | Agricultural machinery (tractors per 100 sq. km of arable land) | Number of tractors and other agricultural machinery per unit area of agricultural land |
| Labour input | Labour hours per unit area | Labour input in agriculture, measured by hours worked per hectare | Employment in agriculture (% of total employment) | Labour force in agriculture |
| Livestock density | Number of animals per unit area of pastureland | Livestock density, measured as livestock units per hectare of pasture land | Livestock production index | Livestock density per unit area of pasture land |
| Carbon sequestration in the soil | Amount of carbon sequestered in the soil | Soil organic carbon content | Soil organic carbon content | Soil organic carbon content |
| Ground cover | Type and extent of ground cover | Land cover types and changes | Land cover (% of land area) | Land cover and land use |
| Erosion risk | Risk of soil erosion due to water or wind | Soil erosion rates | Soil erosion rates | Soil erosion and degradation risk |
| Biodiversity | Diversity of plant and animal species on farmland land (e.g., Farmland birds, pollinators, butterflies) | Farmland biodiversity indices (e.g., Farmland birds, pollinators, butterflies) | Agricultural biodiversity indices (e.g., Farmland birds, pollinators, butterflies) | Biodiversity indicators in agricultural landscapes (e.g., Farmland birds, pollinators, butterflies) |
| Water consumption in agriculture | Amount of water used for irrigation | Agricultural water withdrawal | Agricultural water withdrawal (% of total water withdrawal) | Water use in agriculture |
| Agricultural production per unit of input | Efficiency of the means of production in agriculture | Total factor productivity in agriculture | Agricultural value added per worker | Output per hectare of agricultural land |
| Energy consumption in agriculture | Energy consumption in agriculture | Energy use in agriculture | Energy use in agriculture | Energy consumption in agriculture |
| Sustainability indicators | Sustainability of agricultural practices | Sustainable agriculture practices indicators | Sustainable land management indicators | Sustainable farming practices |
| Climate impact of agriculture | Greenhouse gas emissions from agriculture | Greenhouse gas emissions from agriculture | Agricultural methane emissions (kt of CO2 equivalent) | Greenhouse gas emissions from agriculture |
| Nutrient balance in the soil | Balance of nitrogen and phosphorus in the soil | Nitrogen and phosphorus balance | Soil nutrient balance | Nutrient balance in agricultural soils |
| Bioproductivity | Productivity of biological systems on agricultural land | Biological productivity of agricultural systems | Agricultural productivity indexes | Biological productivity of agricultural lands |
| Plant protection measures | Measures to combat pests and diseases | Pest and disease control practices | Pest and disease control indicators | Plant protection measures and their impact |
| Energy efficiency in agriculture | Efficiency of energy consumption in agriculture | Energy efficiency in agricultural practices | Energy productivity in agriculture | Energy efficiency indicators in farming |
| Utilisation of genetic resources | Utilisation and conservation of genetic resources in agriculture | Use and conservation of genetic resources | Genetic resource management indicators | Conservation and use of agricultural genetic resources |
| Landscape diversity | Diversity of landscapes and agroecosystems | Landscape diversity and heterogeneity | Landscape diversity indicators | Landscape heterogeneity and diversity in agricultural areas |
| Soil compaction | Degree of soil compaction caused by agricultural machinery | Soil compaction indicators | Soil compaction risk | Soil compaction due to agricultural practices |
| Waste management in agriculture | Handling agricultural waste | Agricultural waste management practices | Waste management in agriculture | Management and recycling of agricultural waste |
| Soil moisture | Moisture content of the soil | Soil moisture levels | Soil moisture content indicators | Soil moisture monitoring in agricultural lands |
| Landscape fragmentation | Fragmentation of natural and agricultural landscapes | Landscape fragmentation and its impact on agriculture | Landscape fragmentation indexes | Impact of landscape fragmentation on agriculture |
| Sustainable land use practices | Spreading sustainable agricultural practices | Adoption of sustainable agricultural practices | Sustainable land management practices | Implementation of sustainable farming practices |
| Water utilisation efficiency | Efficiency of water utilisation in agriculture | Water use efficiency in agricultural practices | Agricultural water productivity | Water use efficiency in irrigated agriculture |
| Agroecological indicators | Indicators for the assessment of agroecological systems | Agroecological assessment indicators | Agroecological practices | Assessment of agroecological systems |
| Erosion due to wind | Loss of topsoil due to wind erosion | Wind erosion rates | Wind erosion indicators | Impact of wind erosion on agricultural land |
| Soil fertility | Level of soil fertility and its changes | Soil fertility levels | Soil fertility indicators | Changes in soil fertility |
| Land use changes | Changes in the utilisation of agricultural land | Changes in agricultural land use | Land use change indicators | Agricultural land use changes |
| Irrigation efficiency | Efficiency of irrigation methods | Irrigation efficiency | Efficiency of irrigation systems | Efficiency of water use in irrigation systems |
| Climate adaptation measures | Measures to adapt to climate change | Climate adaptation practices in agriculture | Climate resilience indicators | Implementation of climate adaptation measures in agriculture |
| Resource utilisation efficiency | Efficient use of natural resources | Resource use efficiency in agriculture | Resource productivity indicators | Efficiency of resource use in agriculture |
| Soil acidification | Degree of soil acidification and its causes | Soil acidification levels | Soil pH indicators | Impact of acidification on agricultural soils |
| Soil salinisation | Level of soil salinisation and its effects | Soil salinisation rates | Soil salinity indicators | Effects of salinisation on agricultural productivity |
| Utilisation of renewable energies | Share of renewable energies in agriculture | Renewable energy use in agricultural practices | Share of renewable energy in agriculture | Use of renewable energy sources in farming |
| Environmentally friendly cultivation methods | Spreading environmentally friendly cultivation methods | Adoption of eco-friendly farming practices | Eco-friendly agricultural practices | Implementation of environmentally friendly farming methods |
| Economic sustainability | Economic viability of farms | Economic sustainability of agricultural holdings | Economic viability indicators | Economic sustainability of farms |
| Social sustainability | Social aspects of agricultural practice | Social sustainability in agriculture | Social indicators in rural areas | Social impacts of agricultural practices |
| Productivity per unit area | Productivity of agricultural land | Land productivity indicators | Productivity of agricultural land | Output per unit of agricultural area |
| Water quality indicators | Impact of agriculture on water quality | Impact of agriculture on water quality | Water quality in agricultural areas | Effects of agricultural runoff on water quality |
| Infrastructure for agriculture | Availability and quality of agricultural infrastructure | Agricultural infrastructure development | Infrastructure investment in agriculture | Quality and accessibility of agricultural infrastructure |
| Innovation in agriculture | Implementation of new technologies and processes | Agricultural innovation and technology adoption | Innovation indicators in agriculture | Adoption of new agricultural techn |
| Satellite/Mission | Sensor/Type | Spatial Resolution | Spectral Bands/Sensor Type | Availability | Start Date | Operator of the Satellite Mission |
|---|---|---|---|---|---|---|
| WorldView-3 | Visible (PAN+MS+SWIR) | 0.31 m (PAN), 1.24 m (MS) | Panchromatic Multispectral SWIR | Commercial | 2014 | Maxar |
| WorldView-2 | Optically | 0.46 m (PAN), 1.84 m (MS) | Panchromatic Multispectral | Commercial | 2009 | Maxar |
| GeoEye-1 | Optically | 0.41 m (PAN), 1.65 m (MS) | Panchromatic Multispectral | Commercial | 2008 | Maxar |
| Pleiades Neo | Optically | 0.3 m (PAN), 1.2 m (MS) | Panchromatic Multispectral | Commercial | 2021+ | Airbus |
| Pleiades 1A/1B | Optically | 0.5 m (PAN), 2.0 m (MS) | Panchromatic Multispectral | Commercial | 2011/2012 | Airbus |
| SkySat | Optically + Video | 0.5–0.8 m (PAN), 1–2 m (MS) | RGB, NIR, Video | Commercial | 2013+ | Planet |
| BJ-3B (SuperView-2) | Optically | 0.3 m (PAN), 1.2 m (MS) | Panchromatic Multispectral | Commercial | 2022 | 21AT (China) |
| Capella Space | RADAR (X-Band SAR) | 0.3–0.5 m (Spotlight) | SAR | Commercial | 2018+ | Capella Space (USA) |
| ICEYE | RADAR (X-Band SAR) | 0.25–1 m | SAR | Commercial | 2018+ | ICEYE (Finland) |
| TerraSAR-X | RADAR (X-Band SAR) | bis 1 m (Spotlight-Modus) | SAR | Commercial/Scientifically free | 2007 | DLR/Airbus |
| PAZ | RADAR (SAR) | 1 m | SAR (X-Band) | Commercial | 2018 | Hisdesat (Spain) |
| Sentinel-1A/B | RADAR (C-Band SAR) | 10 m | SAR | Freely available | 2014/2016 | ESA/Copernicus |
| Drohnen/UAV | Optically + Multispectral | <0.1 m | RGB, Multispectral, Hyperspectral, LiDAR | Own operation | User-based | |
| Aerial photos | Optically | 0.20 cm | Orthophotos (DOP) True Orthophotos, RGB, CIR | Commercial/Authorities and partly scientific free | Federal states, Federal Agency for Cartography and Geodesy |
| Challenge | Relevant Framework Category | Possible RS/AI Solution | Example Application |
|---|---|---|---|
| Distinguishing intensive vs. extensive cultivation (e.g., organic vs. conventional) | Trait indicators | Hyperspectral indices (red-edge, SIF) combined with AI crop classification | Separation of organic vs. conventional wheat fields using Sentinel-2 red-edge indices |
| Seasonal dynamics and multiple harvests | Genesis indicators | Multi-temporal analysis (Sentinel-1/2, SAR–optical fusion); AI-based phenology detection | Identification of double-cropping systems in India |
| Irrigation and water management | Functional indicators | Radar-derived soil moisture (Sentinel-1), thermal RS for evapotranspiration, AI separation of natural vs. managed water stress | Mapping irrigation events in Mediterranean orchards |
| Fertiliser and pesticide application (not directly visible in RS) | Trait and functional indicators | Indirect proxies: leaf N content, chlorophyll indices, stress detection; ML calibration with in situ records | Estimating nitrogen application in maize with UAV hyperspectral imaging |
| Small-scale heterogeneous fields | Structural indicators | High-resolution UAV/Planet imagery; OBIA; deep learning for parcel boundary delineation | Smallholder mapping in Sub-Saharan Africa using PlanetScope + CNN |
| Agroforestry and mixed cropping | Taxonomic indicators | Hyperspectral UAV imaging and AI spectral unmixing | Differentiating coffee under shade trees in agroforestry systems |
| Limited spectral resolution of standard satellites | Trait and functional indicators | Integration of hyperspectral missions (EnMAP, PRISMA, CHIME); AI-based spectral downscaling | Improved stress detection in crops using EnMAP data |
| Climate and topographic confounding effects | Genesis & Functional indicators | AI domain adaptation, topographic correction, normalisation with weather/soil data | Adjusting RS-based yield intensity estimates in mountainous regions |
| Indicators | Satellites | References |
|---|---|---|
| Trait diversity of A-LUI | ||
| Chlorophyll-a/b Content Leaf chlorophyll content (LCC) Chlorophyllgehalt (Cab) Canopy Chlorophyll Content (CCC) Carotinoide, anthocyanin Anthocyanin reflectance index (ARI) Carotenoid reflectance index (CRI) | Sentinel-1 1, Sentinel-2 1, Landsat 8 1, CRIME 1, EnMAP 1, Airborne hyperspectral CASI 2, Airborne Visible/Infrared Imaging Spectrometer AVIRIS 2, Airborne HyMap 2, UAV-(HSP,MSP) 3, Handheld portable hyperspectral camera (Specim IQ) ASD 4, Laboratory spectroscopy 5 | [86,96,102,105,118,239,240,241,242,243,244,245,246,247,248,249,250,251] |
| Foliar Nitrogen, Phosphorus, Potassium—NPK | UAV (LiDAR, MSP) 3, SVC HR-1024i spectrometer ASD 4 | [86,252,253] |
| Solar-induced chlorophyll fluorescence (SIF), Photosynthesis activity | Sentinel-3 1, GOSIF data 1, AS-SpecFOM (ground-based) 6, FluoSpec2 system (ground-based) | [72,107,254,255,256,257] |
| Leaf nitrogen content (LNC) Nitrogen use efficiency, Nitrogen nutrition index | Sentinel-2 1, CRIME 1, PRISMA 1,Airborne micro-hyperspec NIR-100 camera 2, UAV | [86,96,98,119,120,258,259] |
| Plant water content Leaf water content Plant water stress Cropland water-use efficiency Crop Water Productivity | GLASS 1, Landsat 1, Sentinel-2 1, UAV (MSP, HSP) 3, mmWave RADAR (Tower) 6, Cropland ecosystem flux sites 6, Local TIR Sensor 6, | [260,261,262,263,264,265,266,267,268] |
| Land Surface Temperature Crop surface temperature | Landsat 1, High Spatio-Temporal Resolution Land Surface Temperature Monitoring (LSTM) Mission 1, UAV (TIR, RGB, MSP) 3 | [264,269,270,271,272,273] |
| Evapotranspriration (ET) Crop evapotranspiration (ETc) | MODIS 1, DEIMOS-1 is a commercial tasking EO satellite 1, Landsat 1, Sentinel-2 1, SuperDove satellites (PlanetScope) 1, UAV-(RGB, MSP, TIR) 3 | [274,275,276,277,278,279,280,281,282] |
| Soil moisture | MODIS-Terra 1, Landsat 1, AMSR-2 1, AMSR-E 1, NISAR 1, Sentinel-1 1, Sentinel-2 1, SMAP 1, Airborne hyperspectral (DAIS) 2, Airborne hyperspectral (AISA Eagle, Hawk) 2 | [283,284,285,286,287,288,289,290,291] |
| Irrigation Irrigation Efficiency Water Productivity and Efficiency Irrigation patterns Water-Ferilizer use efficency Water Stress Soil Water Deficit Soil water stress | MODIS 1, Landsat 1, Sentinel-2 1, UAV (MSP) 3, ASD 4, | [292,293,294,295,296,297,298,299,300,301,302,303] |
| LAI (Leaf Area Index) | MODIS 1, Landsat 1, Sentinel-2 1, UAV-(HSP, TIR, LiDAR) 3, Ocean Optics USB2000 (Tower) 6 | [247,248,304,305,306] |
| Genesis Trait Diversity of A-LUI | ||
| Subsurface drainage systems, Drainage density | RADAR (SAR) 1, Landsat 1, Senitnel-2 1, Airborne LiDAR 2, Airborne data 2, UAV–RGB, CIR, TIR 3 | [132,133,134,135,136,307,308] |
| Terrace mapping | Landsat 1, Sentinel-1 1, Sentinel-2 1, GF-2 satellite image 1, WorldView-1 1, WorldView-3 1, Airborne LiDAR 2, UAV-LiDAR 3 | [87,137,138,143,144,145] |
| Allmenden | Airborne LiDAR 3 | [146,147] |
| Deforestation | MODIS 1, ALOS PALSAR data 1, RADARSAT-2 1, Landsat 1, Sentinel-1 1, Sentinel-2 1, UAV (RGB, NIR, IRT) 3 | [150,151,152,153,154,309,310,311,312] |
| Polder and single-polder systems | Google Earth RS data 1, Corona spy satellite imagery 1 | [313,314] |
| DEM (Digital Elevation Model) DSM (Digital Surface Model) | SRTM 1, TerraSAR-X 1, TanDEM-X 1, Sentinel-1 1, Sentinel-3 1, ALOS-2 PALSAR-2 1, ALOS PRISM 1, Terra ASTER 1, ICESat GLAS 1, Airborne LiDAR 2, UAV (SAR, RGB) 3 | [61,315,316,317,318,319,320,321,322,323,324,325,326,327] |
| Soil Topography Farmland microtopography feature | Landsat 1, Sentinel-1 1, Sentinel-2 1, CORONA KH-4B 1, Gaofen-7 satellite 1, Airborne LiDAR 2 | [171,328,329,330,331,332] |
| Soil metagenomics data | UAV (MSP, LiDAR) 3 | [333] |
| Structural traits of A-LUI | ||
| Soil, crop vegetation composition and configuration (e.g., patch size, distribution Field size, Interspersion and Juxtaposition Index, Proximity Index, Edge Density, Edge Contrast Index, Contagion Index, Core Area Index, Shape Index, Cropland Extent, Fragmentation, Homogeneity, Isolation, land use intensity patterns, Canopy structure Farmland Boundary Extraction, Cropland extent, Cropland area, Harvested Area Fraction, Structural Connectivity Index, Vegetation Coherence Index, Crop Richness, Crop Evenness, Crop Simpson’s Diversity Index, Fractal Dimension Index, Entropy Index, Clumping Index, Grassland plant species diversity Plant density | MODIS 1, Landsat 1, Spot 1, Sentinel-2 1, WorldView-2/-3 1, QuickBird 1, Pleiades 1, GeoEye 1, GF-2 1, RapidEye 1, PlanetScope 1, Airborne Hyperspectral AVIRIS and HYDICE 2, Airborne data 2, UAV (RGB, MSP, HSP) 3 | [31,33,67,88,161,162,258,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349] |
| Vertical Vegetation Structure, Vegetation height, Plant height 3D-structures, 3D mapping | GEDI LiDAR 1, ICESat-2 1, UAV (RGB, LiDAR) Phenotyping robot “MARS-PhenoBot” 6, 6-DOT robot 6, RGB-Camera 6, Terrestrial LiDAR 6 | [350,351,352,353,354,355] |
| Surface roughness Canopy roughness | Sentinel-1 1, MODIS 1, UAV (RGB) 3 | [167,168,169] |
| Spektraler Heterogenität, Rao’s Q diversity index, Plant Species Richness Spatiotemporal variability | MODIS 1, Landsat 1, Sentinel-2 1 | [165,166,356] |
| Homogeneity Index, Grassland Homogeneity Index Crop homogeneity | Sentinel-1 1, Sentinel-2 1, GF-2 1 | [357,358,359] |
| Soil Roughness, Soil texture, Farmland microtopography | Landsat 1, Sentinel-1 1, Sentinel-2 1, AHSI/ZY1-02D satellite 1, SRTM 1, Airborne LiDAR 2, ASD Handspectometer 4, Smartphone-captured digital images 6 | [171,172,332,360,361,362,363,364,365,366,367,368] |
| Taxonomic A-LUI | ||
| Cropping patterns (single cropping, multiple cropping, sequential cropping, inter-cropping) | MODIS 1, Spot 1, Landsat 1, Sentinel-1 1, Sentinel-2 1, IRS 1, WiFS 1, Airborne AVIRIS 2, RADARSAT-2 1, Airborne LiDAR 2 | [155,173,174,175,176,177,178,179,180,181,182,183,186,369,370] |
| Crop classification, Crop type classification Crop type mapping | MODIS 1, Landsat 1, Sentinel-1 1, Sentinel-2 1, Sentinel-3 1, Airborne AVIRIS 2, UAV (HSP) 3 | [90,142,156,371,372,373,374,375,376,377] |
| Classification of grassland community types | Landsat 1, Sentinel-1 1, Sentinel-2 1 | [378,379,380] |
| Cropping frequency (single cropping/double cropping/triple cropping) Crop rotation Multi-cropping frequency (MCF) Cropping intensity Cropping intensity index Change Detection crops | MODIS 1, Gaofen-1 1, GF-1 1, Landsat 1, Sentinel-1 1, Sentinel-2 1 | [174,187,341,370,381,382,383,384,385,386,387,388,389,390] |
| Crop residue cover mapping | Landsat 1, Sentinel-2 1, Google Earth Engine 1, UAV 3, FieldSpec Pro 4, Photo analysis surveys 6 | [391,392,393,394,395,396] |
| Crop burning residue | MODIS 1, AVHRR 1, LISS-III 1, LISS-IV 1, UAV 3 | [397,398,399] |
| Classification between cultivated and fallow fields | MODIS 1, Landsat 1, Sentinel-2 1 | [369,381,400,401,402] |
| Organic, conventional farming Organic and non-organic farming | Landsat 1, Spot 1, Sentinel-2 1, KOMPSAT-2 1, WorldView-2 1, UAV (RGB) 3, Hyperspectral ASD 4 | [403,404,405,406] |
| Phenotyping, Phenology, Phenology-Stadien (BBCH-Scale) | UAV (RGB, MSP, HSP, TIR, LiDAR) 3, UAV (RGB, VIS, NIR, TIR, LiDAR) 3, Labour-Hyperspectral–AISA-EAGLE 5 | [244,304,327,407,408,409,410,411,412] |
| Crop growth duration (GDa), | MODIS 1, Landsat 1, Gaofen-1 1, Sentinel-2 1, RapidEye 1, UAV (SAR) 2 | [387,413,414,415,416] |
| Hedgerow map classifications, Hedgerows and field margins | TerraSAR-X 1, Spot 1, IKONOS 1, Airborne MSP 2, Aerial photographs 2, UAV (RGB, MSP) 3 | [89,417,418,419,420,421] |
| Flower strip mapping Flower Mapping | Airborne Hyperspectral (HySPEX, RGB, TIR) 2, Airborne Hyperspectral (AISA-Eagle) 2, Airborne MSP 2, UAV (MSP, HSP) 3 | [421,422,423,424,425,426] |
| Buffer Zone Efficiency Agricultural Pesticides Drift zones | Landsat 1, Sentinel-2 1 | [427] |
| Classification of agroforestry systems | RapidEye 1, PlantetScope 1, LISS IV 1, Sentinel-2 1 | [428,429,430,431,432] |
| Plastic-covered greenhouses Plasticulture detection Plastic greenhouses (PGs) and Plastic-mulched farmland (PMF) | Landsat 1, Sentinel-1 1, Sentinel-2 1, GF-2 | [433,434,435,436,437] |
| Crop yield predictions Grain Yield, Protein estimation | MODIS 1, Landsat 1, Sentinel-2 1, UAV–(MSP, HSP) 3 | [258,438,439,440,441,442,443,444,445,446,447] |
| Hop cultivation classification | UAV (MSP) 3, Mobile phone camera 6 | [448,449] |
| Functional traits of A-LUI | ||
| Crop biomass, Aboveground biomass (AGB), Relative biomass potential (rel. BMP) | MODIS 1, Landsat 1, Sentinel-1 1, Sentinel-2 1, PlanetScope 1, UAV (MSP, RGB) 3, Smartphone 6 | [191,192,193,194,195,196,197,293,450] |
| Plant Nitrogen Concentration (PNC) Leaf Nitrogen Content Fertilisation Gradient | Sentinel-2 1, UAV (MSP, TIR) 3 | [102,205,206,207,451,452,453] |
| Soil organic carbon (SOC) Soil organic matter (SOM) | ALOS-2 1, PALSAR-2 1, Landsat 1, Spot 4/5 1, GF-1 1, RADAR (PLAS) 1, Sentinel-1 1, Sentinel-2 1, Sentinel-3 1, Airborne hyperspectral (DAIS) 2, Airborne hyperspectral (AISA Eagle, Hawk) 2, Hyperspectral APEX 2, UAV (SAR) 3, VIS–NIR spectroscopy (Field) 1, | [93,210,215,216,221,223,291,454,455,456,457,458,459,460,461,462,463,464,465,466] |
| Clay content | Landsat 1, Aster 1, Sentinel-2 1, Airborne hyperspectral (AISA Eagle, Hawk) 2 | [368,467,468,469,470,471,472,473] |
| Soil total nitrogen (TN) N-Monitoring Total soil nitrogen (TSN) Nutritional Status Soil Total Nitrogen Soil Nutrients Contents | Sentinel-1 1, Sentinel-2 1, GF-1 1, UAV (HSP, MSP, TIR) 3, ASD (Field) 4 | [208,215,461,472,474,475,476,477,478,479,480] |
| C:N ratio soil | Landsat 1, Sentinel-1 1, Sentinel-2 1, Sentinel-3 1 | [93,460,481,482,483,484] |
| Carbon use efficiency (CUE) | MODIS 1, Landsat 1, Sentinel-2 1 | [485,486,487,488] |
| Silt content | GF-1 1, Airborne hyperspectral (AISA Eagle, Hawk) 2, | [368,489] |
| Sand content | Landsat 1, Sentinel-2 1, Aster 1, GF-1 1, Planet/NICFI 1, Airborne hyperspectral (AISA Eagle, Hawk) 2 | [368,473,489,490,491,492,493] |
| Potassium content | PRISMA 1, UAV (MSP) 3 | [476,477] |
| Phosphorus content (P) | MODIS 1, Landsat 1, Sentinel-2 1, PRISMA 1, UAV (MSP, LiDAR) 3, ASD 4 | [333,476,477,478,479,494] |
| Pestizide, Herbizide, Fungizide Pest management | Sentinel-2 1, UAV 3, Local hyperspectral camera 6, ASD—LeafSpec hyperspectral images 4 | [198,199,200,201,202,203,495,496] |
| Plant Disease Detection, Crop vegetation health Plant health | Sentinel-1 1, Sentinel-2 1, UAV (RGB, MSP, VIS, NIR, TIR, LiDAR) 3, ASD FieldSpec Pro FR 4 | [92,105,404,409,497,498,499,500,501,502,503,504,505,506,507,508] |
| CSR-Plant Strategy Types Plant functional groups (PFGs) Ellenberg Indicator Species | Landsat 1, Sentinel-2 1, Airborne hyperspectral data (AISA dual) 2, Airborne AISA Fenix 2, Airborne imaging spectrometer APEX 2, Airborne hyperspectral HySpex 2 | [509,510,511,512,513,514,515,516] |
| Gross Primary Production (GPP) Dynamic of carbon emissions, Carbon Fluxes | MODIS 1, Meris 1, Landsat 1, Sentinel-1 1, Sentinel-2 1, Sentinel-3 1, Hyperspectral Ocean Optics USB2000 (Tower) 6, LEDAPS-Aerosol Robotic Network (AERONET) 6 | [246,485,517,518,519,520,521,522,523,524] |
| Cropland NPP | MODIS 1, Landsat 1, UAV (MSP) 3 | [306,347,485,525,526,527,528,529,530] |
| HANPP (Human Appropriation of Net Primary Production) | MODIS 1, Landsat 1, Sentinel-2 1 | [531,532,533,534,535] |
| Water use efficiency (WUE) | MODIS 1, Landsat 1, Sentinel-1 1, Sentinel-2 1 | [485,536,537,538,539,540] |
| Yield and Quality | Landsat 1, Sentinel-1 1, Sentinel-2 1, UAV (MSP) 3 | [196,523,541,542,543,544,545,546,547,548] |
| Harvest Index | MODIS 1, HJ-1 satellite 1, Sentinel-2 1, UAV (HSP) 3, FieldSpec HandHeld Spectroradiometer (ASD) 4 | [549,550,551,552] |
| Soil quality index (SQI) | Landsat 1, Sentinel-2 1, Airborne hyperspectral (AISA) 2 | [330,553,554] |
| Soil productivity potential | MODIS 1, Landsat 1, Sentinel-2 1, ASD FieldSpec 4 | [302,472,555,556,557] |
| Soil Crust | KOMPSAT-2 satellite 1, Airborne hyperspectral (DAIS) 2, Airborne hyperspectral (AISA Eagle, Hawk) 2, UAV (RGB, MSP, HSP) 3, ASD Fieldspec 4 | [291,558,559,560,561,562,563,564] |
| Soil infiltration | Airborne hyperspectral (DAIS) 2, Airborne hyperspectral (AISA Eagle, Hawk) 2, Airborne CASI-1500 2, SASI-600 2, Airborne TASI-600 hyperspectral sensors 2, UAV (HSP, Cubert UHD-185) 3 | [291,565,566] |
| Soil pH value | PALSAR-1/2 1, SRTM 1, Landsat 1, PlantetScope 1, Sentinel-1 1, Sentinel-2 1, UAV (MSP) 3, ASD FieldSpec 4 | [290,361,547,567,568,569,570,571,572,573,574,575,576,577] |
| Soil salinity Soil salinisation | Landsat 1, RADAR 1, Airborne LiDAR 2, HJ-1 Hyperspectral Imager Data 2 | [290,578,579,580,581,582,583,584,585] |
| Land degradation, Soil degradation, Soil erosion Desertification | Landsat 1, SRTM 1, Sentinel-1 1, Sentinel-2 1, RapidEye 1, Airborne hyperspectral (DAIS) 2, Airborne hyperspectral (AISA Eagle, Hawk) 2, UAV (RGB) 3 | [291,586,587,588,589,590,591] |
| Soil compaction Soil Compaction Index Soil aggregation Soil penetration resistance | Landsat 1, GoogleEarth aerial imagery 1, Sentinel-2 1, RapidEye 1, Airborne hyperspectral (CASI) 2, UAV (RGB, SAR, LiDAR, MSP, TIR) 3 | [587,592,593,594,595,596,597,598,599] |
| Cattle intensification, Spatial distribution of cattle | Sentinel-1 1, Sentinel-2 1 | [600] |
| Grassland use intensity Grassland management intensity | Landsat 1, Sentinel-1 1, Sentinel-2 1, RapidEye 1, | [91,188,601,602,603,604,605] |
| Grassland fire | MODIS 1, Sentinel-1 1, Sentinel-2 1, GF-6 WFV 1, UAV 3 | [606,607,608,609,610] |
| Grassland cut detection | SAR 1, Sentinel-1 1, Sentinel-2 1 | [611,612,613] |
| Different Water quality indicators | All RS Sensors with all RS characteristics (MSP, HSP, TIR, RADAR, LiDAR) | [63] |
| Trait/Process | RS Sensor/Modality | Directionality with Intensity | Key Confounders (Non-Management) |
|---|---|---|---|
| Leaf N/chlorophyll content | Red-edge indices (Sentinel-2), hyperspectral (EnMAP, CHIME), solar-induced fluorescence (FLEX) | ↑ with higher fertilisation and improved management | Cultivar-specific pigment traits; background soil reflectance; cloud/shadow effects |
| Canopy structure (LAI, height, biomass) | Multispectral VIs (NDVI, EVI), LiDAR metrics (GEDI, UAV-LiDAR), SAR backscatter (Sentinel-1) | ↑ with higher input intensity, dense sowing, irrigation | Natural soil fertility; precipitation regime; lodging events |
| Phenology (timing, cropping frequency) | Time series (Sentinel-1 coherence for tillage/harvest; Sentinel-2 optical indices; PlanetScope) | More frequent harvests or longer growing season → ↑ intensity | Climate-driven shifts in growing season; interannual weather variability |
| Root traits (water/nutrient uptake) | Thermal (ET proxies), SAR soil moisture (Sentinel-1), hyperspectral water stress proxies | Intensive irrigation/fertilisation → ↑ water use efficiency or altered root activity | Soil texture; groundwater availability; drought stress independent of management |
| Canopy temperature/water status | Thermal sensors (ECOSTRESS, UAV-TIR), ET modelling with optical+thermal fusion | ↓ canopy temperature and ↑ ET with irrigation intensity | Heat waves, VPD variability, soil hydraulic properties |
| Structural diversity (field size, edges, hedgerows) | High-res optical (PlanetScope, UAV), LiDAR for vertical structure, OBIA | ↑ intensity often linked to larger fields, reduced edge density | Historical land consolidation, topography, land tenure |
| Crop type diversity (taxonomic composition) | Multi-temporal Sentinel-2/Landsat, hyperspectral UAV, classification algorithms | ↑ intensity often → ↓ diversity, monocropping | Regional crop rotations, policy incentives, cultural practices |
| Soil organic matter/C:N ratio | Hyperspectral reflectance (VNIR-SWIR), SAR + optical fusion, regression models | ↓ SOM with long-term intensive use, ↑ mineral N inputs → altered C:N | Parent material, drainage, climate-driven decomposition |
| Harvest/tillage events | SAR coherence (Sentinel-1), time-series change detection, UAV imagery | ↑ intensity = more frequent disturbance signals per season | Weather-induced soil roughness, cloud cover gaps |
| Pest/disease stress signals | Hyperspectral indices (red-edge, PRI), fluorescence (SIF), UAV multispectral | Intensive management may ↓ visible stress due to pesticide control | Pathogen pressure, local outbreak dynamics, cultivar resistance |
| Management Practice | Trait/Process Affected | RS Proxy/Observable | A-LUI Indicator Category | Validation Needs | Policy Relevance |
|---|---|---|---|---|---|
| Fertiliser application | Leaf nitrogen, canopy chlorophyll | Red-edge indices (Sentinel-2), hyperspectral retrievals | Trait/Functional | Ground sampling, cultivar comparisons | Nutrient efficiency, sustainability reporting |
| Irrigation | Soil moisture, evapotranspiration | SAR backscatter (Sentinel-1), thermal RS, ET models | Functional | Flux tower data, lysimeter validation | Water use efficiency, water policy compliance |
| Tillage/harvest | Soil disturbance, residue cover | SAR coherence, optical time series | Genesis/Structural | In situ soil disturbance surveys | Soil conservation, monitoring sustainable practices |
| Crop rotation | Temporal diversity, phenology | Multi-temporal NDVI/EVI, crop classification | Genesis/Taxonomic | Farm records, phenological ground obs. | Agri-environmental schemes, crop diversification targets |
| Field consolidation | Landscape heterogeneity, field size | High-res optical imagery, LiDAR boundaries | Structural | Field surveys, cadastral data | Land consolidation monitoring, biodiversity impacts |
| Intensified cropping cycles | Aboveground biomass, multiple harvests | Time series (MODIS, Sentinel-2), SIF (FLEX, OCO-2) | Genesis/Functional | Yield data, harvest records | Productivity vs. sustainability trade-offs |
| Hedgerow removal/addition | Semi-natural habitat, species richness | High-res imagery (UAV, Planet), landscape metrics | Structural/Taxonomic | Biodiversity field surveys | CAP greening measures, landscape conservation |
| Technology/Approach | Example Missions or Tools | Indicator Categories Addressed | Spatial/Temporal Resolution | Development Stage | Added Value |
|---|---|---|---|---|---|
| Multispectral optical | Landsat, Sentinel-2, PlanetScope | Trait (NDVI, chlorophyll, phenology) | 10–30 m/5–16 d | Operational | Long time series, global coverage |
| Hyperspectral | EnMAP, CHIME, PRISMA | Trait (chlorophyll, N, stress proxies) | 20–30 m/<30 d | Operational/new | Detailed biochemical information |
| Thermal infrared | ECOSTRESS, Landsat TIRS, MODIS | Functional (evapotranspiration, irrigation) | 70–1000 m/daily–16 d | Operational | Direct link to water/energy fluxes |
| Radar (SAR) | Sentinel-1, RADARSAT, ALOS PALSAR | Structure (tillage, harvest, soil moisture) | 10–30 m/6–12 d | Operational | All-weather, soil and canopy penetration |
| LiDAR | GEDI, ICESat-2, airborne LiDAR | Structure (canopy height, biomass, terraces) | 1–25 m/campaign-based | Operational/campaign | 3D structure, fine-scale terrain |
| UAV-based platforms | Multispectral & thermal drones | Trait & Structure (field scale) | cm–dm/flexible | Operational | Ultra-high resolution, flexible timing |
| Solar-Induced Fluorescence (SIF) | OCO-2, FLEX (upcoming) | Functional (photosynthesis, GPP) | 300 m–2 km/daily | Research/upcoming | Direct proxy for photosynthesis |
| Multi-sensor fusion | Sentinel-1 + Sentinel-2, optical + thermal | All categories | Depends on data | Research & operational | Improves robustness & accuracy |
| AI/ML approaches | Deep learning, data fusion methods | All categories | Depends on training data | Research & early operational | Enhanced pattern recognition |
| Semantic web and linked data | RDF/OWL/SPARQL ontologies | Data integration | N/A | Conceptual | Harmonisation across datasets |
References
- Diogo, V.; Helfenstein, J.; Mohr, F.; Varghese, V.; Debonne, N.; Levers, C.; Swart, R.; Sonderegger, G.; Nemecek, T.; Schader, C.; et al. Developing context-specific frameworks for integrated sustainability assessment of agricultural intensity change: An application for Europe. Environ. Sci. Policy 2022, 137, 128–142. [Google Scholar] [CrossRef]
- Tripathi, S.; Srivastava, P.; Devi, R.S.; Bhadouria, R. Influence of synthetic fertilizers and pesticides on soil health and soil microbiology. In Agrochemicals Detection, Treatment and Remediation; Elsevier: Amsterdam, The Netherlands, 2020; pp. 25–54. [Google Scholar]
- Yahaya, S.M.; Mahmud, A.A.; Abdullahi, M.; Haruna, A. Recent advances in the chemistry of nitrogen, phosphorus and potassium as fertilizers in soil: A review. Pedosphere 2023, 33, 385–406. [Google Scholar] [CrossRef]
- Shah, A.N.; Tanveer, M.; Shahzad, B.; Yang, G.; Fahad, S.; Ali, S.; Bukhari, M.A.; Tung, S.A.; Hafeez, A.; Souliyanonh, B. Soil compaction effects on soil health and cropproductivity: An overview. Environ. Sci. Pollut. Res. 2017, 24, 10056–10067. [Google Scholar] [CrossRef]
- Ingrao, C.; Strippoli, R.; Lagioia, G.; Huisingh, D. Water scarcity in agriculture: An overview of causes, impacts and approaches for reducing the risks. Heliyon 2023, 9, e18507. [Google Scholar] [CrossRef] [PubMed]
- Scanlon, B.R.; Jolly, I.; Sophocleous, M.; Zhang, L. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality. Water Resour. Res. 2007, 43, W03437. [Google Scholar] [CrossRef]
- Sharma, K.; Rajan, S.; Nayak, S.K. Water pollution: Primary sources and associated human health hazards with special emphasis on rural areas. In Water Resources Management for Rural Development; Elsevier: Amsterdam, The Netherlands, 2024; pp. 3–14. [Google Scholar]
- Pannard, A.; Souchu, P.; Chauvin, C.; Delabuis, M.; Gascuel-Odoux, C.; Jeppesen, E.; Le Moal, M.; Ménesguen, A.; Pinay, G.; Rabalais, N.N.; et al. Why are there so many definitions of eutrophication? Ecol. Monogr. 2024, 94, e1616. [Google Scholar] [CrossRef]
- Zabel, F.; Delzeit, R.; Schneider, J.M.; Seppelt, R.; Mauser, W.; Václavík, T. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun. 2019, 10, 2844. [Google Scholar] [CrossRef] [PubMed]
- Mupepele, A.C.; Bruelheide, H.; Brühl, C.; Dauber, J.; Fenske, M.; Freibauer, A.; Gerowitt, B.; Krüß, A.; Lakner, S.; Plieninger, T.; et al. Biodiversity in European agricultural landscapes: Transformative societal changes needed. Trends Ecol. Evol. 2021, 36, 1067–1070. [Google Scholar] [CrossRef]
- Burian, A.; Kremen, C.; Wu, J.S.T.; Beckmann, M.; Bulling, M.; Garibaldi, L.A.; Krisztin, T.; Mehrabi, Z.; Ramankutty, N.; Seppelt, R. Biodiversity–production feedback effects lead to intensification traps in agricultural landscapes. Nat. Ecol. Evol. 2024, 8, 752–760. [Google Scholar] [CrossRef] [PubMed]
- Le Provost, G.; Thiele, J.; Westphal, C.; Penone, C.; Allan, E.; Neyret, M.; van der Plas, F.; Ayasse, M.; Bardgett, R.D.; Birkhofer, K.; et al. Contrasting responses of above-and belowground diversity to multiple components of land-use intensity. Nat. Commun. 2021, 12, 3918. [Google Scholar] [CrossRef]
- Beckmann, M.; Gerstner, K.; Akin-Fajiye, M.; Ceaușu, S.; Kambach, S.; Kinlock, N.L.; Phillips, H.R.P.; Verhagen, W.; Gurevitch, J.; Klotz, S.; et al. Conventional land-use intensification reduces species richness and increases production: A global meta-analysis. Glob. Change Biol. 2019, 25, 1941–1956. [Google Scholar] [CrossRef]
- Felipe-Lucia, M.R.; Soliveres, S.; Penone, C.; Fischer, M.; Ammer, C.; Boch, S.; Boeddinghaus, R.S.; Bonkowski, M.; Buscot, F.; Fiore-Donno, A.M.; et al. Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proc. Natl. Acad. Sci. 2020, 117, 28140–28149. [Google Scholar] [CrossRef] [PubMed]
- Gossner, M.M.; Lewinsohn, T.M.; Kahl, T.; Grassein, F.; Boch, S.; Prati, D.; Birkhofer, K.; Renner, S.C.; Sikorski, J.; Wubet, T.; et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 2016, 540, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Millard, J.; Outhwaite, C.L.; Kinnersley, R.; Freeman, R.; Gregory, R.D.; Adedoja, O.; Gavini, S.; Kioko, E.; Kuhlmann, M.; Ollerton, J.; et al. Global effects of land-use intensity on local pollinator biodiversity. Nat. Commun. 2021, 12, 2902. [Google Scholar] [CrossRef] [PubMed]
- Suarez, A.; Gwozdz, W. On the relation between monocultures and ecosystem services in the Global South: A review. Biol. Conserv. 2023, 278, 109870. [Google Scholar] [CrossRef]
- Cheng, C.; Liu, Z.; Song, W.; Chen, X.; Zhang, Z.; Li, B.; van Kleunen, M.; Wu, J. Biodiversity increases resistance of grasslands against plant invasions under multiple environmental changes. Nat. Commun. 2024, 15, 4506. [Google Scholar] [CrossRef]
- Scanes, C.G. Human Activity and Habitat Loss: Destruction, Fragmentation, and Degradation. In Animals and Human Society; Elsevier: Amsterdam, The Netherlands, 2018; pp. 451–482. ISBN 9780128052471. [Google Scholar]
- Oliver, T.H.; Marshall, H.H.; Morecroft, M.D.; Brereton, T.; Prudhomme, C.; Huntingford, C. Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies. Nat. Clim. Change 2015, 5, 941–946. [Google Scholar] [CrossRef]
- Peters, M.K.; Hemp, A.; Appelhans, T.; Becker, J.N.; Behler, C.; Classen, A.; Detsch, F.; Ensslin, A.; Ferger, S.W.; Frederiksen, S.B.; et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 2019, 568, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.M.; Delzeit, R.; Neumann, C.; Heimann, T.; Seppelt, R.; Schuenemann, F.; Söder, M.; Mauser, W.; Zabel, F. Effects of profit-driven cropland expansion and conservation policies. Nat. Sustain. 2024, 7, 1335–1347. [Google Scholar] [CrossRef]
- Kaur, R.; Choudhary, D.; Bali, S.; Bandral, S.S.; Singh, V.; Ahmad, M.A.; Rani, N.; Singh, T.G.; Chandrasekaran, B. Pesticides: An alarming detrimental to health and environment. Sci. Total Environ. 2024, 915, 170113. [Google Scholar] [CrossRef]
- Bava, R.; Castagna, F.; Lupia, C.; Poerio, G.; Liguori, G.; Lombardi, R.; Naturale, M.D.; Mercuri, C.; Bulotta, R.M.; Britti, D.; et al. Antimicrobial Resistance in Livestock: A Serious Threat to Public Health. Antibiotics 2024, 13, 551. [Google Scholar] [CrossRef]
- Khmaissa, M.; Zouari-Mechichi, H.; Sciara, G.; Record, E.; Mechichi, T. Pollution from livestock farming antibiotics an emerging environmental and human health concern: A review. J. Hazard. Mater. Adv. 2024, 13, 100410. [Google Scholar] [CrossRef]
- Turner, B.L.; Doolittle, W.E. The Concept and Measure of Agricultural Intensity. Prof. Geogr. 1978, 30, 297–301. [Google Scholar] [CrossRef]
- Herzog, F.; Steiner, B.; Bailey, D.; Baudry, J.; Billeter, R.; Bukácek, R.; De Blust, G.; De Cock, R.; Dirksen, J.; Dormann, C.F.; et al. Assessing the intensity of temperate European agriculture at the landscape scale. Eur. J. Agron. 2006, 24, 165–181. [Google Scholar] [CrossRef]
- Lüscher, G.; Jeanneret, P.; Schneider, M.K.; Turnbull, L.A.; Arndorfer, M.; Balázs, K.; Báldi, A.; Bailey, D.; Bernhardt, K.G.; Choisis, J.P.; et al. Responses of plants, earthworms, spiders and bees to geographic location, agricultural management and surrounding landscape in European arable fields. Agric. Ecosyst. Environ. 2014, 186, 124–134. [Google Scholar] [CrossRef]
- Helfenstein, J.; Hepner, S.; Kreuzer, A.; Achermann, G.; Williams, T.; Bürgi, M.; Debonne, N.; Dimopoulos, T.; Diogo, V.; Fjellstad, W.; et al. Divergent agricultural development pathways across farm and landscape scales in Europe: Implications for sustainability and farmer satisfaction. Glob. Environ. Change 2024, 86, 102855. [Google Scholar] [CrossRef]
- Canisius, F.; Turral, H.; Molden, D. Fourier analysis of historical NOAA time series data to estimate bimodal agriculture. Int. J. Remote Sens. 2007, 28, 5503–5522. [Google Scholar] [CrossRef]
- Kuemmerle, T.; Hostert, P.; St-Louis, V.; Radeloff, V.C. Using image texture to map farmland field size: A case study in Eastern Europe. J. Land Use Sci. 2009, 4, 85–107. [Google Scholar] [CrossRef]
- Verburg, P.H.; Neumann, K.; Nol, L. Challenges in using land use and land cover data for global change studies. Glob. Change Biol. 2011, 17, 974–989. [Google Scholar] [CrossRef]
- Kuemmerle, T.; Erb, K.; Meyfroidt, P.; Müller, D.; Verburg, P.H.; Estel, S.; Haberl, H.; Hostert, P.; Jepsen, M.R.; Kastner, T.; et al. Challenges and opportunities in mapping land use intensity globally. Curr. Opin. Environ. Sustain. 2013, 5, 484–493. [Google Scholar] [CrossRef]
- Wellmann, T.; Haase, D.; Knapp, S.; Salbach, C.; Selsam, P.; Lausch, A. Urban land use intensity assessment: The potential of spatio-temporal spectral traits with remote sensing. Ecol. Indic. 2018, 85, 190–203. [Google Scholar] [CrossRef]
- Weber, D.; Schwieder, M.; Ritter, L.; Koch, T.; Psomas, A.; Huber, N.; Ginzler, C.; Boch, S. Grassland-use intensity maps for Switzerland based on satellite time series: Challenges and opportunities for ecological applications. Remote Sens. Ecol. Conserv. 2024, 10, 312–327. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, Z.; Wen, Q.; Chen, J.; Kojima, S. Spatiotemporal Land Use/Land Cover Changes and Impact on Urban Thermal Environments: Analyzing Cool Island Intensity Variations. Sustainability 2024, 16, 3205. [Google Scholar] [CrossRef]
- Qiu, B.; Liu, B.; Tang, Z.; Dong, J.; Xu, W.; Liang, J.; Chen, N.; Chen, J.; Wang, L.; Zhang, C.; et al. National-scale 10-m maps of cropland use intensity in China during 2018–2023. Sci. Data 2024, 11, 691. [Google Scholar] [CrossRef]
- Hank, T.B.; Berger, K.; Bach, H.; Clevers, J.G.P.W.; Gitelson, A.; Zarco-Tejada, P.; Mauser, W. Spaceborne Imaging Spectroscopy for Sustainable Agriculture: Contributions and Challenges; Springer: Dordrecht, The Netherlands, 2019; Volume 40, ISBN 0123456789. [Google Scholar]
- Wulder, M.A.; Coops, N.C. Make Earth observations open access. Nature 2014, 513, 30–31. [Google Scholar] [CrossRef]
- Wulder, M.A.; Roy, D.P.; Radeloff, V.C.; Loveland, T.R.; Anderson, M.C.; Johnson, D.M.; Healey, S.; Zhu, Z.; Scambos, T.A.; Pahlevan, N.; et al. Fifty years of Landsat science and impacts. Remote Sens. Environ. 2022, 280, 113195. [Google Scholar] [CrossRef]
- Malenovský, Z.; Rott, H.; Cihlar, J.; Schaepman, M.E.; García-Santos, G.; Fernandes, R.; Berger, M. Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ. 2012, 120, 91–101. [Google Scholar] [CrossRef]
- Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C.; et al. The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation. Remote Sens. 2015, 7, 8830–8857. [Google Scholar] [CrossRef]
- Nieke, J.; Rast, M. Towards the Copernicus Hyperspectral Imaging Mission For The Environment (CHIME). In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 157–159. [Google Scholar]
- Dubayah, R.; Blair, J.B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.; Luthcke, S.; et al. The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Lee, C.M.; Cable, M.L.; Hook, S.J.; Green, R.O.; Ustin, S.L.; Mandl, D.J.; Middleton, E.M. An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities. Remote Sens. Environ. 2015, 167, 6–19. [Google Scholar] [CrossRef]
- Kraft, S.; Del Bello, U.; Bouvet, M.; Drusch, M.; Moreno, J. FLEX: ESA’s Earth Explorer 8 candidate mission. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 7125–7128. [Google Scholar]
- Omia, E.; Bae, H.; Park, E.; Kim, M.S.; Baek, I.; Kabenge, I.; Cho, B.K. Remote Sensing in Field Crop Monitoring: A Comprehensive Review of Sensor Systems, Data Analyses and Recent Advances. Remote Sens. 2023, 15, 354. [Google Scholar] [CrossRef]
- Sethy, P.K.; Pandey, C.; Sahu, Y.K.; Behera, S.K. Hyperspectral Imagery Applications for Precision Agriculture—A Systemic Survey; Springer: New York, NY, USA, 2022; Volume 81, ISBN 0123456789. [Google Scholar]
- Maes, W.H.; Steppe, K. Perspectives for Remote Sensing with Unmanned Aerial Vehicles in Precision Agriculture. Trends Plant Sci. 2019, 24, 152–164. [Google Scholar] [CrossRef]
- Khanal, S.; Fulton, J.; Shearer, S. An overview of current and potential applications of thermal remote sensing in precision agriculture. Comput. Electron. Agric. 2017, 139, 22–32. [Google Scholar] [CrossRef]
- Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications. Agronomy 2020, 10, 641. [Google Scholar] [CrossRef]
- Barbosa Júnior, M.R.; de Almeida Moreira, B.R.; Carreira, V.D.S.; Brito Filho, A.L.d.; Trentin, C.; Souza, F.L.P.d.; Tedesco, D.; Setiyono, T.; Flores, J.P.; Ampatzidis, Y.; et al. Precision agriculture in the United States: A comprehensive meta-review inspiring further research, innovation, and adoption. Comput. Electron. Agric. 2024, 221, 108993. [Google Scholar] [CrossRef]
- Marques, P.; Pádua, L.; Sousa, J.J.; Fernandes-Silva, A. Advancements in Remote Sensing Imagery Applications for Precision Management in Olive Growing: A Systematic Review. Remote Sens. 2024, 16, 1324. [Google Scholar] [CrossRef]
- Bonfanti, J.; Langridge, J.; Avadí Ef, A.; Casajus, N.; Chaudhary, A.; Damour Hi, G.; Estrada-Carmona, N.; Jones, S.K.; Makowski, D.; Mitchell, M.; et al. Global review of meta-analyses reveals key data gaps in agricultural impact studies on biodiversity in croplands. BioRxiv 2024. [Google Scholar] [CrossRef]
- Khanal, S.; Kushal, K.C.; Fulton, J.P.; Shearer, S.; Ozkan, E. Remote sensing in agriculture—Accomplishments, limitations, and opportunities. Remote Sens. 2020, 12, 3783. [Google Scholar] [CrossRef]
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Lausch, A.; Selsam, P.; Pause, M.; Bumberger, J. Monitoring vegetation- and geodiversity with remote sensing and traits. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2024, 382, 20230058. [Google Scholar] [CrossRef] [PubMed]
- Cavender-Bares, J.; Gamon, J.A.; Townsend, P.A. Remote Sensing of Plant Biodiversity; Cavender-Bares, J., Gamon, J.A., Townsend, P.A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-33156-6. [Google Scholar]
- Lausch, A.; Bastian, O.; Klotz, S.; Leitão, P.J.; Jung, A.; Rocchini, D.; Schaepman, M.E.; Skidmore, A.K.; Tischendorf, L.; Knapp, S. Understanding and assessing vegetation health by in situ species and remote-sensing approaches. Methods Ecol. Evol. 2018, 9, 1799–1809. [Google Scholar] [CrossRef]
- Lausch, A.; Baade, J.; Bannehr, L.; Borg, E.; Bumberger, J.; Chabrilliat, S.; Dietrich, P.; Gerighausen, H.; Glässer, C.; Hacker, J.; et al. Linking Remote Sensing and Geodiversity and Their Traits Relevant to Biodiversity—Part I: Soil Characteristics. Remote Sens. 2019, 11, 2356. [Google Scholar] [CrossRef]
- Lausch, A.; Schaepman, M.E.; Skidmore, A.K.; Truckenbrodt, S.C.; Hacker, J.M.; Baade, J.; Bannehr, L.; Borg, E.; Bumberger, J.; Dietrich, P.; et al. Linking the Remote Sensing of Geodiversity and Traits Relevant to Biodiversity—Part II: Geomorphology, Terrain and Surfaces. Remote Sens. 2020, 12, 3690. [Google Scholar] [CrossRef]
- Lausch, A.; Schaepman, M.E.; Skidmore, A.K.; Catana, E.; Bannehr, L.; Bastian, O.; Borg, E.; Bumberger, J.; Dietrich, P.; Glässer, C.; et al. Remote Sensing of Geomorphodiversity Linked to Biodiversity—Part III: Traits, Processes and Remote Sensing Characteristics. Remote Sens. 2022, 14, 2279. [Google Scholar] [CrossRef]
- Lausch, A.; Bannehr, L.; Berger, S.A.; Borg, E.; Bumberger, J. Monitoring Water Diversity and Water Quality with Remote Sensing and Traits. Remote Sens. 2024, 16, 2425. [Google Scholar] [CrossRef]
- Andersson, E.; Haase, D.; Anderson, P.; Cortinovis, C.; Goodness, J.; Kendal, D.; Lausch, A.; McPhearson, T.; Sikorska, D.; Wellmann, T. What are the traits of a social-ecological system: Towards a framework in support of urban sustainability. Npj Urban Sustain. 2021, 1, 14. [Google Scholar] [CrossRef]
- Wellmann, T.; Lausch, A.; Andersson, E.; Knapp, S.; Cortinovis, C.; Jache, J.; Scheuer, S.; Kremer, P.; Mascarenhas, A.; Kraemer, R.; et al. Remote sensing in urban planning: Contributions towards ecologically sound policies? Landsc. Urban Plan. 2020, 204, 103921. [Google Scholar] [CrossRef]
- Xie, C.; Wang, J.; Haase, D.; Wellmann, T.; Lausch, A. Measuring spatio-temporal heterogeneity and interior characteristics of green spaces in urban neighborhoods: A new approach using gray level co-occurrence matrix. Sci. Total Environ. 2023, 855, 158608. [Google Scholar] [CrossRef]
- Roilo, S.; Paulus, A.; Alarcón-Segura, V.; Kock, L.; Beckmann, M.; Klein, N.; Cord, A.F. Quantifying agricultural land-use intensity for spatial biodiversity modelling: Implications of different metrics and spatial aggregation methods. Landsc. Ecol. 2024, 39, 55. [Google Scholar] [CrossRef]
- Erb, K.H.; Haberl, H.; Jepsen, M.R.; Kuemmerle, T.; Lindner, M.; Müller, D.; Verburg, P.H.; Reenberg, A. A conceptual framework for analysing and measuring land-use intensity. Curr. Opin. Environ. Sustain. 2013, 5, 464–470. [Google Scholar] [CrossRef]
- Çakmakçı, R.; Salık, M.A.; Çakmakçı, S. Assessment and Principles of Environmentally Sustainable Food and Agri-culture Systems. Agriculture 2023, 13, 1073. [Google Scholar] [CrossRef]
- Dullinger, I.; Essl, F.; Moser, D.; Erb, K.; Haberl, H.; Dullinger, S. Biodiversity models need to represent land-use intensity more comprehensively. Glob. Ecol. Biogeogr. 2021, 30, 924–932. [Google Scholar] [CrossRef]
- Rascher, U.; Alonso, L.; Burkart, A.; Cilia, C.; Cogliati, S.; Colombo, R.; Damm, A.; Drusch, M.; Guanter, L.; Hanus, J.; et al. Sun-induced fluorescence—A new probe of photosynthesis: First maps from the imaging spectrometer HyPlant. Glob. Change Biol. 2015, 21, 4673–4684. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, G.H.; Colombo, R.; Middleton, E.M.; Rascher, U.; van der Tol, C.; Nedbal, L.; Goulas, Y.; Pérez-Priego, O.; Damm, A.; Meroni, M.; et al. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote Sens. Environ. 2019, 231, 111177. [Google Scholar] [CrossRef]
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; US Government Printing Office: Washington, DC, USA, 1976; Volume 964.
- Adewumi, J.R.; Akomolafe, J.K.; Ajibade, F.O.; Fabeku, B.B. Application of GIS and Remote Sensing Technique to Change Detection in Land Use/Land Cover Mapping of Igbokoda, Ondo State, Nigeria. J. Appl. Sci. Process Eng. 1970, 3, 34–54. [Google Scholar] [CrossRef]
- Matthews, E. Global Vegetation and Land Use: New High-Resolution Data Bases for Climate Studies. J. Clim. Appl. Meteorol. 1983, 22, 474–487. [Google Scholar] [CrossRef]
- Masek, J.G.; Wulder, M.A.; Markham, B.; McCorkel, J.; Crawford, C.J.; Storey, J.; Jenstrom, D.T. Landsat 9: Empowering open science and applications through continuity. Remote Sens. Environ. 2020, 248, 111968. [Google Scholar] [CrossRef]
- Copernicus Copernicus the European Union’s Earth Observation Programme. Available online: https://www.copernicus.eu (accessed on 2 August 2024).
- Rocchini, D.; Santos, M.J.; Ustin, S.L.; Féret, J.; Asner, G.P.; Beierkuhnlein, C.; Dalponte, M.; Feilhauer, H.; Foody, G.M.; Geller, G.N.; et al. The Spectral Species Concept in Living Color. J. Geophys. Res. Biogeosci. 2022, 127, e2022JG007026. [Google Scholar] [CrossRef]
- Maudet, S.; Brusse, T.; Poss, B.; Caro, G.; Marrec, R. Estimating landscape intensity through farming practices: An integrative and flexible approach to modelling farming intensity from field to landscape. Ecol. Modell. 2025, 501, 110975. [Google Scholar] [CrossRef]
- Lausch, A.; Menz, G. Bedeutung der Integration linearer Elemente in Fernerkundungsdaten zur Berechnung von Landschaftsstrukturmaßen. Photogramm. Fernerkund. Geoinf. 1999, 3, 185–194. [Google Scholar]
- Lausch, A.; Herzog, F. Applicability of landscape metrics for the monitoring of landscape change: Issues of scale, resolution and interpretability. Ecol. Indic. 2002, 2, 3–15. [Google Scholar] [CrossRef]
- Billeter, R.; Liira, J.; Bailey, D.; Bugter, R.; Arens, P.; Augenstein, I.; Aviron, S.; Baudry, J.; Bukacek, R.; Burel, F.; et al. Indicators for biodiversity in agricultural landscapes: A pan-European study. J. Appl. Ecol. 2008, 45, 141–150. [Google Scholar] [CrossRef]
- Mohr, F.; Diogo, V.; Helfenstein, J.; Debonne, N.; Dimopoulos, T.; Dramstad, W.; García-Martín, M.; Hernik, J.; Herzog, F.; Kizos, T.; et al. Why has farming in Europe changed? A farmers’ perspective on the development since the 1960s. Reg. Environ. Change 2023, 23, 156. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.E.; Collins, S.J.; Crowe, S.; Girard, J.; Naujokaitis-Lewis, I.; Smith, A.C.; Lindsay, K.; Mitchell, S.; Fahrig, L. Effects of farmland heterogeneity on biodiversity are similar to—Or even larger than—The effects of farming practices. Agric. Ecosyst. Environ. 2020, 288, 106698. [Google Scholar] [CrossRef]
- Grenzdörffer, G. Grundlagen der Landwirtschaftlichen Fernerkundung; KTBL eV Kuratorium für Technik und Bauwesen in der Landwirtschaft: Darmstadt, Germany, 2022. [Google Scholar]
- Picado, E.F.; Romero, K.F. Mapping Spatial Variability of Sugarcane Foliar Nitrogen, Phosphorus, Potassium and Chlorophyll Concentrations Using Remote Sensing. Geomatics 2025, 5, 3. [Google Scholar] [CrossRef]
- Yu, M.; Rui, X.; Xie, W.; Xu, X.; Wei, W. Research on Automatic Identification Method of Terraces on the Loess Plateau Based on Deep Transfer Learning. Remote Sens. 2022, 14, 2446. [Google Scholar] [CrossRef]
- Wang, X.; Shu, L.; Han, R.; Yang, F.; Gordon, T.; Wang, X.; Xu, H. A Survey of Farmland Boundary Extraction Technology Based on Remote Sensing Images. Electronics 2023, 12, 1156. [Google Scholar] [CrossRef]
- Betbeder, J.; Hubert-Moy, L.; Burel, F.; Corgne, S.; Baudry, J. Assessing ecological habitat structure from local to landscape scales using synthetic aperture radar. Ecol. Indic. 2015, 52, 545–557. [Google Scholar] [CrossRef]
- Griffiths, P.; Nendel, C.; Hostert, P. Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping. Remote Sens. Environ. 2019, 220, 135–151. [Google Scholar] [CrossRef]
- Bartold, M.; Kluczek, M.; Wróblewski, K.; Dąbrowska-Zielińska, K.; Goliński, P.; Golińska, B. Mapping management intensity types in grasslands with synergistic use of Sentinel-1 and Sentinel-2 satellite images. Sci. Rep. 2024, 14, 32066. [Google Scholar] [CrossRef]
- Günder, M.; Yamati, F.R.I.; Alcántara, A.A.B.; Mahlein, A.-K.; Sifa, R.; Bauckhage, C. SugarViT—Multi-objective Regression of UAV Images with Vision Transformers and Deep Label Distribution Learning Demonstrated on Disease Severity Prediction in Sugar Beet. PLoS ONE 2023, 20, e0318097. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Ji, C.; Xu, X.; Wang, H.; Pan, J.; Bumberger, J.; Haase, D.; Lausch, A. Prediction of soil organic carbon and the C:N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images. Sci. Total Environ. 2021, 755, 142661. [Google Scholar] [CrossRef]
- Díaz, S.; Kattge, J.; Cornelissen, J.H.C.; Wright, I.J.; Lavorel, S.; Dray, S.; Reu, B.; Kleyer, M.; Wirth, C.; Colin Prentice, I.; et al. The global spectrum of plant form and function. Nature 2016, 529, 167–171. [Google Scholar] [CrossRef]
- Joswig, J.S.; Wirth, C.; Schuman, M.C.; Kattge, J.; Reu, B.; Wright, I.J.; Sippel, S.D.; Rüger, N.; Richter, R.; Schaepman, M.E.; et al. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat. Ecol. Evol. 2022, 6, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Candiani, G.; Tagliabue, G.; Panigada, C.; Verrelst, J.; Picchi, V.; Rivera Caicedo, J.P.; Boschetti, M. Evaluation of Hybrid Models to Estimate Chlorophyll and Nitrogen Content of Maize Crops in the Framework of the Future CHIME Mission. Remote Sens. 2022, 14, 1792. [Google Scholar] [CrossRef] [PubMed]
- Verrelst, J.; Rivera, J.P.; Veroustraete, F.; Muñoz-Marí, J.; Clevers, J.G.P.W.; Camps-Valls, G.; Moreno, J. Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods—A comparison. ISPRS J. Photogramm. Remote Sens. 2015, 108, 260–272. [Google Scholar] [CrossRef]
- Berger, K.; Verrelst, J.; Féret, J.-B.; Hank, T.; Wocher, M.; Mauser, W.; Camps-Valls, G. Retrieval of aboveground crop nitrogen content with a hybrid machine learning method. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102174. [Google Scholar] [CrossRef] [PubMed]
- Loizzo, R.; Daraio, M.; Guarini, R.; Longo, F.; Lorusso, R.; Dini, L.; Lopinto, E. Prisma Mission Status and Perspective. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 4503–4506. [Google Scholar]
- Matsunaga, T.; Iwasaki, A.; Tachikawa, T.; Tanii, J.; Kashimura, O.; Mouri, K.; Inada, H.; Tsuchida, S.; Nakamura, R.; Yamamoto, H.; et al. Hyperspectral Imager Suite (HISUI): Its Launch and Current Status. In Proceedings of the IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 3272–3273. [Google Scholar]
- Feingersh, T.; Dor, E. Ben SHALOM—A Commercial Hyperspectral Space Mission. In Optical Payloads for Space Missions; Wiley: New York, NY, USA, 2015; pp. 247–263. [Google Scholar]
- Delloye, C.; Weiss, M.; Defourny, P. Retrieval of the canopy chlorophyll content from Sentinel-2 spectral bands to estimate nitrogen uptake in intensive winter wheat cropping systems. Remote Sens. Environ. 2018, 216, 245–261. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT + SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, S56–S66. [Google Scholar] [CrossRef]
- Lhotáková, Z.; Neuwirthová, E.; Potůčková, M.; Červená, L.; Hunt, L.; Kupková, L.; Lukeš, P.; Campbell, P.; Albrechtová, J. Mind the leaf anatomy while taking ground truth with portable chlorophyll meters. Sci. Rep. 2025, 15, 1855. [Google Scholar] [CrossRef] [PubMed]
- Brewer, K.; Clulow, A.; Sibanda, M.; Gokool, S.; Naiken, V.; Mabhaudhi, T. Predicting the Chlorophyll Content of Maize over Phenotyping as a Proxy for Crop Health in Smallholder Farming Systems. Remote Sens. 2022, 14, 518. [Google Scholar] [CrossRef]
- Drusch, M.; Moreno, J.; Del Bello, U.; Franco, R.; Goulas, Y.; Huth, A.; Kraft, S.; Middleton, E.M.; Miglietta, F.; Mohammed, G.; et al. The FLuorescence EXplorer Mission Concept-ESA’s Earth Explorer 8. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1273–1284. [Google Scholar] [CrossRef]
- De Grave, C.; Verrelst, J.; Morcillo-Pallarés, P.; Pipia, L.; Rivera-Caicedo, J.P.; Amin, E.; Belda, S.; Moreno, J. Quantifying vegetation biophysical variables from the Sentinel-3/FLEX tandem mission: Evaluation of the synergy of OLCI and FLORIS data sources. Remote Sens. Environ. 2020, 251, 112101. [Google Scholar] [CrossRef]
- Ač, A.; Malenovský, Z.; Olejníčková, J.; Gallé, A.; Rascher, U.; Mohammed, G. Meta-analysis assessing potential of steady-state chlorophyll fluorescence for remote sensing detection of plant water, temperature and nitrogen stress. Remote Sens. Environ. 2015, 168, 420–436. [Google Scholar] [CrossRef]
- Moreno, J.F.; Goulas, Y.; Huth, A.; Middleton, E.; Miglietta, F.; Mohammed, G.; Nedbal, L.; Rascher, U.; Verhoef, W.; Drusch, M. Very high spectral resolution imaging spectroscopy: The Fluorescence Explorer (FLEX) mission. Int. Geosci. Remote Sens. Symp. 2016, 2016, 264–267. [Google Scholar]
- Dong, N.; Prentice, I.C.; Wright, I.J.; Wang, H.; Atkin, O.K.; Bloomfield, K.J.; Domingues, T.F.; Gleason, S.M.; Maire, V.; Onoda, Y.; et al. Leaf nitrogen from the perspective of optimal plant function. J. Ecol. 2022, 110, 2585–2602. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Song, X.; Yang, G.; Du, X.; Mei, X.; Yang, X. Remote Sensing Monitoring of Rice and Wheat Canopy Nitrogen: A Review. Remote Sens. 2022, 14, 5712. [Google Scholar] [CrossRef]
- Silva, L.; Conceição, L.A.; Lidon, F.C.; Maçãs, B. Remote Monitoring of Crop Nitrogen Nutrition to Adjust Crop Models: A Review. Agriculture 2023, 13, 835. [Google Scholar] [CrossRef]
- Arogoundade, A.M.; Mutanga, O.; Odindi, J.; Naicker, R. The role of remote sensing in tropical grassland nutrient estimation: A review. Environ. Monit. Assess. 2023, 195, 954. [Google Scholar] [CrossRef] [PubMed]
- Xi, R.; Gu, Y.; Zhang, X.; Ren, Z. Nitrogen monitoring and inversion algorithms of fruit trees based on spectral remote sensing: A deep review. Front. Plant Sci. 2024, 15, 1489151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hu, Y.; Li, F.; Fue, K.G.; Yu, K. Meta-Analysis Assessing Potential of Drone Remote Sensing in Estimating Plant Traits Related to Nitrogen Use Efficiency. Remote Sens. 2024, 16, 838. [Google Scholar] [CrossRef]
- Ravikumar, S.; Vellingiri, G.; Sellaperumal, P.; Pandian, K.; Sivasankar, A.; Sangchul, H. Real-time nitrogen monitoring and management to augment N use efficiency and ecosystem sustainability—A review. J. Hazard. Mater. Adv. 2024, 16, 100466. [Google Scholar] [CrossRef]
- Chowdhury, M.; Kumar Khura, T.; Ahmad Parray, R.; Kushwaha, H.L.; Upadhyay, P.K.; Jha, A.; Patra, K.; Kushwah, A.; Kumar Prajapati, V. The use of destructive and nondestructive techniques in concrete nitrogen assessment in plants. J. Plant Nutr. 2024, 47, 2271–2294. [Google Scholar] [CrossRef]
- Tasnim, M.; Simic, A.; Verrelst, J.; Tian, Q.; Soleil, A.; Poku, H.; Rahman, A.; Processing, I.; Científic, P.; Val, U. De Optimizing Empirical and Hybrid Modeling for Advanced Canopy Chlorophyll and Nitrogen Retrieval Technique Using EnMAP Data. Environ. Chall. 2025, 18, 101114. [Google Scholar]
- Verrelst, J.; Rivera-Caicedo, J.P.; Reyes-Muñoz, P.; Morata, M.; Amin, E.; Tagliabue, G.; Panigada, C.; Hank, T.; Berger, K. Mapping landscape canopy nitrogen content from space using PRISMA data. ISPRS J. Photogramm. Remote Sens. 2021, 178, 382–395. [Google Scholar] [CrossRef]
- Wang, Y.; Suarez, L.; Hornero, A.; Poblete, T.; Ryu, D.; Gonzalez-Dugo, V.; Zarco-Tejada, P.J. Assessing plant traits derived from Sentinel-2 to characterize leaf nitrogen variability in almond orchards: Modeling and validation with airborne hyperspectral imagery. Precis. Agric. 2025, 26, 13. [Google Scholar] [CrossRef]
- Zhang, X.; Han, L.; Sobeih, T.; Lappin, L.; Lee, M.A.; Howard, A.; Kisdi, A. The Self-Supervised Spectral–Spatial Vision Transformer Network for Accurate Prediction of Wheat Nitrogen Status from UAV Imagery. Remote Sens. 2022, 14, 1400. [Google Scholar] [CrossRef]
- Xu, S.; Xu, X.; Blacker, C.; Gaulton, R.; Zhu, Q.; Yang, M.; Yang, G.; Zhang, J.; Yang, Y.; Yang, M.; et al. Estimation of Leaf Nitrogen Content in Rice Using Vegetation Indices and Feature Variable Optimization with Information Fusion of Multiple-Sensor Images from UAV. Remote Sens. 2023, 15, 854. [Google Scholar] [CrossRef]
- Smith, D.R.; King, K.W.; Johnson, L.; Francesconi, W.; Richards, P.; Baker, D.; Sharpley, A.N. Surface Runoff and Tile Drainage Transport of Phosphorus in the Midwestern United States. J. Environ. Qual. 2015, 44, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Valipour, M.; Krasilnikof, J.; Yannopoulos, S.; Kumar, R.; Deng, J.; Roccaro, P.; Mays, L.; Grismer, M.E.; Angelakis, A.N. The evolution of agricultural drainage from the earliest times to the present. Sustainability 2020, 12, 416. [Google Scholar] [CrossRef]
- Jepsen, M.R.; Kuemmerle, T.; Müller, D.; Erb, K.; Verburg, P.H.; Haberl, H.; Vesterager, J.P.; Andrič, M.; Antrop, M.; Austrheim, G.; et al. Transitions in European land-management regimes between 1800 and 2010. Land Use Policy 2015, 49, 53–64. [Google Scholar] [CrossRef]
- Davidson, N.C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 2014, 65, 934–941. [Google Scholar] [CrossRef]
- Koch, J.; Elsgaard, L.; Greve, M.H.; Gyldenkærne, S.; Hermansen, C.; Levin, G.; Wu, S.; Stisen, S. Water-table-driven greenhouse gas emission estimates guide peatland restoration at national scale. Biogeosciences 2023, 20, 2387–2403. [Google Scholar] [CrossRef]
- Williamson, T.N.; Dobrowolski, E.G.; Meyer, S.M.; Frey, J.W.; Allred, B.J. Delineation of tile-drain networks using thermal and multispectral imagery—Implications for water quantity and quality differences from paired edge-of-field sites. J. Soil Water Conserv. 2018, 74, 1–11. [Google Scholar] [CrossRef]
- Carlsen, A.H.; Fensholt, R.; Looms, M.C.; Gominski, D.; Stisen, S.; Jepsen, M.R. Systematic review of the detection of subsurface drainage systems in agricultural fields using remote sensing systems. Agric. Water Manag. 2024, 299, 108892. [Google Scholar] [CrossRef]
- Karbs, H.H. Subsurface Drainage Mapping By Airborne Infrared. In Proceedings of the Oklahoma Academy of Science, Norman, OK, USA, 31 August–4 September 1970; Volume 18, pp. 10–18. [Google Scholar]
- Gökkaya, K.; Budhathoki, M.; Christopher, S.F.; Hanrahan, B.R.; Tank, J.L. Subsurface tile drained area detection using GIS and remote sensing in an agricultural watershed. Ecol. Eng. 2017, 108, 370–379. [Google Scholar] [CrossRef]
- Cho, E.; Jacobs, J.M.; Jia, X.; Kraatz, S. Identifying Subsurface Drainage using Satellite Big Data and Machine Learning via Google Earth Engine. Water Resour. Res. 2019, 55, 8028–8045. [Google Scholar] [CrossRef]
- Lai, Q.; Xin, Q.; Tian, Y.; Chen, X.; Li, Y.; Wu, R. Structural Analysis and 3D Reconstruction of Underground Pipeline Systems Based on LiDAR Point Clouds. Remote Sens. 2025, 17, 341. [Google Scholar] [CrossRef]
- Woo, D.K.; Ji, J.; Song, H. Subsurface drainage pipe detection using an ensemble learning approach and aerial images. Agric. Water Manag. 2023, 287, 108455. [Google Scholar] [CrossRef]
- Allred, B.; Eash, N.; Freeland, R.; Martinez, L.; Wishart, D.B. Effective and efficient agricultural drainage pipe mapping with UAS thermal infrared imagery: A case study. Agric. Water Manag. 2018, 197, 132–137. [Google Scholar] [CrossRef]
- Becker, A.M.; Becker, R.H.; Doro, K.O. Locating Drainage Tiles at a Wetland Restoration Site within the Oak Openings Region of Ohio, United States Using UAV and Land Based Geophysical Techniques. Wetlands 2021, 41, 116. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, G.K.; Tang, B.; Wen, Q.; Tan, R.; Huang, Y. Regional scale terrace mapping in fragmented mountainous areas using multi-source remote sensing data and sample purification strategy. Sci. Total Environ. 2024, 925, 171366. [Google Scholar] [CrossRef]
- Lu, Y.; Li, X.; Xin, L.; Song, H.; Wang, X. Mapping the terraces on the Loess Plateau based on a deep learning-based model at 1.89 m resolution. Sci. Data 2023, 10, 115. [Google Scholar] [CrossRef]
- Ding, H.; Na, J.; Jiang, S.; Zhu, J.; Liu, K.; Fu, Y.; Li, F. Evaluation of three different machine learning methods for object-based artificial terrace mapping—A case study of the loess plateau, China. Remote Sens. 2021, 13, 1021. [Google Scholar] [CrossRef]
- Zhao, F.; Xiong, L.; Wang, C.; Wang, H.; Wei, H.; Tang, G. Terraces mapping by using deep learning approach from remote sensing images and digital elevation models. Trans. GIS 2021, 25, 2438–2454. [Google Scholar] [CrossRef]
- Zhai, D.; Dong, J.; Cadisch, G.; Wang, M.; Kou, W.; Xu, J.; Xiao, X.; Abbas, S. Comparison of pixel- and object-based approaches in phenology-based rubber plantation mapping in fragmented landscapes. Remote Sens. 2018, 10, 44. [Google Scholar] [CrossRef]
- Blickensdörfer, L.; Schwieder, M.; Pflugmacher, D.; Nendel, C.; Erasmi, S.; Hostert, P. Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sens. Environ. 2022, 269, 112831. [Google Scholar] [CrossRef]
- Godone, D.; Giordan, D.; Baldo, M. Rapid mapping application of vegetated terraces based on high resolution airborne lidar. Geomat. Nat. Hazards Risk 2018, 9, 970–985. [Google Scholar] [CrossRef]
- Le Vot, T.; Cohen, M.; Nowak, M.; Passy, P.; Sumera, F. Resilience of Terraced Landscapes to Human and Natural Impacts: A GIS-Based Reconstruction of Land Use Evolution in a Mediterranean Mountain Valley. Land 2024, 13, 592. [Google Scholar] [CrossRef]
- Garzón-Oechsle, A.; Johanson, E.; Nagarajan, S.; Martínez, V. In between the Sites: Understanding Late Holocene Manteño Agricultural Contexts in the Chongón-Colonche Mountains of Coastal Ecuador through UAV-Lidar and Excavation. J. F. Archaeol. 2025, 50, 42–59. [Google Scholar] [CrossRef]
- Lozić, E. Application of airborne lidar data to the archaeology of agrarian land use. The case study of the early medieval microregion of bled (Slovenia). Remote Sens. 2021, 13, 3228. [Google Scholar] [CrossRef]
- Masini, N.; Gizzi, F.T.; Biscione, M.; Fundone, V.; Sedile, M.; Sileo, M.; Pecci, A.; Lacovara, B.; Lasaponara, R. Medieval archaeology under the canopy with LiDAR. the (Re)discovery of a medieval fortified settlement in southern Italy. Remote Sens. 2018, 10, 1598. [Google Scholar] [CrossRef]
- Smith, C.; Baker, J.C.A.; Spracklen, D.V. Tropical deforestation causes large reductions in observed precipitation. Nature 2023, 615, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Ponvert-Delisles Batista, D.R.; Estrada-Medina, H.; Gijón-Yescas, G.N.; Álvarez-Rivera, O.O. Land covers analyses during slash and burn agriculture by using multispectral imagery obtained with Unattended Aerial Vehicles (UAVs). Trop. Subtrop. Agroecosystems 2021, 24, 21. [Google Scholar] [CrossRef]
- Lechner, A.M.; Foody, G.M.; Boyd, D.S. Applications in Remote Sensing to Forest Ecology and Management. One Earth 2020, 2, 405–412. [Google Scholar] [CrossRef]
- Lehmann, E.A.; Caccetta, P.; Lowell, K.; Mitchell, A.; Zhou, Z.S.; Held, A.; Milne, T.; Tapley, I. SAR and optical remote sensing: Assessment of complementarity and interoperability in the context of a large-scale operational forest monitoring system. Remote Sens. Environ. 2015, 156, 335–348. [Google Scholar] [CrossRef]
- Ballère, M.; Bouvet, A.; Mermoz, S.; Le Toan, T.; Koleck, T.; Bedeau, C.; André, M.; Forestier, E.; Frison, P.L.; Lardeux, C. SAR data for tropical forest disturbance alerts in French Guiana: Benefit over optical imagery. Remote Sens. Environ. 2021, 252, 112159. [Google Scholar] [CrossRef]
- Tarazona, Y.; Mantas, V.M.; Pereira, A.J.S.C. Improving tropical deforestation detection through using photosynthetic vegetation time series–(PVts-β). Ecol. Indic. 2018, 94, 367–379. [Google Scholar] [CrossRef]
- Bégué, A.; Arvor, D.; Bellon, B.; Betbeder, J.; de Abelleyra, D.; Ferraz, R.P.D.; Lebourgeois, V.; Lelong, C.; Simões, M.; Verón, S.R. Remote sensing and cropping practices: A review. Remote Sens. 2018, 10, 99. [Google Scholar] [CrossRef]
- Preidl, S.; Lange, M.; Doktor, D. Introducing APiC for regionalised land cover mapping on the national scale using Sentinel-2A imagery. Remote Sens. Environ. 2020, 240, 111673. [Google Scholar] [CrossRef]
- Baessler, C.; Klotz, S. Effects of changes in agricultural land-use on landscape structure and arable weed vegetation over the last 50 years. Agric. Ecosyst. Environ. 2006, 115, 43–50. [Google Scholar] [CrossRef]
- Chapman, T. Calculating the Interspersion and Juxtaposition Rates for Saint Clair Flats State Wildlife Area. Ph.D. Thesis, University of Redlands, Redlands, CA, USA, 2022. [Google Scholar]
- Uuemaa, E.; Antrop, M.; Roosaare, J.; Marja, R.; Mander, Ü. Landscape metrics and indices: An overview of their use in landscape research. Living Rev. Landsc. Res. 2009, 3, 1–28. [Google Scholar] [CrossRef]
- Oksanen, T. Shape-describing indices for agricultural field plots and their relationship to operational efficiency. Comput. Electron. Agric. 2013, 98, 252–259. [Google Scholar] [CrossRef]
- Griffel, L.M.; Vazhnik, V.; Hartley, D.S.; Hansen, J.K.; Roni, M. Agricultural field shape descriptors as predictors of field efficiency for perennial grass harvesting: An empirical proof. Comput. Electron. Agric. 2020, 168, 105088. [Google Scholar] [CrossRef]
- Salas, E.A.L.; Subburayalu, S.K. Correction: Modified shape index for object-based random forest image classification of agricultural systems using airborne hyperspectral datasets. PLoS ONE 2019, 14, e0222474. [Google Scholar] [CrossRef]
- Blüthgen, N.; Dormann, C.F.; Prati, D.; Klaus, V.H.; Kleinebecker, T.; Hölzel, N.; Alt, F.; Boch, S.; Gockel, S.; Hemp, A.; et al. A quantitative index of land-use intensity in grasslands: Integrating mowing, grazing and fertilization. Basic Appl. Ecol. 2012, 13, 207–220. [Google Scholar] [CrossRef]
- Rocchini, D.; Balkenhol, N.; Carter, G.A.; Foody, G.M.; Gillespie, T.W.; He, K.S.; Kark, S.; Levin, N.; Lucas, K.; Luoto, M.; et al. Remotely sensed spectral heterogeneity as a proxy of species diversity: Recent advances and open challenges. Ecol. Inform. 2010, 5, 318–329. [Google Scholar] [CrossRef]
- Rocchini, D.; Marcantonio, M.; Ricotta, C. Measuring Rao’s Q diversity index from remote sensing: An open source solution. Ecol. Indic. 2017, 72, 234–238. [Google Scholar] [CrossRef]
- Rocchini, D.; Bacaro, G.; Chirici, G.; Da Re, D.; Feilhauer, H.; Foody, G.M.; Galluzzi, M.; Garzon-Lopez, C.X.; Gillespie, T.W.; He, K.S.; et al. Remotely sensed spatial heterogeneity as an exploratory tool for taxonomic and functional diversity study. Ecol. Indic. 2018, 85, 983–990. [Google Scholar] [CrossRef]
- Steele-Dunne, S.C.; McNairn, H.; Monsivais-Huertero, A.; Judge, J.; Liu, P.W.; Papathanassiou, K. Radar Remote Sensing of Agricultural Canopies: A Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2249–2273. [Google Scholar] [CrossRef]
- Howison, R.A.; Piersma, T.; Kentie, R.; Hooijmeijer, J.C.E.W.; Olff, H. Quantifying landscape–level land–use intensity patterns through radar–based remote sensing. J. Appl. Ecol. 2018, 55, 1276–1287. [Google Scholar] [CrossRef]
- Herrero-Huerta, M.; Bucksch, A.; Puttonen, E.; Rainey, K.M. Canopy roughness: A new phenotypic trait to estimate aboveground biomass from unmanned aerial system. Plant Phenomics 2020, 2020, 6735967. [Google Scholar] [CrossRef]
- Alfieri, J.G.; Kustas, W.P.; Nieto, H.; Prueger, J.H.; Hipps, L.E.; McKee, L.G.; Gao, F.; Los, S. Influence of wind direction on the surface roughness of vineyards. Irrig. Sci. 2019, 37, 359–373. [Google Scholar] [CrossRef]
- Singh, A.; Gaurav, K.; Rai, A.K.; Beg, Z. Machine learning to estimate surface roughness from satellite images. Remote Sens. 2021, 13, 3794. [Google Scholar] [CrossRef]
- Turner, R.; Panciera, R.; Tanase, M.A.; Lowell, K.; Hacker, J.M.; Walker, J.P. Estimation of soil surface roughness of agricultural soils using airborne LiDAR. Remote Sens. Environ. 2014, 140, 107–117. [Google Scholar] [CrossRef]
- Mahlayeye, M.; Darvishzadeh, R.; Nelson, A. Cropping Patterns of Annual Crops: A Remote Sensing Review. Remote Sens. 2022, 14, 2404. [Google Scholar] [CrossRef]
- Qiu, B.; Hu, X.; Chen, C.; Tang, Z.; Yang, P.; Zhu, X.; Yan, C.; Jian, Z. Maps of cropping patterns in China during 2015–2021. Sci. Data 2022, 9, 479. [Google Scholar] [CrossRef]
- El Hajj, M.; Bégué, A.; Guillaume, S.; Martiné, J.F. Integrating SPOT-5 time series, crop growth modeling and expert knowledge for monitoring agricultural practices—The case of sugarcane harvest on Reunion Island. Remote Sens. Environ. 2009, 113, 2052–2061. [Google Scholar] [CrossRef]
- Maponya, M.G.; van Niekerk, A.; Mashimbye, Z.E. Pre-harvest classification of crop types using a Sentinel-2 time-series and machine learning. Comput. Electron. Agric. 2020, 169, 105164. [Google Scholar] [CrossRef]
- Ahlawat, I.; Sheoran, H.S.; Roohi; Dahiya, G.; Sihag, P. Analysis of sentinel-1 data for regional crop classification: A multi-data approach for rabi crops of district Hisar (Haryana). J. Appl. Nat. Sci. 2020, 12, 165–170. [Google Scholar] [CrossRef]
- Orynbaikyzy, A.; Gessner, U.; Conrad, C. Crop type classification using a combination of optical and radar remote sensing data: A review. Int. J. Remote Sens. 2019, 40, 6553–6595. [Google Scholar] [CrossRef]
- Zhao, J.; Zhong, Y.; Hu, X.; Wei, L.; Zhang, L. A robust spectral-spatial approach to identifying heterogeneous crops using remote sensing imagery with high spectral and spatial resolutions. Remote Sens. Environ. 2020, 239, 111605. [Google Scholar] [CrossRef]
- Nigam, R.; Tripathy, R.; Dutta, S.; Bhagia, N.; Nagori, R.; Chandrasekar, K.; Kot, R.; Bhattacharya, B.K.; Ustin, S. Crop type discrimination and health assessment using hyperspectral imaging. Curr. Sci. 2019, 116, 1108–1123. [Google Scholar] [CrossRef]
- Prins, A.J.; Van Niekerk, A. Crop type mapping using LiDAR, Sentinel-2 and aerial imagery with machine learning algorithms. Geo-Spat. Inf. Sci. 2020, 24, 215–227. [Google Scholar] [CrossRef]
- He, T.; Zhang, M.; Xiao, W.; Zhai, G.; Fang, K.; Chen, Y.; Wu, C. Terend and potential enhancement of cropping intensity. Comput. Electron. Agric. 2025, 229, 109777. [Google Scholar] [CrossRef]
- Du, G.; Han, L.; Yao, L.; Faye, B. Spatiotemporal Dynamics and Evolution of Grain Cropping Patterns in Northeast China: Insights from Remote Sensing and Spatial Overlay Analysis. Agriculture 2024, 14, 1443. [Google Scholar] [CrossRef]
- Manjunath, K.R.; Kundu, N.; Ray, S.S.; Panigrahy, S.; Parihar, J.S. Cropping Systems Dynamics in the Lower Gangetic Plains of India using Geospatial Technologies. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 38, 40–45. [Google Scholar] [CrossRef]
- Manjunath, K.R.; More, R.S.; Jain, N.K.; Panigrahy, S.; Parihar, J.S. Mapping of rice-cropping pattern and cultural type using remote-sensing and ancillary data: A case study for South and Southeast Asian countries. Int. J. Remote Sens. 2015, 36, 6008–6030. [Google Scholar] [CrossRef]
- Aduvukha, G.R.; Abdel-Rahman, E.M.; Sichangi, A.W.; Makokha, G.O.; Landmann, T.; Mudereri, B.T.; Tonnang, H.E.Z.; Dubois, T. Cropping pattern mapping in an agro-natural heterogeneous landscape using sentinel-2 and sentinel-1 satellite datasets. Agric. 2021, 11, 530. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, B.; Zeng, H.; He, G.; Liu, C.; Tao, S.; Zhang, Q.; Nabil, M.; Tian, F.; Bofana, J.; et al. GCI30: A global dataset of 30m cropping intensity using multisource remote sensing imagery. Earth Syst. Sci. Data 2021, 13, 4799–4817. [Google Scholar] [CrossRef]
- Lange, M.; Feilhauer, H.; Kühn, I.; Doktor, D. Mapping land-use intensity of grasslands in Germany with machine learning and Sentinel-2 time series. Remote Sens. Environ. 2022, 277, 112888. [Google Scholar] [CrossRef]
- Griffiths, P.; Nendel, C.; Pickert, J.; Hostert, P. Towards national-scale characterization of grassland use intensity from integrated Sentinel-2 and Landsat time series. Remote Sens. Environ. 2020, 238, 111124. [Google Scholar] [CrossRef]
- Fischer, M.; Bossdorf, O.; Gockel, S.; Hänsel, F.; Hemp, A.; Hessenmöller, D.; Korte, G.; Nieschulze, J.; Pfeiffer, S.; Prati, D.; et al. Implementing large-scale and long-term functional biodiversity research: The Biodiversity Exploratories. Basic Appl. Ecol. 2010, 11, 473–485. [Google Scholar] [CrossRef]
- Sousa Júnior, V.d.P.; Sparacino, J.; Espindola, G.M.d.; Assis, R.J.S.d. Carbon Biomass Estimation Using Vegetation Indices in Agriculture–Pasture Mosaics in the Brazilian Caatinga Dry Tropical Forest. ISPRS Int. J. Geo-Inf. 2023, 12, 354. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Remote sensing of above-ground biomass. Remote Sens. 2017, 9, 935. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, B.; Ge, J.; Wang, X.; Yang, Y.; Shang, J.; La, Z.; Zang, H.; Zeng, Z. Using UAV-based multispectral and RGB imagery to monitor above-ground biomass of oat-based diversified cropping. Eur. J. Agron. 2025, 162, 127422. [Google Scholar] [CrossRef]
- Da, H.; Li, Y.; Xu, L.; Wang, S.; Hu, L.; Hu, Z.; Wei, Q.; Zhu, R.; Chen, Q.; Xin, D.; et al. Advancing soybean biomass estimation through multi-source UAV data fusion and machine learning algorithms. Smart Agric. Technol. 2025, 10, 100778. [Google Scholar] [CrossRef]
- Breunig, F.M.; Dalagnol, R.; Galvão, L.S.; Bispo, P.d.C.; Liu, Q.; Berra, E.F.; Gaida, W.; Liesenberg, V.; Sampaio, T.V.M. Monitoring Cover Crop Biomass in Southern Brazil Using Combined PlanetScope and Sentinel-1 SAR Data. Remote Sens. 2024, 16, 2686. [Google Scholar] [CrossRef]
- Hagn, L.; Schuster, J.; Mittermayer, M.; Hülsbergen, K.J. A new method for satellite-based remote sensing analysis of plant-specific biomass yield patterns for precision farming applications. Precis. Agric. 2024, 25, 2801–2830. [Google Scholar] [CrossRef]
- Burger, R.; Aouizerats, B.; den Besten, N.; Guillevic, P.; Catarino, F.; van der Horst, T.; Jackson, D.; Koopmans, R.; Ridderikhoff, M.; Robson, G.; et al. The Biomass Proxy: Unlocking Global Agricultural Monitoring through Fusion of Sentinel-1 and Sentinel-2. Remote Sens. 2024, 16, 835. [Google Scholar] [CrossRef]
- Bloem, E.; Gerighausen, H.; Chen, X.; Schnug, E. The potential of spectral measurements for identifying glyphosate application to agricultural fields. Agronomy 2020, 10, 1409. [Google Scholar] [CrossRef]
- Niu, Z.; Rehman, T.; Young, J.; Johnson, W.G.; Yokoo, T.; Young, B.; Jin, J. Hyperspectral Analysis for Discriminating Herbicide Site of Action: A Novel Approach for Accelerating Herbicide Research. Sensors 2023, 23, 9300. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Huang, Y.; Reddy, K.N.; Yang, P.; Zhao, X.; Zhang, J. Using Machine Learning and Hyperspectral Images to Assess Damages to Corn Plant Caused by Glyphosate and to Evaluate Recoverability. Agronomy 2021, 11, 583. [Google Scholar] [CrossRef]
- Chu, H.; Zhang, C.; Wang, M.; Gouda, M.; Wei, X.; He, Y.; Liu, Y. Hyperspectral imaging with shallow convolutional neural networks (SCNN) predicts the early herbicide stress in wheat cultivars. J. Hazard. Mater. 2022, 421, 126706. [Google Scholar] [CrossRef]
- Xiao, T.; Yang, L.; He, X.; Wang, L.; Zhang, D.; Cui, T.; Zhang, K.; Bao, L.; An, S.; Zhang, X. A green and efficient method for detecting nicosulfuron residues in field maize using hyperspectral imaging and deep learning. J. Hazard. Mater. 2025, 484, 136724. [Google Scholar] [CrossRef] [PubMed]
- Pause, M.; Raasch, F.; Marrs, C.; Csaplovics, E. Csaplovics Monitoring Glyphosate-Based Herbicide Treatment Using Sentinel-2 Time Series—A Proof-of-Principle. Remote Sens. 2019, 11, 2541. [Google Scholar] [CrossRef]
- Pon Arasan, A.; Radhamani, S.; Pazhanivelan, S.; Kavitha, R.; Raja, R.; Kumaraperumal, R. Mapping and monitoring of weeds using unmanned aircraft systems and remote sensing. Plant Prot. Sci. 2024, 61, 44–55. [Google Scholar] [CrossRef]
- Li, J.; Ge, Y.; Puntel, L.A.; Heeren, D.M.; Bai, G.; Balboa, G.R.; Gamon, J.A.; Arkebauer, T.J.; Shi, Y. Devising optimized maize nitrogen stress indices in complex field conditions from UAV hyperspectral imagery. Precis. Agric. 2024, 26, 3. [Google Scholar] [CrossRef]
- Yin, H.; Li, F.; Yang, H.; Di, Y.; Hu, Y.; Yu, K. Mapping Plant Nitrogen Concentration and Aboveground Biomass of Potato Crops from Sentinel-2 Data Using Ensemble Learning Models. Remote Sens. 2024, 16, 349. [Google Scholar] [CrossRef]
- Almawazreh, A.; Buerkert, A.; Vazhacharickal, P.J.; Peth, S. Assessing canopy temperature responses to nitrogen fertilisation in South Indian crops using UAV -based thermal sensing. Int. J. Remote Sens. 2025, 4, 2389–2417. [Google Scholar] [CrossRef]
- Hossen, M.A.; Diwakar, P.K.; Ragi, S. Total nitrogen estimation in agricultural soils via aerial multispectral imaging and LIBS. Sci. Rep. 2021, 11, 12693. [Google Scholar] [CrossRef] [PubMed]
- Tiessen, H.; Cuevas, E.; Chacon, P. The role of soil organic matter in sustaining soil fertility. Nature 1994, 371, 783–785. [Google Scholar] [CrossRef]
- Castaldi, F.; Chabrillat, S.; Jones, A.; Vreys, K.; Bomans, B.; van Wesemael, B. Soil organic carbon estimation in croplands by hyperspectral remote APEX data using the LUCAS topsoil database. Remote Sens. 2018, 10, 153. [Google Scholar] [CrossRef]
- Wilcox, C.H.; Frazier, B.E.; Ball, S.T. Relationship between soil organic carbon and landsat tm data in eastern Washington. Photogramm. Eng. Rem. Sens 1994, 60, 777–781. [Google Scholar]
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 1996, 47, 151–163. [Google Scholar] [CrossRef]
- Basnyat, P.; McConkey, B.; Meinert, B.; Gatkze, C.; Noble, G. Agriculture Field Characterization Using Aerial Photograph and Satellite Imagery. IEEE Geosci. Remote Sens. Lett. 2004, 1, 7–10. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Pham, T.D.; Nguyen, C.T.; Delfos, J.; Archibald, R.; Dang, K.B.; Hoang, N.B.; Guo, W.; Ngo, H.H. A novel intelligence approach based active and ensemble learning for agricultural soil organic carbon prediction using multispectral and SAR data fusion. Sci. Total Environ. 2022, 804, 150187. [Google Scholar] [CrossRef]
- Zhou, T.; Lv, W.; Geng, Y.; Xiao, S.; Chen, J.; Xu, X.; Pan, J.; Si, B.; Lausch, A. National-scale spatial prediction of soil organic carbon and total nitrogen using long-term optical and microwave satellite observations in Google Earth Engine. Comput. Electron. Agric. 2023, 210, 107928. [Google Scholar] [CrossRef]
- Castaldi, F.; Halil Koparan, M.; Wetterlind, J.; Žydelis, R.; Vinci, I.; Özge Savaş, A.; Kıvrak, C.; Tunçay, T.; Volungevičius, J.; Obber, S.; et al. Assessing the capability of Sentinel-2 time-series to estimate soil organic carbon and clay content at local scale in croplands. ISPRS J. Photogramm. Remote Sens. 2023, 199, 40–60. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Atkinson, P.M.; Yao, H. Predicting soil organic carbon content in Spain by combining Landsat TM and ALOS PALSAR images. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102182. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Chen, J.; Pan, J.; Haase, D.; Lausch, A. High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms. Sci. Total Environ. 2020, 729, 138244. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, C.; Zhang, S.; Atkinson, P.M. Full year crop monitoring and separability assessment with fully-polarimetric L-band UAVSAR: A case study in the Sacramento Valley, California. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 45–56. [Google Scholar] [CrossRef]
- Ottinger, M.; Kuenzer, C. Spaceborne L-Band Synthetic Aperture Radar Data for Geoscientific Analyses in Coastal Land Applications: A Review. Remote Sens. 2020, 12, 2228. [Google Scholar] [CrossRef]
- Shafizadeh-Moghadam, H.; Minaei, F.; Talebi-khiavi, H.; Xu, T.; Homaee, M. Synergetic use of multi-temporal Sentinel-1, Sentinel-2, NDVI, and topographic factors for estimating soil organic carbon. Catena 2022, 212, 106077. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Wang, D.; Qi, B.; Zheng, S.; Liu, H.; Luo, C.; Li, H.; Meng, L.; Meng, X.; et al. Spatiotemporal Changes and Driving Factors of Cultivated Soil Organic Carbon in Northern China’s Typical Agro-Pastoral Ecotone in the Last 30 Years. Remote Sens. 2021, 13, 3607. [Google Scholar] [CrossRef]
- Odebiri, O.; Mutanga, O.; Odindi, J.; Naicker, R. Modelling soil organic carbon stock distribution across different land-uses in South Africa: A remote sensing and deep learning approach. ISPRS J. Photogramm. Remote Sens. 2022, 188, 351–362. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, H.; Yang, X.; Shu, J.; Wu, Q.; Que, Y.; Yang, X.; Yi, X.; Khalil, I.; Zomaya, A.Y. Remote sensing revolutionizing agriculture: Toward a new frontier. Futur. Gener. Comput. Syst. 2025, 166, 107691. [Google Scholar] [CrossRef]
- Zhu, X.; Cai, F.; Tian, J.; Williams, T.K.A. Spatiotemporal fusion of multisource remote sensing data: Literature survey, taxonomy, principles, applications, and future directions. Remote Sens. 2018, 10, 527. [Google Scholar] [CrossRef]
- Wang, D.; Cao, W.; Zhang, F.; Li, Z.; Xu, S.; Wu, X. A Review of Deep Learning in Multiscale Agricultural Sensing. Remote Sens. 2022, 14, 559. [Google Scholar] [CrossRef]
- Osco, L.P.; Junior, J.M.; Ramos, A.P.M.; Furuya, D.E.G.; Santana, D.C.; Teodoro, L.P.R.; Gonçalves, W.N.; Baio, F.H.R.; Pistori, H.; Junior, C.A.d.S.; et al. Leaf nitrogen concentration and plant height prediction for maize using UAV-based multispectral imagery and machine learning techniques. Remote Sens. 2020, 12, 3237. [Google Scholar] [CrossRef]
- Reda, R.; Saffaj, T.; Ilham, B.; Saidi, O.; Issam, K.; Brahim, L.; El Hadrami, E.M. A comparative study between a new method and other machine learning algorithms for soil organic carbon and total nitrogen prediction using near infrared spectroscopy. Chemom. Intell. Lab. Syst. 2019, 195, 103873. [Google Scholar] [CrossRef]
- Castaldi, F.; Hueni, A.; Chabrillat, S.; Ward, K.; Buttafuoco, G.; Bomans, B.; Vreys, K.; Brell, M.; Wesemael, B. Van ISPRS Journal of Photogrammetry and Remote Sensing Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands. ISPRS J. Photogramm. Remote Sens. 2019, 147, 267–282. [Google Scholar] [CrossRef]
- Shi, P.; Wang, Y.; Xu, J.; Zhao, Y.; Yang, B.; Yuan, Z.; Sun, Q. Rice nitrogen nutrition estimation with RGB images and machine learning methods. Comput. Electron. Agric. 2021, 180, 105860. [Google Scholar] [CrossRef]
- Sahabiev, I.; Smirnova, E.; Giniyatullin, K. Spatial prediction of agrochemical properties on the scale of a single field using machine learning methods based on remote sensing data. Agronomy 2021, 11, 2266. [Google Scholar] [CrossRef]
- Wolanin, A.; Mateo-Garciá, G.; Camps-Valls, G.; Gómez-Chova, L.; Meroni, M.; Duveiller, G.; Liangzhi, Y.; Guanter, L. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environ. Res. Lett. 2020, 15, 024019. [Google Scholar] [CrossRef]
- Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 2018, 145, 311–318. [Google Scholar] [CrossRef]
- Jaihuni, M.; Khan, F.; Lee, D.; Basak, J.K.; Bhujel, A.; Moon, B.E.; Park, J.; Kim, H.T. Determining Spatiotemporal Distribution of Macronutrients in a Cornfield Using Remote Sensing and a Deep Learning Model. IEEE Access 2021, 9, 30256–30266. [Google Scholar] [CrossRef]
- Gebbers, R.; Adamchuk, V.I. Precision Agriculture and Food Security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, C.; Qiao, Y.; Zhang, Z.; Zhang, W.; Song, C. CNN feature based graph convolutional network for weed and crop recognition in smart farming. Comput. Electron. Agric. 2020, 174, 105450. [Google Scholar] [CrossRef]
- Khusro, S.; Jabeen, F.; Mashwani, S.R.; Alam, I. Linked open data: Towards the realization of semantic web-A review. Indian J. Sci. Technol. 2014, 7, 745–764. [Google Scholar] [CrossRef]
- Lausch, A.; Schmidt, A.; Tischendorf, L. Data mining and linked open data—New perspectives for data analysis in environmental research. Ecol. Modell. 2015, 295, 5–17. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, J.; Chen, D.; Huang, Y.; Kong, W.; Yuan, L.; Ye, H.; Huang, W. Assessment of Leaf Chlorophyll Content Models for Winter Wheat Using Landsat-8 Multispectral Remote Sensing Data. Remote Sens. 2020, 12, 2574. [Google Scholar] [CrossRef]
- Zolotukhina, A.; Machikhin, A.; Guryleva, A.; Gresis, V.; Kharchenko, A.; Dekhkanova, K.; Polyakova, S.; Fomin, D.; Nesterov, G.; Pozhar, V. Evaluation of Leaf Chlorophyll Content from Acousto-Optic Hyperspectral Data: A Multi-Crop Study. Remote Sens. 2024, 16, 1073. [Google Scholar] [CrossRef]
- Cheng, J.; Yang, H.; Qi, J.; Sun, Z.; Han, S.; Feng, H.; Jiang, J.; Xu, W.; Li, Z.; Yang, G.; et al. Estimating canopy-scale chlorophyll content in apple orchards using a 3D radiative transfer model and UAV multispectral imagery. Comput. Electron. Agric. 2022, 202, 107401. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Qian, B.; Ye, H.; Huang, W.; Xie, Q.; Pan, Y.; Xing, N.; Ren, Y.; Guo, A.; Jiao, Q.; Lan, Y. A sentinel-2-based triangular vegetation index for chlorophyll content estimation. Agric. For. Meteorol. 2022, 322, 109000. [Google Scholar] [CrossRef]
- Holtgrave, A.K.; Röder, N.; Ackermann, A.; Erasmi, S.; Kleinschmit, B. Comparing Sentinel-1 and -2 data and indices for agricultural land use monitoring. Remote Sens. 2020, 12, 2919. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, Y.; Zhao, Z.; Xie, M.; Hou, D. Estimation of Relative Chlorophyll Content in Spring Wheat Based on Multi-Temporal UAV Remote Sensing. Agronomy 2023, 13, 211. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Solovchenko, A. Spectral response of gross primary production to in situ canopy light absorption coefficient of chlorophyll. Photosynth. Res. 2025, 163, 20. [Google Scholar] [CrossRef]
- Gitelson, A.; Arkebauer, T.; Solovchenko, A.; Nguy-Robertson, A.; Inoue, Y. An insight into spectral composition of light available for photosynthesis via remotely assessed absorption coefficient at leaf and canopy levels. Photosynth. Res. 2022, 151, 47–60. [Google Scholar] [CrossRef]
- Abdelbaki, A.; Schlerf, M.; Retzlaff, R.; Machwitz, M.; Verrelst, J.; Udelhoven, T. Comparison of crop trait retrieval strategies using UAV-based VNIR hyperspectral imaging. Remote Sens. 2021, 13, 1748. [Google Scholar] [CrossRef]
- Blackburn, G.A. Hyperspectral remote sensing of plant pigments. J. Exp. Bot. 2007, 58, 855–867. [Google Scholar] [CrossRef]
- Lee, S.; Ghimire, A.; Kim, Y.; Lee, J.D. Automatic optimization of regions of interest in hyperspectral images for detecting vegetative indices in soybeans. Front. Plant Sci. 2025, 16, 1511646. [Google Scholar] [CrossRef]
- Gitelson, A.; Solovchenko, A.; Viña, A. Foliar absorption coefficient derived from reflectance spectra: A gauge of the efficiency of in situ light-capture by different pigment groups. J. Plant Physiol. 2020, 254, 153277. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Huang, Y.; Chen, W.; Li, M.; Tan, W.; Wang, R.; Deng, Y.; Gong, Y.; Ai, S.; Liu, N. Assessing the Transferability of Models for Predicting Foliar Nutrient Concentrations Across Maize Cultivars. Remote Sens. 2025, 17, 652. [Google Scholar] [CrossRef]
- Kharel, T.P.; Tyler, H.L.; Mubvumba, P.; Huang, Y.; Bhandari, A.B.; Fletcher, R.S.; Anapalli, S.; Joshi, D.R.; Mengistu, A.; Birru, G.; et al. Machine learning on multi-spectral imagery to estimate nutrient yield of mixed-species cover crops. Agric. Environ. Lett. 2025, 10, e70009. [Google Scholar] [CrossRef]
- Geng, G.; Gu, Q.; Zhou, H.; Zhang, B.; He, Z.; Zheng, R. Random forest model that incorporates solar-induced chlorophyll fluorescence data can accurately track crop yield variations under drought conditions. Ecol. Inform. 2025, 85, 102972. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Z.; Wu, L.; Zhang, Y. Solar-induced chlorophyll fluorescence and its relationship with photosynthesis during waterlogging in a maize field. Agric. For. Meteorol. 2025, 363, 110404. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Q.; Li, J.; Yang, X.; Wu, Y.; Zhang, Z.; Wang, S.; Wang, H.; Zhang, Y. Solar-induced chlorophyll fluorescence and its link to canopy photosynthesis in maize from continuous ground measurements. Remote Sens. Environ. 2020, 236, 111420. [Google Scholar] [CrossRef]
- Song, L.; Cai, J.; Wu, K.; Li, Y.; Hou, G.; Du, S.; Duan, J.; He, L.; Guo, T.; Feng, W. Early diagnosis of wheat powdery mildew using solar-induced chlorophyll fluorescence and hyperspectral reflectance. Eur. J. Agron. 2025, 162, 127427. [Google Scholar] [CrossRef]
- Jin, X.; Zarco-Tejada, P.J.; Schmidhalter, U.; Reynolds, M.P.; Hawkesford, M.J.; Varshney, R.K.; Yang, T.; Nie, C.; Li, Z.; Ming, B.; et al. High-Throughput Estimation of Crop Traits: A Review of Ground and Aerial Phenotyping Platforms. IEEE Geosci. Remote Sens. Mag. 2021, 9, 200–231. [Google Scholar] [CrossRef]
- Camino, C.; González-Dugo, V.; Hernández, P.; Sillero, J.C.; Zarco-Tejada, P.J. Improved nitrogen retrievals with airborne-derived fluorescence and plant traits quantified from VNIR-SWIR hyperspectral imagery in the context of precision agriculture. Int. J. Appl. Earth Obs. Geoinf. 2018, 70, 105–117. [Google Scholar] [CrossRef]
- Gerhards, M.; Schlerf, M.; Mallick, K.; Udelhoven, T. Challenges and future perspectives of multi-/Hyperspectral thermal infrared remote sensing for crop water-stress detection: A review. Remote Sens. 2019, 11, 1240. [Google Scholar] [CrossRef]
- Abbas, T.; Farooq, N.; Nadeem, M.A. Application of leaf water content measurement to improve herbicide efficacy for effective weed management in a changing climate—A review. Crop Prot. 2025, 191, 107138. [Google Scholar] [CrossRef]
- Cardamis, M.; Jia, H.; Qian, H.; Chen, W.; Yan, Y.; Ghannoum, O.; Quigley, A.; Chou, C.T.; Hu, W. Leafeon: Towards Accurate Sensing of Leaf Water Content for Protected Cropping, with mmWave Radar. IEEE Internet Things J. 2025, 12, 19646–19659. [Google Scholar] [CrossRef]
- Dong, H.; Dong, J.; Sun, S.; Bai, T.; Zhao, D.; Yin, Y.; Shen, X.; Wang, Y.; Zhang, Z.; Wang, Y. Crop water stress detection based on UAV remote sensing systems. Agric. Water Manag. 2024, 303, 109059. [Google Scholar] [CrossRef]
- Ahmad, U.; Alvino, A.; Marino, S. A Review of Crop Water Stress Assessment Using Remote Sensing. Remote Sens. 2021, 13, 4155. [Google Scholar] [CrossRef]
- Romero-Trigueros, C.; Bayona Gambín, J.M.; Nortes Tortosa, P.A.; Alarcón Cabañero, J.J.; Nicolás, E.N. Determination of Crop Water Stress index by infrared thermometry in grapefruit trees irrigated with saline reclaimed water combined with deficit irrigation. Remote Sens. 2019, 11, 757. [Google Scholar] [CrossRef]
- Jiang, M.; Zheng, C.; Jia, L.; Chen, J. A 20-year dataset (2001—2020) of global cropland water-use efficiency at 1-km grid resolution. Sci. Data 2025, 12, 574. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Yin, D.; Wu, W.; Cui, N.; Nie, C.; Shi, L.; Liu, S.; Yu, X.; Bai, Y.; Liu, Y.; et al. A review of remote sensing estimation of crop water productivity: Definition, methodology, scale, and evaluation. Int. J. Remote Sens. 2023, 44, 5033–5068. [Google Scholar] [CrossRef]
- Safi, A.R.; Karimi, P.; Mul, M.; Chukalla, A.; de Fraiture, C. Translating open-source remote sensing data to crop water productivity improvement actions. Agric. Water Manag. 2022, 261, 107373. [Google Scholar] [CrossRef]
- Koetz, B.; Bastiaanssen, W.; Berger, M.; Defourney, P.; Del Bello, U.; Drusch, M.; Drinkwater, M.; Duca, R.; Fernandez, V.; Ghent, D.; et al. High spatio-temporal resolution land surface temperature mission—A copernicus candidate mission in support of agricultural monitoring. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8160–8162. [Google Scholar]
- Heinemann, S.; Siegmann, B.; Thonfeld, F.; Muro, J.; Jedmowski, C.; Kemna, A.; Kraska, T.; Muller, O.; Schultz, J.; Udelhoven, T.; et al. Land surface temperature retrieval for agricultural areas using a novel UAV platform equipped with a thermal infrared and multispectral sensor. Remote Sens. 2020, 12, 1075. [Google Scholar] [CrossRef]
- Lee, J. Estimating Near-Surface Air Temperature from Satellite-Derived Land Surface Temperature Using Temporal Deep Learning: A Comparative Analysis. IEEE Access 2025, 13, 28935–28945. [Google Scholar] [CrossRef]
- Majumder, A.; Kingra, P.K.; Setia, R.; Singh, S.P.; Pateriya, B. Influence of land use/land cover changes on surface temperature and its effect on crop yield in different agro-climatic regions of Indian Punjab. Geocarto Int. 2020, 35, 663–686. [Google Scholar] [CrossRef]
- Barai, K.; Wallhead, M.; Hall, B.; Rahimzadeh-Bajgiran, P.; Meireles, J.; Herrmann, I.; Zhang, Y.J. Detecting spatial variation in wild blueberry water stress using UAV-borne thermal imagery: Distinct temporal and reference temperature effects. Precis. Agric. 2025, 26, 25. [Google Scholar] [CrossRef]
- García-Santos, V.; Sánchez, J.M.; Cuxart, J. Evapotranspiration Acquired with Remote Sensing Thermal-Based Algorithms: A State-of-the-Art Review. Remote Sens. 2022, 14, 3440. [Google Scholar] [CrossRef]
- El Hazdour, I.; Le Page, M.; Hanich, L.; Chakir, A.; Lopez, O.; Jarlan, L. A GEE TSEB workflow for daily high-resolution fully remote sensing evapotranspiration: Validation over four crops in semi-arid conditions and comparison with the SSEBop experimental product. Environ. Model. Softw. 2025, 187, 106365. [Google Scholar] [CrossRef]
- Bhattarai, N.; Wagle, P. Recent advances in remote sensing of evapotranspiration. Remote Sens. 2021, 13, 4260. [Google Scholar] [CrossRef]
- Pelosi, A.; Villani, P.; Bolognesi, S.F.; Chirico, G.B.; D’urso, G. Predicting crop evapotranspiration by integrating ground and remote sensors with air temperature forecasts. Sensors 2020, 20, 1740. [Google Scholar] [CrossRef] [PubMed]
- Ippolito, M.; De Caro, D.; Ciraolo, G.; Minacapilli, M.; Provenzano, G. Estimating crop coefficients and actual evapotranspiration in citrus orchards with sporadic cover weeds based on ground and remote sensing data. Irrig. Sci. 2023, 41, 5–22. [Google Scholar] [CrossRef]
- Wolff, W.; Francisco, J.P.; Flumignan, D.L.; Marin, F.R.; Folegatti, M.V. Optimized algorithm for evapotranspiration retrieval via remote sensing. Agric. Water Manag. 2022, 262, 107390. [Google Scholar] [CrossRef]
- Garofalo, S.P.; Ardito, F.; Sanitate, N.; De Carolis, G.; Ruggieri, S.; Giannico, V.; Rana, G.; Ferrara, R.M. Robustness of Actual Evapotranspiration Predicted by Random Forest Model Integrating Remote Sensing and Meteorological Information: Case of Watermelon (Citrullus lanatus, (Thunb.) Matsum. & Nakai, 1916). Water 2025, 17, 323. [Google Scholar] [CrossRef]
- Ratshiedana, P.E.; Elbasit, M.A.M.; Adam, E.; Chirima, G.J. Evaluation of remote sensing algorithms for estimating actual evapotranspiration in arid agricultural environments. Hydrol. Earth Syst. Sci. 2025. [Google Scholar] [CrossRef]
- Liu, M.; Lei, H.; Wang, X.; Paredes, P. High-resolution mapping of evapotranspiration over heterogeneous cropland affected by soil salinity. Agric. Water Manag. 2025, 308, 109301. [Google Scholar] [CrossRef]
- Kaihotsu, I.; Asanuma, J.; Aida, K.; Oyunbaatar, D. Evaluation of the AMSR2 L2 soil moisture product of JAXA on the Mongolian Plateau over seven years (2012–2018). SN Appl. Sci. 2019, 1, 1477. [Google Scholar] [CrossRef]
- Kolassa, J.; Gentine, P.; Prigent, C.; Aires, F. Soil moisture retrieval from AMSR-E and ASCAT microwave observation synergy. Part 1: Satellite data analysis. Remote Sens. Environ. 2016, 173, 202–217. [Google Scholar] [CrossRef]
- NISAR. NISAR: The NASA-ISRO SAR Mission. Water: Vital for Life and Civilization. © 2019 California Institute of Technology. Government Sponsorship Acknowledged. Available online: https://nisar.jpl.nasa.gov/system/documents/files/15_NISARApplications_SoilMoisture1.pdf (accessed on 19 October 2025).
- Benninga, H.J.F.; van der Velde, R.; Su, Z. Sentinel-1 soil moisture content and its uncertainty over sparsely vegetated fields. J. Hydrol. X 2020, 9, 100066. [Google Scholar] [CrossRef]
- Abbaszadeh, P.; Moradkhani, H.; Gavahi, K.; Kumar, S.; Hain, C.; Zhan, X.; Duan, Q.; Peters-Lidard, C.; Karimiziarani, S. High-resolution smap satellite soil moisture product: Exploring the opportunities. Bull. Am. Meteorol. Soc. 2021, 102, 309–315. [Google Scholar] [CrossRef]
- Noory, H.; Khoshsima, M.; Tsunekawa, A.; Tsubo, M.; Haregeweyn, N.; Pashapour, S. Developing a method for root-zone soil moisture monitoring at the field scale using remote sensing and simulation modeling. Agric. Water Manag. 2025, 308, 109263. [Google Scholar] [CrossRef]
- Jalilvand, E.; Tajrishy, M.; Ghazi Zadeh Hashemi, S.A.; Brocca, L. Quantification of irrigation water using remote sensing of soil moisture in a semi-arid region. Remote Sens. Environ. 2019, 231, 111226. [Google Scholar] [CrossRef]
- Ghazali, M.F.; Wikantika, K.; Harto, A.B.; Kondoh, A. Generating soil salinity, soil moisture, soil pH from satellite imagery and its analysis. Inf. Process. Agric. 2020, 7, 294–306. [Google Scholar] [CrossRef]
- Chabrillat, S.; Ben-Dor, E.; Cierniewski, J.; Gomez, C.; Schmid, T.; van Wesemael, B. Imaging Spectroscopy for Soil Mapping and Monitoring; Springer: Dordrecht, The Netherlands, 2019; Volume 40, ISBN 0123456789. [Google Scholar]
- Alvino, A.; Marino, S. Remote sensing for irrigation of horticultural crops. Horticulturae 2017, 3, 40. [Google Scholar] [CrossRef]
- Mpakairi, K.S.; Dube, T.; Sibanda, M.; Mutanga, O. Leveraging remote sensing for optimised national scale agricultural water management in South Africa. Sci. Total Environ. 2025, 974, 179199. [Google Scholar] [CrossRef]
- Zhou, D.; Zheng, C.; Jia, L.; Menenti, M.; Lu, J.; Chen, Q. Evaluating the Performance of Irrigation Using Remote Sensing Data and the Budyko Hypothesis: A Case Study in Northwest China. Remote Sens. 2025, 17, 1085. [Google Scholar] [CrossRef]
- Pitoro, V.S.J.; Franco, J.R.; de Souza Correa, L.R.; Manjate, M.J.; Román, R.M.S. Evaluating Water Productivity and Efficiency in Irrigated Fields Using Remote Sensing: A Case Study in Mozambique’s Sugarcane Cultivation. Water Conserv. Sci. Eng. 2025, 10, 14. [Google Scholar] [CrossRef]
- Ahmad, U.; Sohel, F. Evaluating decision support systems for precision irrigation and water use efficiency. Digit. Eng. 2025, 4, 100038. [Google Scholar] [CrossRef]
- Akbar, M.U.; Mirchi, A.; Arshad, A.; Alian, S.; Mehata, M.; Taghvaeian, S.; Khodkar, K.; Kettner, J.; Datta, S.; Wagner, K. Multi-model ensemble mapping of irrigated areas using remote sensing, machine learning, and ground truth data. Agric. Water Manag. 2025, 312, 109416. [Google Scholar] [CrossRef]
- Zhai, W.; Cheng, Q.; Duan, F.; Huang, X.; Chen, Z. Remote sensing-based analysis of yield and water-fertilizer use efficiency in winter wheat management. Agric. Water Manag. 2025, 311, 109390. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Liao, Y.; Liao, R.; Šimůnek, J. Generating high-precision farmland irrigation pattern maps using remotely sensed ecological indices and machine learning algorithms. Agric. Water Manag. 2025, 308, 109302. [Google Scholar] [CrossRef]
- Ozdogan, M.; Yang, Y.; Allez, G.; Cervantes, C. Remote sensing of irrigated agriculture: Opportunities and challenges. Remote Sens. 2010, 2, 2274–2304. [Google Scholar] [CrossRef]
- Alordzinu, K.E.; Li, J.; Lan, Y.; Appiah, S.A.; Al Aasmi, A.; Wang, H.; Liao, J.; Sam-amoah, L.K.; Qiao, S. Ground-based hyperspectral remote sensing for estimating water stress in tomato growth in sandy loam and silty loam soils. Sensors 2021, 21, 5705. [Google Scholar] [CrossRef]
- Wang, X.; Guo, Z.; Zhang, K.; Fu, Z.; Lee, C.K.F.; Yang, D.; Detto, M.; Zhang, Y.; Wu, J. Can Large—Scale Satellite Products Track the Effects of Atmospheric Dryness and Soil Water Deficit on Ecosystem Productivity Under Droughts? Geophys. Res. Lett. 2025, 52, e2024GL110785. [Google Scholar] [CrossRef]
- Yu, J.; Wang, W.; Chen, Z.; Cao, M.; Qian, H. Disentangling the dominance of atmospheric and soil water stress on vegetation productivity in global drylands. J. Hydrol. 2025, 657, 133043. [Google Scholar] [CrossRef]
- Sankey, T.T. UAV hyperspectral-thermal-lidar fusion in phenotyping: Genetic trait differences among Fremont cottonwood populations. Landsc. Ecol. 2025, 40, 45. [Google Scholar] [CrossRef]
- Gitelson, A.; Arkebauer, T.; Viña, A.; Skakun, S.; Inoue, Y. Evaluating plant photosynthetic traits via absorption coefficient in the photosynthetically active radiation region. Remote Sens. Environ. 2021, 258, 112401. [Google Scholar] [CrossRef]
- Wang, X.; Lei, H.; Li, J.; Huo, Z.; Zhang, Y.; Qu, Y. Estimating evapotranspiration and yield of wheat and maize croplands through a remote sensing-based model. Agric. Water Manag. 2023, 282, 108294. [Google Scholar] [CrossRef]
- Koganti, T.; Ghane, E.; Martinez, L.R.; Iversen, B.V.; Allred, B.J. Mapping of agricultural subsurface drainage systems using unmanned aerial vehicle imagery and ground penetrating radar. Sensors 2021, 21, 2800. [Google Scholar] [CrossRef]
- Rahmani, S.R.; Schulze, D.G. Mapping subsurface tile lines on a research farm using aerial photography, paper maps, and expert knowledge. Agrosystems Geosci. Environ. 2023, 6, e20362. [Google Scholar] [CrossRef]
- Zhao, C.; Pan, Y.; Zhu, X.; Li, L.; Xia, X.; Ren, S.; Gao, Y. Monitoring of deforestation events in the tropics using multidimensional features of Sentinel 1 radar data. Front. For. Glob. Change 2023, 6, 1257806. [Google Scholar] [CrossRef]
- Tang, X.; Bratley, K.H.; Cho, K.; Bullock, E.L.; Olofsson, P.; Woodcock, C.E. Near real-time monitoring of tropical forest disturbance by fusion of Landsat, Sentinel-2, and Sentinel-1 data. Remote Sens. Environ. 2023, 294, 113626. [Google Scholar] [CrossRef]
- Zhao, F.; Sun, R.; Zhong, L.; Meng, R.; Huang, C.; Zeng, X.; Wang, M.; Li, Y.; Wang, Z. Monthly mapping of forest harvesting using dense time series Sentinel-1 SAR imagery and deep learning. Remote Sens. Environ. 2022, 269, 112822. [Google Scholar] [CrossRef]
- Bullock, E.L.; Woodcock, C.E.; Olofsson, P. Monitoring tropical forest degradation using spectral unmixing and Landsat time series analysis. Remote Sens. Environ. 2020, 238, 110968. [Google Scholar] [CrossRef]
- Li, Y.; Ye, Y.; Fang, X.; Zhang, C.; Zhao, Z. Loss of wetlands due to the expansion of polder in the Dongting Plain, China, AD 1368–1980. Holocene 2020, 30, 646–656. [Google Scholar] [CrossRef]
- Li, Y.; Dai, H.; Dai, Z.; Zhang, L. The polder systems legacies in the early twentieth century affect the contemporary landscape in the Jianghan Plain of Hubei, China. Herit. Sci. 2024, 12, 311. [Google Scholar] [CrossRef]
- Rosen, P.A.; Hensley, S.; Gurrola, E.; Rogez, F.; Chan, S.; Martin, J.; Rodriguez, E. SRTM C-band topographic data: Quality assessments and calibration activities. In Proceedings of the IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217), Sydney, Australia, 9–13 July 2001; Volume 2, pp. 739–741. [Google Scholar]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Zink, M.; Fiedler, H.; Hajnsek, I.; Krieger, G.; Moreira, A.; Werner, M. The TanDEM-X Mission Concept. In Proceedings of the 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31 July–4 August 2006; pp. 1938–1941. [Google Scholar]
- Wessel, B.; Huber, M.; Wohlfart, C.; Marschalk, U.; Kosmann, D.; Roth, A. Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data. ISPRS J. Photogramm. Remote Sens. 2018, 139, 171–182. [Google Scholar] [CrossRef]
- Potin, P.; Rosich, B.; Roeder, J.; Bargellini, P. Sentinel-1 Mission operations concept. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2014; pp. 1465–1468. [Google Scholar]
- Kankaku, Y.; Suzuki, S.; OSAWA, Y. ALOS-2 mission and development status. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium—IGARSS, Melbourne, Australia, 21–26 July 2013; pp. 2396–2399. [Google Scholar]
- Hirano, A.; Welch, R.; Lang, H. Mapping from ASTER stereo image data: DEM validation and accuracy assessment. ISPRS J. Photogramm. Remote Sens. 2003, 57, 356–370. [Google Scholar] [CrossRef]
- Takaku, J.; Tadono, T. High resolution DSM generation from ALOS PRISM—Mosaic dataset-. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 2687–2690. [Google Scholar]
- Rosenqvist, A.; Shimada, M.; Ito, N.; Watanabe, M. ALOS PALSAR: A pathfinder mission for global-scale monitoring of the environment. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3307–3316. [Google Scholar] [CrossRef]
- Schutz, B.E.; Zwally, H.J.; Shuman, C.A.; Hancock, D.; DiMarzio, J.P. Overview of the ICESat mission. Geophys. Res. Lett. 2005, 32, L21S01. [Google Scholar] [CrossRef]
- Roy, Y.L.; Deschaux-Beaume, M. Sral, A Radar Altime Ter Designed to Meas Ure A Wide Range of Surface Types. Power 2009, 1, 445–448. [Google Scholar]
- Donnellan, A.; Parker, J.; Hensley, S.; Pierce, M.; Wang, J.; Rundle, J. UAVSAR observations of triggered slip on the Imperial, Superstition Hills, and East Elmore Ranch Faults associated with the 2010 M 7.2 El Mayor-Cucapah earthquake. Geochem. Geophys. Geosyst. 2014, 15, 815–829. [Google Scholar] [CrossRef]
- Dillner, R.P.; Wimmer, M.A.; Porten, M.; Udelhoven, T.; Retzlaff, R. Combining a Standardized Growth Class Assessment, UAV Sensor Data, GIS Processing, and Machine Learning Classification to Derive a Correlation with the Vigour and Canopy Volume of Grapevines. Sensors 2025, 25, 431. [Google Scholar] [CrossRef] [PubMed]
- Mulder, V.L.; de Bruin, S.; Schaepman, M.E.; Mayr, T.R. The use of remote sensing in soil and terrain mapping—A review. Geoderma 2011, 162, 1–19. [Google Scholar] [CrossRef]
- Kehoe, M.; Harding, A.; Pagdilao, S.J.; Appels, W.M. Effect of topographical and soil complexity on potato yields in irrigated fields. Agric. Water Manag. 2025, 307, 109216. [Google Scholar] [CrossRef]
- Perović, V.; Čakmak, D.; Jakšić, D.; Milanović, M.; Matić, M.; Pavlović, D.; Mitrović, M.; Pavlović, P. Development and evaluation approach of soil quality in agricultural soils: Integrated system for a more reliable delineation of homogeneous management zones. Appl. Soil Ecol. 2025, 206, 105860. [Google Scholar] [CrossRef]
- Tang, J.; Xie, Y.; Cheng, H.; Liu, G. Catena Impact of farmland landscape characteristics on gully erosion in the black soil region of Northeast China. Catena 2025, 249, 108623. [Google Scholar] [CrossRef]
- Liu, G.; Xia, J.; Zheng, K.; Cheng, J.; Wang, K.; Liu, Z.; Wei, Y.; Xie, D. Measurement and evaluation method of farmland microtopography feature information based on 3D LiDAR and inertial measurement unit. Soil Tillage Res. 2024, 236, 105921. [Google Scholar] [CrossRef]
- Ambaru, B.; Manvitha, R.; Madas, R. Synergistic integration of remote sensing and soil metagenomics data: Advancing precision agriculture through interdisciplinary approaches. Front. Sustain. Food Syst. 2024, 8, 1499973. [Google Scholar] [CrossRef]
- Wrbka, T.; Erb, K.H.; Schulz, N.B.; Peterseil, J.; Hahn, C.; Haberl, H. Linking pattern and process in cultural landscapes. An empirical study based on spatially explicit indicators. Land Use Policy 2004, 21, 289–306. [Google Scholar] [CrossRef]
- Sertel, E.; Topaloğlu, R.H.; Şallı, B.; Algan, I.Y.; Aksu, G.A. Comparison of landscape metrics for three different level land cover/land use maps. ISPRS Int. J. Geo-Inf. 2018, 7, 408. [Google Scholar] [CrossRef]
- Cai, Z.; Hu, Q.; Zhang, X.; Yang, J.; Wei, H.; He, Z.; Song, Q.; Wang, C.; Yin, G.; Xu, B. An Adaptive Image Segmentation Method with Automatic Selection of Optimal Scale for Extracting Cropland Parcels in Smallholder Farming Systems. Remote Sens. 2022, 14, 3067. [Google Scholar] [CrossRef]
- Wagner, M.P.; Oppelt, N. Extracting agricultural fields from remote sensing imagery using graph-based growing contours. Remote Sens. 2020, 12, 1205. [Google Scholar] [CrossRef]
- Watkins, B.; Van Niekerk, A. Automating field boundary delineation with multi-temporal Sentinel-2 imagery. Comput. Electron. Agric. 2019, 167, 105078. [Google Scholar] [CrossRef]
- Tieskens, K.F.; Schulp, C.J.E.; Levers, C.; Lieskovský, J.; Kuemmerle, T.; Plieninger, T.; Verburg, P.H. Characterizing European cultural landscapes: Accounting for structure, management intensity and value of agricultural and forest landscapes. Land Use Policy 2017, 62, 29–39. [Google Scholar] [CrossRef]
- Ye, S.; Ren, S.; Song, C.; Du, Z.; Wang, K.; Du, B.; Cheng, F.; Zhu, D. Spatial pattern of cultivated land fragmentation in mainland China: Characteristics, dominant factors, and countermeasures. Land Use Policy 2024, 139, 107070. [Google Scholar] [CrossRef]
- Erikstad, L.; Simensen, T.; Bakkestuen, V.; Halvorsen, R. Index Measuring Land Use Intensity—A Gradient-Based Approach. Geomatics 2023, 3, 188–204. [Google Scholar] [CrossRef]
- Meier, E.S.; Indermaur, A.; Ginzler, C.; Psomas, A. An effective way to map land-use intensity with a high spatial resolution based on habitat type and environmental data. Remote Sens. 2020, 12, 969. [Google Scholar] [CrossRef]
- Forkuor, G.; Conrad, C.; Thiel, M.; Zoungrana, B.J.B.; Tondoh, J.E. Multiscale remote sensing to map the spatial distribution and extent of cropland in the sudanian savanna of West Africa. Remote Sens. 2017, 9, 839. [Google Scholar] [CrossRef]
- Eckert, S.; Kiteme, B.; Njuguna, E.; Zaehringer, J.G. Agricultural expansion and intensification in the foothills of Mount Kenya: A landscape perspective. Remote Sens. 2017, 9, 784. [Google Scholar] [CrossRef]
- Knauer, K.; Gessner, U.; Fensholt, R.; Forkuor, G.; Kuenzer, C. Monitoring agricultural expansion in Burkina Faso over 14 years with 30 m resolution time series: The role of population growth and implications for the environment. Remote Sens. 2017, 9, 132. [Google Scholar] [CrossRef]
- Gilcher, M.; Udelhoven, T. Field geometry and the spatial and temporal generalization of crop classification algorithms—A randomized approach to compare pixel based and convolution based methods. Remote Sens. 2021, 13, 775. [Google Scholar] [CrossRef]
- Potapov, P.; Turubanova, S.; Hansen, M.C.; Tyukavina, A.; Zalles, V.; Khan, A.; Song, X.P.; Pickens, A.; Shen, Q.; Cortez, J. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 2022, 3, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Janus, J. Measuring land fragmentation considering the shape of transportation network: A method to increase the accuracy of modeling the spatial structure of agriculture with case study in Poland. Comput. Electron. Agric. 2018, 148, 259–271. [Google Scholar] [CrossRef]
- Wang, H.; Feng, C.; Li, X.; Yang, Y.; Zhang, Y.; Su, J.; Luo, D.; Wei, D.; He, Y. Plant Species Diversity Assessment in the Temperate Grassland Region of China Using UAV Hyperspectral Remote Sensing. Diversity 2024, 16, 775. [Google Scholar] [CrossRef]
- Xu, D.; Chen, H.; Ji, F.; Zhu, J.; Wang, Z.; Zhang, R.; Hou, M.; Huang, X.; Wang, D.; Lu, T.; et al. New insights on canopy heterogeneous analysis and light micro-climate simulation in Chinese solar greenhouse. Comput. Electron. Agric. 2025, 233, 110179. [Google Scholar] [CrossRef]
- Contreras, F.; Cayuela, M.L.; Sánchez-Monedero, M.Á.; Pérez-Cutillas, P. Multi-Source Remote Sensing for large-scale biomass estimation in mediterranean olive orchards using GEDI LiDAR and Machine Learning. EGUsphere 2025. [Google Scholar]
- Feng, H.; Fan, Y.; Yue, J.; Bian, M.; Liu, Y.; Chen, R.; Ma, Y.; Fan, J.; Yang, G.; Zhao, C. Estimation of potato above-ground biomass based on the VGC-AGB model and deep learning. Comput. Electron. Agric. 2025, 232, 110122. [Google Scholar] [CrossRef]
- Chen, M.; Tang, Y.; Zou, X.; Huang, Z.; Zhou, H.; Chen, S. 3D global mapping of large-scale unstructured orchard integrating eye-in-hand stereo vision and SLAM. Comput. Electron. Agric. 2021, 187, 106237. [Google Scholar] [CrossRef]
- Hadadi, M.; Saraeian, M.; Godbersen, J.; Jubery, T.; Li, Y.; Attigala, L.; Aditya Balu, S.S.; Schnable, P.S.; Krishnamurthy, A.; Ganapathysubramanian, B.; et al. Procedural Generation of 3D Maize Plant Architecture from LIDAR. Comput. Sci. 2025, 236, 110382. [Google Scholar] [CrossRef]
- Bao, Y.; Tang, L.; Srinivasan, S.; Schnable, P.S. ScienceDirect Field-based architectural traits characterisation of maize plant using time-of-flight 3D imaging. Biosyst. Eng. 2018, 178, 86–101. [Google Scholar] [CrossRef]
- Rocchini, D.; Dadalt, L.; Delucchi, L.; Neteler, M.; Palmer, M.W. Disentangling the role of remotely sensed spectral heterogeneity as a proxy for North American plant species richness. Community Ecol. 2014, 15, 37–43. [Google Scholar] [CrossRef]
- Yang, H.; Yang, Z.; Wu, Y.; Wang, C.; Wu, Y.; Zhang, P.; Wang, B. High-Resolution Remote Sensing Farmland Extraction Network Based on Dense-Feature Overlay Fusion and Information. IEEE Geosci. Remote Sens. Lett. 2025, 22, 1–5. [Google Scholar] [CrossRef]
- Pooya, M.R.; Hasankhani, A.; Fathololomi, S.; Karimi Firozjaei, M. A Spatial Multi-Criteria Decision-Making Approach to Evaluating Homogeneous Areas for Rainfed Wheat Yield Assessment. Water 2025, 17, 1045. [Google Scholar] [CrossRef]
- Fang, G.; Wang, C.; Dong, T.; Wang, Z.; Cai, C.; Chen, J.; Liu, M.; Zhang, H. A Landscape-Clustering Zoning Strategy to Map Multi-Crops in Fragmented Cropland Regions Using Sentinel-2 and Sentinel-1 Imagery with Feature Selection. Agriculture 2025, 15, 186. [Google Scholar] [CrossRef]
- Abdulraheem, M.I.; Zhang, W.; Li, S.; Moshayedi, A.J.; Farooque, A.A.; Hu, J. Advancement of Remote Sensing for Soil Measurements and Applications: A Comprehensive Review. Sustain. 2023, 15, 15444. [Google Scholar] [CrossRef]
- Yuzugullu, O.; Fajraoui, N.; Liebisch, F. Soil Texture and pH Mapping Using Remote Sensing and Support Sampling. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 12685–12705. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, Y.; Zang, D.; Yang, Q.; Liu, H.; Luo, C. Using Satellites to Monitor Soil Texture in Typical Black Soil Areas and Assess Its Impact on Crop Growth. Agriculture 2025, 15, 912. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, G.L.; Song, X.; Li, D.; Zhao, Y.; Yang, J.; Wu, H.; Yang, F. High-resolution and three-dimensional mapping of soil texture of China. Geoderma 2020, 361, 114061. [Google Scholar] [CrossRef]
- Bahrami, A.; Danesh, M.; Bahrami, M. Studying sand component of soil texture using the spectroscopic method. Infrared Phys. Technol. 2022, 122, 104056. [Google Scholar] [CrossRef]
- Swetha, R.K.; Bende, P.; Singh, K.; Gorthi, S.; Biswas, A.; Li, B.; Weindorf, D.C.; Chakraborty, S. Predicting soil texture from smartphone-captured digital images and an application. Geoderma 2020, 376, 114562. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Emadi, M.; Cherati, A.; Heung, B.; Mosavi, A.; Scholten, T. Bio-inspired hybridization of artificial neural networks: An application for mapping the spatial distribution of soil texture fractions. Remote Sens. 2021, 13, 1025. [Google Scholar] [CrossRef]
- Swain, S.R.; Chakraborty, P.; Panigrahi, N.; Vasava, H.B.; Reddy, N.N.; Roy, S.; Majeed, I.; Das, B.S. Estimation of soil texture using Sentinel-2 multispectral imaging data: An ensemble modeling approach. Soil Tillage Res. 2021, 213, 105134. [Google Scholar] [CrossRef]
- Shen, Q.; Shang, K.; Xiao, C.; Tang, H.; Wu, T.; Wang, C. A novel hyperspectral remote sensing estimation model for surface soil texture using AHSI/ZY1-02D satellite image. Int. J. Appl. Earth Obs. Geoinf. 2025, 138, 104453. [Google Scholar] [CrossRef]
- Tong, X.; Brandt, M.; Hiernaux, P.; Herrmann, S.M.; Tian, F.; Prishchepov, A.V.; Fensholt, R. Revisiting the coupling between NDVI trends and cropland changes in the Sahel drylands: A case study in western Niger. Remote Sens. Environ. 2017, 191, 286–296. [Google Scholar] [CrossRef]
- Tao, J.; Jiang, Q.; Zhang, X.; Huang, J.; Wang, Y.; Wu, W. From frequency to intensity—A new index for annual large-scale cropping intensity mapping. Comput. Electron. Agric. 2023, 215, 108428. [Google Scholar] [CrossRef]
- Estel, S.; Kuemmerle, T.; Levers, C.; Baumann, M.; Hostert, P. Mapping cropland-use intensity across Europe using MODIS NDVI time series. Environ. Res. Lett. 2016, 11, 024015. [Google Scholar] [CrossRef]
- Defourny, P.; Bontemps, S.; Bellemans, N.; Cara, C.; Dedieu, G.; Guzzonato, E.; Hagolle, O.; Inglada, J.; Nicola, L.; Rabaute, T.; et al. Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems around the world. Remote Sens. Environ. 2019, 221, 551–568. [Google Scholar] [CrossRef]
- Xu, F.; Yao, X.; Zhang, K.; Yang, H.; Feng, Q.; Li, Y.; Yan, S.; Gao, B.; Li, S.; Yang, J.; et al. Deep learning in cropland field identification: A review. Comput. Electron. Agric. 2024, 222, 109042. [Google Scholar] [CrossRef]
- Bouguettaya, A.; Zarzour, H.; Kechida, A.; Taberkit, A.M. Deep learning techniques to classify agricultural crops through UAV imagery: A review. Neural Comput. Appl. 2022, 34, 9511–9536. [Google Scholar] [CrossRef] [PubMed]
- Choukri, M.; Laamrani, A.; Chehbouni, A. Use of Optical and Radar Imagery for Crop Type Classification in Africa: A Review. Sensors 2024, 24, 3618. [Google Scholar] [CrossRef]
- Tan, Y.; Gu, J.; Lu, L.; Zhang, L.; Huang, J.; Pan, L.; Lv, Y.; Wang, Y.; Chen, Y. Hyperspectral Band Selection for Crop Identification and Mapping of Agriculture. Remote Sens. 2025, 17, 663. [Google Scholar] [CrossRef]
- Bourriz, M.; Hajji, H.; Laamrani, A.; Elbouanani, N.; Abdelali, H.A.; Bourzeix, F.; El-Battay, A.; Amazirh, A.; Chehbouni, A. Integration of Hyperspectral Imaging and AI Techniques for Crop Type Mapping: Present Status, Trends, and Challenges. Remote Sens. 2025, 17, 1574. [Google Scholar] [CrossRef]
- Muthoka, J.M.; Rowhani, P.; Salakpi, E.E.; Balzter, H.; Antonarakis, A.S. Classification of grassland community types and palatable pastures in semi-arid savannah grasslands of Kenya using multispectral Sentinel-2 imagery. Front. Sustain. Food Syst. 2025, 9, 1543491. [Google Scholar] [CrossRef]
- Li, Y.; Liu, T.; Wang, Y.; Duan, L.; Li, M.; Zhang, J.; Zhang, G. A more effective approach for species-level classifications using multi-source remote sensing data: Validation and application to an arid and semi-arid grassland. Ecol. Indic. 2024, 160, 111853. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, W.; Chen, A.; Xu, C.; Guo, J.; Xing, X.; Yang, D.; Wang, Z.; Yang, X. Two-tier classification framework for mapping grassland types using multisource earth observation data. GIScience Remote Sens. 2024, 61, 2385170. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Q.; Tao, S.; Qi, J.; Ding, M.; Guan, Q.; Wu, B.; Zhang, M.; Nabil, M.; Tian, F.; et al. A new framework to map fine resolution cropping intensity across the globe: Algorithm, validation, and implication. Remote Sens. Environ. 2020, 251, 112095. [Google Scholar] [CrossRef]
- Krishna, G.; Biradar, C.M. Spatiotemporal mapping of rice fallows and soil moisture dynamics for sustainable intensification using time series geospatial big data. J. Appl. Remote Sens. 2025, 19, 014515. [Google Scholar] [CrossRef]
- Tao, J.; Wu, W.; Liu, W. Spatial-temporal dynamics of cropping frequency in hubei province over 2001–2015. Sensors 2017, 17, 2622. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.; Yu, Q.; Wu, W. From multiple cropping index to multiple cropping frequency: Observing cropland use intensity at a finer scale. Ecol. Indic. 2019, 101, 892–903. [Google Scholar] [CrossRef]
- Arjasakusuma, S.; Kusuma, S.S.; Mahendra, W.K.; Astriviany, N. Mapping paddy field extent and temporal pattern variation in a complex terrain area using sentinel 1-time series data: Case study of magelang district, indonesia. Int. J. Geoinform. 2021, 17, 79–88. [Google Scholar] [CrossRef]
- Pazhanivelan, S.; Kumaraperumal, R.; Vishnu Priya, M.; Rengabashyam, K.; Shankar, K.; Nivas Raj, M.; Yadav, M.K. Multi-Temporal Analysis of Cropping Patterns and Intensity Using Optical and SAR Satellite Data for Sustaining Agricultural Production in Tamil Nadu, India. Sustainability 2025, 17, 1613. [Google Scholar] [CrossRef]
- Yu, Q.; Xiang, M.; Sun, Z.; Wu, W. The complexity of measuring cropland use intensity: An empirical study. Agric. Syst. 2021, 192, 103180. [Google Scholar] [CrossRef]
- Conrad, C.; Schönbrodt-Stitt, S.; Löw, F.; Sorokin, D.; Paeth, H. Cropping intensity in the Aral Sea Basin and its dependency from the runoffformation 2000–2012. Remote Sens. 2016, 8, 630. [Google Scholar] [CrossRef]
- Rufin, P.; Levers, C.; Baumann, M.; Jägermeyr, J.; Krueger, T.; Kuemmerle, T.; Hostert, P. Global-scale patterns and determinants of cropping frequency in irrigation dam command areas. Glob. Environ. Change 2018, 50, 110–122. [Google Scholar] [CrossRef]
- Barbieri, P.; Pellerin, S.; Nesme, T. Comparing crop rotations between organic and conventional farming. Sci. Rep. 2017, 7, 13761. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Campbell, J.B.; de Beurs, K.M. Remote sensing of crop residue cover using multi-temporal Landsat imagery. Remote Sens. Environ. 2012, 117, 177–183. [Google Scholar] [CrossRef]
- Zhang, W.; Li, W.; Wang, C.; Yu, Q.; Tang, H.; Wu, W. A novel index for mapping crop residue covered cropland using remote sensing data. Comput. Electron. Agric. 2025, 231, 109995. [Google Scholar] [CrossRef]
- Du, J.; Jacinthe, P.-A.; Song, K.; Zhang, L.; Zhao, B.; Liu, H.; Wang, Y.; Zhang, W.; Zheng, Z.; Yu, W.; et al. Maize crop residue cover mapping using Sentinel-2 MSI data and random forest algorithms. Int. Soil Water Conserv. Res. 2025, 13, 189–202. [Google Scholar] [CrossRef]
- Yao, Y.; Ren, H.; Liu, Y. Remote sensing estimation of winter wheat residue cover with dry and wet soil background. Agric. Water Manag. 2025, 307, 109227. [Google Scholar] [CrossRef]
- Williams, F.; Gelder, B.; Presley, D.A.; Pape, B.; Einck, A. Estimation of Crop Residue Cover Utilizing Multiple Ground Truth Survey Techniques and Multi-Satellite Regression Models. Remote Sens. 2024, 16, 4185. [Google Scholar] [CrossRef]
- Kavoosi, Z.; Raoufat, M.H.; Dehghani, M.; Abdolabbas, J.; Kazemeini, S.A.; Nazemossadat, M.J. Feasibility of satellite and drone images for monitoring soil residue cover. J. Saudi Soc. Agric. Sci. 2020, 19, 56–64. [Google Scholar] [CrossRef]
- Singh, G.; Kant, Y.; Dadhwal, V.K. Remote sensing of crop residue burning in Punjab (India): A study on burned area estimation using multi-sensor approach. Geocarto Int. 2009, 24, 273–292. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar Singh, P. Applicability of UAVs in detecting and monitoring burning residue of paddy crops with IoT Integration: A step towards greener environment. Comput. Ind. Eng. 2023, 184, 109524. [Google Scholar] [CrossRef]
- Walker, K. Overcoming Common Pitfalls to Improve the Accuracy of Crop Residue Burning Measurement Based on Remote Sensing Data. Remote Sens. 2024, 16, 342. [Google Scholar] [CrossRef]
- Xie, Z.; Zhao, Y.; Jiang, R.; Zhang, M.; Hammer, G.; Chapman, S.; Brider, J.; Potgieter, A.B. Seasonal dynamics of fallow and cropping lands in the broadacre cropping region of Australia. Remote Sens. Environ. 2024, 305, 114070. [Google Scholar] [CrossRef]
- Oliphant, A.J.; Thenkabail, P.S.; Teluguntla, P.G.; Aneece, I.P.; Foley, D.J.; McCormick, R.L. Automated Cropland Fallow Algorithm (ACFA) for the Northern Great Plains of USA. Int. J. Digit. Earth 2024, 17, 2337221. [Google Scholar] [CrossRef]
- Tong, X.; Brandt, M.; Hiernaux, P.; Herrmann, S.; Rasmussen, L.V.; Rasmussen, K.; Tian, F.; Tagesson, T.; Zhang, W.; Fensholt, R. The forgotten land use class: Mapping of fallow fields across the Sahel using Sentinel-2. Remote Sens. Environ. 2020, 239, 111598. [Google Scholar] [CrossRef]
- Denis, A.; Desclee, B.; Migdall, S.; Hansen, H.; Bach, H.; Ott, P.; Kouadio, A.L.; Tychon, B. Multispectral remote sensing as a tool to support organic crop certification: Assessment of the discrimination level between organic and conventional maize. Remote Sens. 2021, 13, 117. [Google Scholar] [CrossRef]
- Atanasova, D.; Bozhanova, V.; Biserkov, V.; Maneva, V. Distinguishing areas of organic, biodynamic and conventional farming by means of multispectral images. A pilot study. Biotechnol. Biotechnol. Equip. 2021, 35, 977–993. [Google Scholar] [CrossRef]
- Denis, A.; Tychon, B. Remote sensing enables high discrimination between organic and non-organic cotton for organic cotton certification in West Africa. Agron. Sustain. Dev. 2015, 35, 1499–1510. [Google Scholar] [CrossRef]
- Serrano-Grijalva, L.; Ochoa-Hueso, R.; Veen, G.F.; Repeto-Deudero, I.; Van Rijssel, S.Q.; Koorneef, G.J.; Van der Putten, W.H. Normalized difference vegetation index analysis reveals increase of biomass production and stability during the conversion from conventional to organic farming. Glob. Change Biol. 2024, 30, e17461. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.; Zhang, D.; Zhang, G.; Wang, T.; Ren, W.; Yuan, F.; Liu, Y.; Wang, Z.; Zhao, C. High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges. Artif. Intell. Agric. 2025, 15, 98–115. [Google Scholar] [CrossRef]
- Lausch, A.; Salbach, C.; Schmidt, A.; Doktor, D.; Merbach, I.; Pause, M. Deriving phenology of barley with imaging hyperspectral remote sensing. Ecol. Modell. 2015, 295, 123–135. [Google Scholar] [CrossRef]
- Ispizua Yamati, F.R.; Bömer, J.; Noack, N.; Linkugel, T.; Paulus, S.; Mahlein, A.K. Configuration of a multisensor platform for advanced plant phenotyping and disease detection: Case study on Cercospora leaf spot in sugar beet. Smart Agric. Technol. 2025, 10, 100740. [Google Scholar] [CrossRef]
- Grubinger, S.; Coops, N.C.; O’Neill, G.A.; Degner, J.C.; Wang, T.; Waite, O.J.M.; Riofrío, J.; Koch, T.L. Seasonal vegetation dynamics for phenotyping using multispectral drone imagery: Genetic differentiation, climate adaptation, and hybridization in a common-garden trial of interior spruce (Picea engelmannii × glauca). Remote Sens. Environ. 2025, 317, 114512. [Google Scholar] [CrossRef]
- Peng, Y.; Solovchenko, A.; Zhang, C.; Shurygin, B.; Liu, X.; Wu, X.; Gong, Y.; Fang, S.; Gitelson, A. Remote sensing of rice phenology and physiology via absorption coefficient derived from unmanned aerial vehicle imaging. Precis. Agric. 2024, 25, 285–302. [Google Scholar] [CrossRef]
- Zheng, C.; Abd-elrahman, A.; Whitaker, V. Remote sensing and machine learning in crop phenotyping and management, with an emphasis on applications in strawberry farming. Remote Sens. 2021, 13, 531. [Google Scholar] [CrossRef]
- French, A.; Sanchez, C.A.; Wirth, T.; Scott, A.T.; Shields, J.; Bautista, E.; Saber, M.N.; Wisniewski, E. Estimating Fao-56 Crop Growth Stage Lengths with Sentinel 2. SSRN Electron. J. 2022, 4068442. [Google Scholar] [CrossRef]
- Xiang, M.; Yu, Q.; Li, Y.; Shi, Z.; Wu, W. Increasing multiple cropping for land use intensification: The role of crop choice. Land Use Policy 2022, 112, 105846. [Google Scholar] [CrossRef]
- Bahrami, H.; Homayouni, S.; Safari, A.; Mirzaei, S.; Mahdianpari, M.; Reisi-Gahrouei, O. Deep learning-based estimation of crop biophysical parameters using multi-source and multi-temporal remote sensing observations. Agronomy 2021, 11, 1363. [Google Scholar] [CrossRef]
- Mokhtari, A.; Noory, H.; Vazifedoust, M.; Palouj, M.; Bakhtiari, A.; Barikani, E.; Zabihi Afrooz, R.A.; Fereydooni, F.; Sadeghi Naeni, A.; Pourshakouri, F.; et al. Evaluation of single crop coefficient curves derived from Landsat satellite images for major crops in Iran. Agric. Water Manag. 2019, 218, 234–249. [Google Scholar] [CrossRef]
- Pirbasti, M.A.; Mcardle, G.; Akbari, V. Hedgerows Monitoring in Remote Sensing: A Comprehensive Review. IEEE Access 2024, 12, 156184–156207. [Google Scholar] [CrossRef]
- Ahlswede, S.; Asam, S.; Röder, A. Hedgerow object detection in very high-resolution satellite images using convolutional neural networks. J. Appl. Remote Sens. 2021, 15, 018501. [Google Scholar] [CrossRef]
- Wolstenholme, J.M.; Cooper, F.; Thomas, R.E.; Ahmed, J.; Parsons, K.J.; Parsons, D.R. Automated identification of hedgerows and hedgerow gaps using deep learning. Remote Sens. Ecol. Conserv. 2025, 11, 411–424. [Google Scholar] [CrossRef]
- Smigaj, M.; Gaulton, R. Capturing hedgerow structure and flowering abundance with UAV remote sensing. Remote Sens. Ecol. Conserv. 2021, 7, 521–533. [Google Scholar] [CrossRef]
- Barnsley, S.L.; Lovett, A.A.; Dicks, L.V. Mapping nectar-rich pollinator floral resources using airborne multispectral imagery. J. Environ. Manag. 2022, 313, 114942. [Google Scholar] [CrossRef] [PubMed]
- Prokoph, S.; Cheema, J.; Kirmer, A.; Lausch, A.; Bannehr, L. Monitoring von blütenreichen Flächen mittels Fernerkundung. DGPF 2022, 30, 220–236. [Google Scholar]
- Abdel-Rahman, E.M.; Makori, D.M.; Landmann, T.; Piiroinen, R.; Gasim, S.; Pellikka, P.; Raina, S.K. The utility of AISA eagle hyperspectral data and random forest classifier for flower mapping. Remote Sens. 2015, 7, 13298–13318. [Google Scholar] [CrossRef]
- Gallmann, J.; Schüpbach, B.; Jacot, K.; Albrecht, M.; Winizki, J.; Kirchgessner, N.; Aasen, H. Flower Mapping in Grasslands With Drones and Deep Learning. Front. Plant Sci. 2022, 12, 774965. [Google Scholar] [CrossRef]
- Gonzales, D.; Hempel de Ibarra, N.; Anderson, K. Remote Sensing of Floral Resources for Pollinators—New Horizons From Satellites to Drones. Front. Ecol. Evol. 2022, 10, 869751. [Google Scholar] [CrossRef]
- Schnalke, M.; Funk, J.; Wagner, A. Bridging technology and ecology: Enhancing applicability of deep learning and UAV-based flower recognition. Front. Plant Sci. 2025, 16, 1498913. [Google Scholar] [CrossRef]
- El Afandi, G.; Ismael, H.; Fall, S.; Ankumah, R. Effectiveness of Utilizing Remote Sensing and GIS Techniques to Estimate the Exposure to Organophosphate Pesticides Drift over Macon, Alabama. Agronomy 2023, 13, 1759. [Google Scholar] [CrossRef]
- Bolívar-Santamaría, S.; Reu, B. Detection and characterization of agroforestry systems in the Colombian Andes using sentinel-2 imagery. Agrofor. Syst. 2021, 95, 499–514. [Google Scholar] [CrossRef]
- Koralewicz, A.; Vlcek, J.; Menor, I.O.; Hirons, M.; Akinyugha, A.; Olowoyo, O.S.; Ajayi-Ebenezer, M.; Owen, O. Mapping the extent and exploring the drivers of cocoa agroforestry in Nigeria, insights into trends for climate change adaptation. Agrofor. Syst. 2025, 99, 38. [Google Scholar] [CrossRef]
- Yang, W.; Ortiz-Gonzalo, D.; Tong, X.; Gominski, D.; Fensholt, R. Mapping forest-agroforest frontiers in the Peruvian Amazon with deep learning and PlanetScope satellite data. Ecol. Inform. 2025, 86, 103034. [Google Scholar] [CrossRef]
- Ahmad, T.; Sahoo, P.M.; Jally, S.K. Estimation of area under agroforestry using high resolution satellite data. Agrofor. Syst. 2016, 90, 289–303. [Google Scholar] [CrossRef]
- Brandt, M.; Gominski, D.; Reiner, F.; Kariryaa, A.; Guthula, V.B.; Ciais, P.; Tong, X.; Zhang, W.; Govindarajulu, D.; Ortiz-Gonzalo, D.; et al. Severe decline in large farmland trees in India over the past decade. Nat. Sustain. 2024, 7, 860–868. [Google Scholar] [CrossRef]
- Veettil, B.K.; Van, D.D.; Quang, N.X.; Hoai, P.N. Remote sensing of plastic-covered greenhouses and plastic-mulched farmlands: Current trends and future perspectives. Land Degrad. Dev. 2023, 34, 591–609. [Google Scholar] [CrossRef]
- Niu, B.; Feng, Q.; Qiu, B.; Su, S.; Zhang, X.; Cui, R.; Zhang, X.; Sun, F.; Yan, W.; Zhao, S.; et al. Global-PCG-10: A 10-m global map of plastic-covered greenhouses derived from Sentinel-2 in 2020. Earth Syst. Sci. Data 2025, 17, 5065–5088. [Google Scholar] [CrossRef]
- Zhang, M.; Dong, J.; Ge, Q.; Hasituya; Hao, P. A Review of Agricultural Film Mapping: Current Status, Challenges, and Future Directions. J. Remote Sens. 2025, 5, 0395. [Google Scholar] [CrossRef]
- Wu, Y.; Dai, J.; Zhu, Y.; Zhang, T. Intelligent Agricultural Greenhouse Extraction Method Based on Multi-Feature Modeling: Fusion of Geometric, Spatial, and Spectral Characteristics. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 5568–5581. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Li, H.; Guo, Z.; Chang, C.; Xu, X.; Zhen, T.; Yu, K.; Li, P. Identification Of Plastic Film Mulched Farmland in the Core Area of the Beijing-Tianjin Sand Source Region Using Multi-Temporal Remote Sensing Features. Remote Sens. Appl. Soc. Environ. 2025, 38, 101600. [Google Scholar] [CrossRef]
- Shafi, U.; Mumtaz, R.; Anwar, Z.; Ajmal, M.M.; Khan, M.A.; Mahmood, Z.; Qamar, M.; Jhanzab, H.M. Tackling Food Insecurity Using Remote Sensing and Machine Learning-Based Crop Yield Prediction. IEEE Access 2023, 11, 108640–108657. [Google Scholar] [CrossRef]
- Haseeb, M.; Tahir, Z.; Mahmood, S.A.; Tariq, A. Winter wheat yield prediction using linear and nonlinear machine learning algorithms based on climatological and remote sensing data. Inf. Process. Agric. 2025, in press. [Google Scholar] [CrossRef]
- Fita, D.; Rubio, C.; Franch, B.; Castiñeira-Ibáñez, S.; Tarrazó-Serrano, D.; San Bautista, A. Improving harvester yield maps postprocessing leveraging remote sensing data in rice crop. Precis. Agric. 2025, 26, 33. [Google Scholar] [CrossRef]
- Hou, X.; Zhang, J.; Luo, X.; Zeng, S.; Lu, Y.; Wei, Q.; Liu, J.; Feng, W.; Li, Q. Peanut yield prediction using remote sensing and machine learning approaches based on phenological characteristics. Comput. Electron. Agric. 2025, 232, 110084. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, H.; Fan, Y.; Yue, J.; Yang, F.; Fan, J.; Ma, Y.; Chen, R.; Bian, M.; Yang, G. Utilizing UAV-based hyperspectral remote sensing combined with various agronomic traits to monitor potato growth and estimate yield. Comput. Electron. Agric. 2025, 231, 109984. [Google Scholar] [CrossRef]
- Abdul-Jabbar, T.S.; Ziboon, A.T.; Albayati, M.M. Crop yield estimation using different remote sensing data: Literature review. IOP Conf. Ser. Earth Environ. Sci. 2023, 1129, 012004. [Google Scholar] [CrossRef]
- Badagliacca, G.; Messina, G.; Presti, E.L.; Preiti, G.; Di Fazio, S.; Monti, M.; Modica, G.; Praticò, S. Durum Wheat (Triticum durum Desf.) Grain Yield and Protein Estimation by Multispectral UAV Monitoring and Machine Learning Under Mediterranean Conditions. AgriEngineering 2025, 7, 99. [Google Scholar] [CrossRef]
- Raza, A.; Shahid, M.A.; Zaman, M.; Miao, Y.; Huang, Y.; Safdar, M.; Maqbool, S.; Muhammad, N.E. Improving Wheat Yield Prediction with Multi-Source Remote Sensing Data and Machine Learning in Arid Regions. Remote Sens. 2025, 17, 774. [Google Scholar] [CrossRef]
- Mena, F.; Pathak, D.; Najjar, H.; Sanchez, C.; Helber, P.; Bischke, B.; Habelitz, P.; Miranda, M.; Siddamsetty, J.; Nuske, M.; et al. Adaptive fusion of multi-modal remote sensing data for optimal sub-field crop yield prediction. Remote Sens. Environ. 2025, 318, 114547. [Google Scholar] [CrossRef]
- Dhillon, M.S.; Kübert-Flock, C.; Dahms, T.; Rummler, T.; Arnault, J.; Steffan-Dewenter, I.; Ullmann, T. Evaluation of MODIS, Landsat 8 and Sentinel-2 Data for Accurate Crop Yield Predictions: A Case Study Using STARFM NDVI in Bavaria, Germany. Remote Sens. 2023, 15, 1830. [Google Scholar] [CrossRef]
- Řeřicha, J.; Kohútek, M.; Vandírková, V.; Krofta, K.; Kumhála, F.; Kumhálová, J. Assessment of UAV Imageries for Estimating Growth Vitality, Yield and Quality of Hop (Humulus lupulus L.) Crops. Remote Sens. 2025, 17, 970. [Google Scholar] [CrossRef]
- Brito, L.G.d.; Jorge, R.C.; Oliveira, V.C.d.; Cassemiro, P.F.; Dal Pai, A.; Sarnighausen, V.C.R.; Rodrigues, S.A. Classification Models for Nitrogen Concentration in Hop Leaves Using Digital Image Processing. Appl. Sci. 2025, 15, 4799. [Google Scholar] [CrossRef]
- Dietrich, P.; Elias, M.; Dietrich, P.; Harpole, S.; Roscher, C.; Bumberger, J. Advancing plant biomass measurements: Integrating smartphone-based 3D scanning techniques for enhanced ecosystem monitoring. Methods Ecol. Evol. 2025, 2025, 1723–1732. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; Wu, H.; Wang, D.; Ma, X.; Shao, Y.; Jiang, M.; Chen, X. Unmanned-Aerial-Vehicle-Based Multispectral Monitoring of Nitrogen Content in Canopy Leaves of Processed Tomatoes. Agriculture 2025, 15, 309. [Google Scholar] [CrossRef]
- Acharya, B.; Dodla, S.; Tubana, B.; Gentimis, T.; Rontani, F.; Adhikari, R.; Duron, D.; Bortolon, G.; Setiyono, T. Characterizing Optimum N Rate in Waterlogged Maize (Zea mays L.) with Unmanned Aerial Vehicle (UAV) Remote Sensing. Agronomy 2025, 15, 434. [Google Scholar] [CrossRef]
- Segarra, J.; Buchaillot, M.L.; Stefani, U.; Araus, J.L.; Kefauver, S.C. Sentinel-2 Responsiveness to Fertilization Gradients in Wheat at Field Level in Córdoba Province, Argentina. In Proceedings of the 2020 Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), Tunis, Tunisia, 9–11 March 2020; pp. 322–325. [Google Scholar]
- Zhou, T.; Geng, Y.; Lv, W.; Xiao, S.; Zhang, P.; Xu, X.; Chen, J.; Wu, Z.; Pan, J.; Si, B.; et al. Effects of optical and radar satellite observations within Google Earth Engine on soil organic carbon prediction models in Spain. J. Environ. Manag. 2023, 338, 117810. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Chen, J.; Liu, M.; Haase, D.; Lausch, A. Mapping soil organic carbon content using multi-source remote sensing variables in the Heihe River Basin in China. Ecol. Indic. 2020, 114, 106288. [Google Scholar] [CrossRef]
- Suleymanov, A.; Gabbasova, I.; Suleymanov, R.; Abakumov, E.; Polyakov, V.; Liebelt, P. Mapping soil organic carbon under erosion processes using remote sensing. Hung. Geogr. Bull. 2021, 70, 49–64. [Google Scholar] [CrossRef]
- Yuzugullu, O.; Fajraoui, N.; Don, A.; Liebisch, F. Satellite-based soil organic carbon mapping on European soils using available datasets and support sampling. Sci. Remote Sens. 2024, 9, 100118. [Google Scholar] [CrossRef]
- Radočaj, D.; Gašparović, M.; Jurišić, M. Open Remote Sensing Data in Digital Soil Organic Carbon Mapping: A Review. Agric. 2024, 14, 1005. [Google Scholar] [CrossRef]
- Qian, J.; Yang, J.; Sun, W.; Zhao, L.; Shi, L.; Shi, H.; Liao, L.; Dang, C. Soil Organic Carbon Estimation and Transfer Framework in Agricultural Areas Based on Spatiotemporal Constraint Strategy Combined with Active and Passive Remote Sensing. Remote. Sens. 2025, 17, 333. [Google Scholar] [CrossRef]
- Geng, J.; Tan, Q.; Lv, J.; Fang, H. Assessing spatial variations in soil organic carbon and C:N ratio in Northeast China’s black soil region: Insights from Landsat-9 satellite and crop growth information. Soil Tillage Res. 2024, 235, 105897. [Google Scholar] [CrossRef]
- Xu, D.; Chen, S.; Zhou, Y.; Ji, W.; Shi, Z. Spatial Estimation of Soil Organic Matter and Total Nitrogen by Fusing Field Vis–NIR Spectroscopy and Multispectral Remote Sensing Data. Remote Sens. 2025, 17, 729. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, C.; Zhang, W.; Wu, Z.; Zang, D. Mapping Soil Organic Matter in Black Soil Cropland Areas Using Remote Sensing and Environmental Covariates. Agriculture 2025, 15, 339. [Google Scholar] [CrossRef]
- Zhang, J.; Gan, S.; Yang, P.; Zhou, J.; Huang, X.; Chen, H.; He, H.; Saintilan, N.; Sanders, C.J.; Wang, F. A global assessment of mangrove soil organic carbon sources and implications for blue carbon credit. Nat. Commun. 2024, 15, 8994. [Google Scholar] [CrossRef]
- Chen, X.; Yuan, F.; Ata-Ul-Karim, S.T.; Liu, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cao, Q. A bibliometric analysis of research on remote sensing-based monitoring of soil organic matter conducted between 2003 and 2023. Artif. Intell. Agric. 2025, 15, 26–38. [Google Scholar] [CrossRef]
- Van Wasmael, B. A European soil organic carbon monitoring system leveraging Sentinel 2 imagery and the LUCAS soil data base. Geoderma 2024, 452, 117113. [Google Scholar] [CrossRef]
- Petropoulos, T.; Benos, L.; Busato, P.; Kyriakarakos, G.; Kateris, D.; Aidonis, D.; Bochtis, D. Soil Organic Carbon Assessment for Carbon Farming: A Review. Agriculture 2025, 15, 567. [Google Scholar] [CrossRef]
- Gomez, C.; Oltra-carrió, R.; Bacha, S.; Lagacherie, P.; Briottet, X. Evaluating the sensitivity of clay content prediction to atmospheric effects and degradation of image spatial resolution using Hyperspectral VNIR/SWIR imagery. Remote Sens. Environ. 2015, 164, 1–15. [Google Scholar] [CrossRef]
- Shabou, M.; Mougenot, B.; Chabaane, Z.L.; Walter, C.; Boulet, G.; Aissa, N.B.; Zribi, M. Soil clay content mapping using a time series of Landsat TM data in semi-arid lands. Remote Sens. 2015, 7, 6059–6078. [Google Scholar] [CrossRef]
- Gomez, C.; Adeline, K.; Bacha, S.; Driessen, B.; Gorretta, N.; Lagacherie, P.; Roger, J.M.; Briottet, X. Sensitivity of clay content prediction to spectral configuration of VNIR/SWIR imaging data, from multispectral to hyperspectral scenarios. Remote Sens. Environ. 2018, 204, 18–30. [Google Scholar] [CrossRef]
- Paul, S.S.; Coops, N.C.; Johnson, M.S.; Krzic, M.; Chandna, A.; Smukler, S.M. Mapping soil organic carbon and clay using remote sensing to predict soil workability for enhanced climate change adaptation. Geoderma 2020, 363, 114177. [Google Scholar] [CrossRef]
- Gasmi, A.; Gomez, C.; Lagacherie, P.; Zouari, H. Surface soil clay content mapping at large scales using multispectral (VNIR–SWIR) ASTER data. Int. J. Remote Sens. 2019, 40, 1506–1533. [Google Scholar] [CrossRef]
- Franz, A.; Sowiński, J.; Głogowski, A.; Fiałkiewicz, W. A Preliminary Study on the Use of Remote Sensing Techniques to Determine the Nutritional Status and Productivity of Oats on Spatially Variable Sandy Soils. Agronomy 2025, 15, 616. [Google Scholar] [CrossRef]
- Fongaro, C.T.; Demattê, J.A.M.; Rizzo, R.; Safanelli, J.L.; Mendes, W.d.S.; Dotto, A.C.; Vicente, L.E.; Franceschini, M.H.D.; Ustin, S.L. Improvement of clay and sand quantification based on a novel approach with a focus on multispectral satellite images. Remote Sens. 2018, 10, 1555. [Google Scholar] [CrossRef]
- Cerasola, V.A.; Orsini, F.; Pennisi, G.; Moretti, G.; Bona, S.; Mirone, F.; Verrelst, J.; Berger, K.; Gianquinto, G. Hyperspectral imaging for precision nitrogen management: A comparative exploration of two methodological approaches to estimate optimal nitrogen rate in processing tomato. Smart Agric. Technol. 2025, 10, 100802. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Liu, S.; Hui, X.; Zhang, H.; Yan, H.; Maes, W.H. UAV-Based Multiple Sensors for Enhanced Data Fusion and Nitrogen Monitoring in Winter Wheat Across Growth Seasons. Remote Sens. 2025, 17, 498. [Google Scholar] [CrossRef]
- Misbah, K.; Laamrani, A.; Khechba, K.; Dhiba, D.; Chehbouni, A. Multi-sensors remote sensing applications for assessing, monitoring, and mapping npk content in soil and crops in african agricultural land. Remote Sens. 2022, 14, 81. [Google Scholar] [CrossRef]
- Peng, X.; Chen, D.; Zhou, Z.; Zhang, Z.; Xu, C.; Zha, Q.; Wang, F.; Hu, X. Prediction of the Nitrogen, Phosphorus and Potassium Contents in Grape Leaves at Different Growth Stages Based on UAV Multispectral Remote Sensing. Remote Sens. 2022, 14, 2659. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, L.; Zhuang, Q.; Chen, D.; Sun, T. Mapping Cropland Soil Nutrients Contents Based on Multi-Spectral Remote Sensing and Machine Learning. Agriculture 2023, 13, 1592. [Google Scholar] [CrossRef]
- Lin, C.; Ma, R.; Zhu, Q.; Li, J. Using hyper-spectral indices to detect soil phosphorus concentration for various land use patterns. Environ. Monit. Assess. 2015, 187, 4130. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, L.; Zhou, X.; Zhu, Y.; Cao, W.; Qiu, X.; Cheng, T.; Tian, Y. Integrating remote sensing information with crop model to monitor wheat growth and yield based on simulation zone partitioning. Precis. Agric. 2018, 19, 55–78. [Google Scholar] [CrossRef]
- Wang, S.; Adhikari, K.; Wang, Q.; Jin, X.; Li, H. Role of environmental variables in the spatial distribution of soil carbon (C), nitrogen (N), and C:N ratio from the northeastern coastal agroecosystems in China. Ecol. Indic. 2018, 84, 263–272. [Google Scholar] [CrossRef]
- Wang, X.; Geng, Y.; Zhou, T.; Zhao, Y.; Li, H.; Liu, Y.; Li, H.; Ren, R.; Zhang, Y.; Xu, X.; et al. Mapping the soil C:N ratio at the European scale by combining multi-year Sentinel radar and optical data via cloud computing. Soil Tillage Res. 2025, 245, 106311. [Google Scholar] [CrossRef]
- Rapiya, M.; Ramoelo, A.; Truter, W. Seasonal monitoring of forage C:N:ADF ratio in natural rangeland using remote sensing data. Environ. Monit. Assess. 2025, 197, 137. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, S.; Hong, Y.; Hu, B.; Peng, J.; Shi, Z. A comparison of multiple deep learning methods for predicting soil organic carbon in Southern Xinjiang, China. Comput. Electron. Agric. 2023, 212, 108067. [Google Scholar] [CrossRef]
- Lei, S.; Zhou, P.; Lin, J.; Tan, Z.; Huang, J.; Yan, P.; Chen, H. Spatiotemporal Variation in Carbon and Water Use Efficiency and Their Influencing Variables Based on Remote Sensing Data in the Nanling Mountains Region. Remote Sens. 2025, 17, 648. [Google Scholar] [CrossRef]
- Yue, F.; Liu, D.; Xiong, L.; Chen, J.; Chen, H.; Yin, J. Understanding the roles of climate change, land use and land cover change and water diversion project in modulating water- and carbon-use efficiency in Han River Basin. J. Environ. Manag. 2025, 373, 123445. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Chen, X.; Yu, Q.; Avirmed, B.; Zhao, J.; Liu, W.; Sun, W. Relationship between ecological spatial network and vegetation carbon use efficiency in the Yellow River Basin, China. GISci. Remote Sens. 2024, 61, 2318070. [Google Scholar] [CrossRef]
- Nair, R.; Luo, Y.; El-Madany, T.; Rolo, V.; Pacheco-Labrador, J.; Caldararu, S.; Morris, K.A.; Schrumpf, M.; Carrara, A.; Moreno, G.; et al. Nitrogen availability and summer drought, but not N:P imbalance, drive carbon use efficiency of a Mediterranean tree-grass ecosystem. Glob. Change Biol. 2024, 30, e17486. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Gao, Z.; Liu, Q.; Li, Z.; Zhong, B. Methods for sandy land detection based on multispectral remote sensing data. Geoderma 2018, 316, 89–99. [Google Scholar] [CrossRef]
- Di Raimo, L.A.D.L.; Couto, E.G.; Poppiel, R.R.; Mello, D.C.d.; Amorim, R.S.S.; Torres, G.N.; Bocuti, E.D.; Veloso, G.V.; Fernandes-Filho, E.I.; Francelino, M.R.; et al. Sand subfractions by proximal and satellite sensing: Optimizing agricultural expansion in tropical sandy soils. Catena 2024, 234, 107604. [Google Scholar] [CrossRef]
- Secu, C.V.; Stoleriu, C.C.; Lesenciuc, C.D.; Ursu, A. Normalized Sand Index for Identification of Bare Sand Areas in Temperate Climates Using Landsat Images, Application to the South of Romania. Remote Sens. 2022, 14, 3802. [Google Scholar] [CrossRef]
- Meng, J.; Chu, N.; Luo, C.; Liu, H.; Li, X. High-Resolution Mapping of Topsoil Sand Content in Planosol Regions Using Temporal and Spectral Feature Optimization. Remote Sens. 2025, 17, 553. [Google Scholar] [CrossRef]
- Espinoza, N.S.; Piedade, M.T.F.; Demarchi, L.O.; Lima, G.R.; Resende, A.F.; Ferreira, R.R.; Silva, F.A.G.; Machado, L.A.T.; Schörgart, J. Detection of white sand patches in central Amazonia using remote sensing and meteorological data. Int. J. Remote Sens. 2025, 46, 3446–3465. [Google Scholar] [CrossRef]
- Lou, H.; Yang, S.; Zhao, C.; Shi, L.; Wu, L.; Wang, Y.; Wang, Z. Detecting and analyzing soil phosphorus loss associated with critical source areas using a remote sensing approach. Sci. Total Environ. 2016, 573, 397–408. [Google Scholar] [CrossRef]
- Aziz, D.; Rafiq, S.; Saini, P.; Ahad, I.; Gonal, B.; Rehman, S.A.; Rashid, S.; Saini, P.; Rohela, G.K.; Aalum, K.; et al. Remote sensing and artificial intelligence: Revolutionizing pest management in agriculture. Front. Sustain. Food Syst. 2025, 9, 1551460. [Google Scholar] [CrossRef]
- Bautista, A.S.; Tarrazó-Serrano, D.; Uris, A.; Blesa, M.; Estruch-Guitart, V.; Castiñeira-Ibáñez, S.; Rubio, C. Remote Sensing Evaluation Drone Herbicide Application Effectiveness for Controlling Echinochloa spp. in Rice Crop in Valencia (Spain). Sensors 2024, 24, 804. [Google Scholar] [CrossRef]
- Mahlein, A.-K. Present and Future Trends in Plant Disease Detection. Plant Dis 2016, 100, 1–11. [Google Scholar]
- Okole, N.; Yamati, F.R.I.; Hossain, R.; Varrelmann, M.; Mahlein, A.K.; Heim, R.H.J. Hyperspectral signatures and betalain indicator for beet mosaic virus infection in sugar beet. In Proceedings of the 2023 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Pisa, Italy, 6–8 November 2023; pp. 506–511. [Google Scholar]
- Okole, N.; Ispizua Yamati, F.R.; Hossain, R.; Varrelmann, M.; Mahlein, A.K.; Heim, R.H.J. Aerial low-altitude remote sensing and deep learning for in-field disease incidence scoring of virus yellows in sugar beet. Plant Pathol. 2024, 73, 2310–2324. [Google Scholar] [CrossRef]
- Hossain, R.; Ispizua Yamati, F.R.; Barreto, A.; Savian, F.; Varrelmann, M.; Mahlein, A.K.; Paulus, S. Elucidation of turnip yellows virus (TuYV) spectral reflectance pattern in Nicotiana benthamiana by non-imaging sensor technology. J. Plant Dis. Prot. 2023, 130, 35–43. [Google Scholar] [CrossRef]
- Barreto, A.; Ispizua Yamati, F.R.; Varrelmann, M.; Paulus, S.; Mahlein, A.K. Disease Incidence and Severity of Cercospora Leaf Spot in Sugar Beet Assessed by Multispectral Unmanned Aerial Images and Machine Learning. Plant Dis. 2023, 107, 188–200. [Google Scholar] [CrossRef]
- Isip, M.F.; Alberto, R.T.; Biagtan, A.R. Exploring vegetation indices adequate in detecting twister disease of onion using Sentinel-2 imagery. Spat. Inf. Res. 2020, 28, 369–375. [Google Scholar] [CrossRef]
- Navrozidis, L.; Alexandridis, T.K.; Moshou, D.; Pantazi, X.E.; Alexandra Tamouridou, A.; Kozhukh, D.; Castef, F.; Lagopodi, A.; Zartaloudis, Z.; Mourelatos, S.; et al. Olive Trees Stress Detection Using Sentinel-2 Images. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 7220–7223. [Google Scholar]
- Safari, M.M.; Malian, A. Plant disease mapping in paddy growing stages using remotely sensed data. Environ. Earth Sci. 2025, 84, 1. [Google Scholar] [CrossRef]
- Taneja, A.; Rani, S. Target localization and communication for remote sensing with use case of self-supervised learning in plant disease detection. Int. J. Remote Sens. 2025, 1–22. [Google Scholar] [CrossRef]
- Zhu, H.; Lin, C.; Liu, G.; Wang, D.; Qin, S.; Li, A.; Xu, J.L.; He, Y. Intelligent agriculture: Deep learning in UAV-based remote sensing imagery for crop diseases and pests detection. Front. Plant Sci. 2024, 15, 1435016. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Huang, W.; Xia, Q.; Dong, Y.; Ye, H.; Jiang, H.; Chen, S.; Huang, S. Remote Sensing Monitoring of Rice Diseases and Pests from Different Data Sources: A Review. Agronomy 2023, 13, 1851. [Google Scholar] [CrossRef]
- Zhang, T.; Cai, Y.; Zhuang, P.; Li, J. Remotely Sensed Crop Disease Monitoring by Machine Learning Algorithms: A Review. Unmanned Syst. 2024, 12, 161–171. [Google Scholar] [CrossRef]
- Schmidtlein, S. Imaging spectroscopy as a tool for mapping Ellenberg indicator values. J. Appl. Ecol. 2005, 42, 966–974. [Google Scholar] [CrossRef]
- Schmidt, J.; Fassnacht, F.E.; Lausch, A.; Schmidtlein, S. Assessing the functional signature of heathland landscapes via hyperspectral remote sensing. Ecol. Indic. 2017, 73, 505–512. [Google Scholar] [CrossRef]
- Schmidtlein, S.; Feilhauer, H.; Bruelheide, H. Mapping plant strategy types using remote sensing. J. Veg. Sci. 2012, 23, 395–405. [Google Scholar] [CrossRef]
- Cushnahan, T.A.; Grafton, M.C.E.; Pearson, D.; Ramilan, T. Hyperspectral Data Can Classify Plant Functional Groups Within New Zealand Hill Farm Pasture. Remote Sens. 2025, 17, 1120. [Google Scholar] [CrossRef]
- Kanta, C.; Kumar, A.; Chauhan, A.; Singh, H.; Sharma, I.P. The Interplay Between Plant Functional Traits and Climate Change; Springer: Berlin/Heidelberg, Germany, 2024; ISBN 9789819715107. [Google Scholar]
- Schweiger, A.K.; Schütz, M.; Risch, A.C.; Kneubühler, M.; Haller, R.; Schaepman, M.E. How to predict plant functional types using imaging spectroscopy: Linking vegetation community traits, plant functional types and spectral response. Methods Ecol. Evol. 2017, 8, 86–95. [Google Scholar] [CrossRef]
- Möckel, T.; Löfgren, O.; Prentice, H.C.; Eklundh, L.; Hall, K. Airborne hyperspectral data predict Ellenberg indicator values for nutrient and moisture availability in dry grazed grasslands within a local agricultural landscape. Ecol. Indic. 2016, 66, 503–516. [Google Scholar] [CrossRef]
- Klinke, R.; Kuechly, H.; Frick, A.; Förster, M.; Schmidt, T.; Holtgrave, A.K.; Kleinschmit, B.; Spengler, D.; Neumann, C. Indicator-Based Soil Moisture Monitoring of Wetlands by Utilizing Sentinel and Landsat Remote Sensing Data. PFG-J. Photogramm. Remote Sens. Geoinf. Sci. 2018, 86, 71–84. [Google Scholar] [CrossRef]
- Peng, Y.; Kira, O.; Nguy-Robertson, A.; Suyker, A.; Arkebauer, T.; Sun, Y.; Gitelson, A.A. Gross primary production estimation in crops using solely remotely sensed data. Agron. J. 2019, 111, 2981–2990. [Google Scholar] [CrossRef]
- Reeves, M.C.; Zhao, M.; Running, S.W. Usefulness and limits of MODIS GPP for estimating wheat yield. Int. J. Remote Sens. 2005, 26, 1403–1421. [Google Scholar] [CrossRef]
- Maleki, M.; Arriga, N.; Barrios, J.M.; Wieneke, S.; Liu, Q.; Peñuelas, J.; Janssens, I.A.; Balzarolo, M. Estimation of Gross Primary Productivity (GPP) Phenology of a Short-Rotation Plantation Using Remotely Sensed Indices Derived from Sentinel-2 Images. Remote Sens. 2020, 12, 2104. [Google Scholar] [CrossRef]
- Celis, J.; Xiao, X.; White, P.M.; Cabral, O.M.R.; Freitas, H.C. Improved Modeling of Gross Primary Production and Transpiration of Sugarcane Plantations with Time-Series Landsat and Sentinel-2 Images. Remote Sens. 2023, 16, 46. [Google Scholar] [CrossRef]
- Shirkey, G.; John, R.; Chen, J.; Dahlin, K.; Abraha, M.; Sciusco, P.; Lei, C.; Reed, D.E. Fine resolution remote sensing spectra improves estimates of gross primary production of croplands. Agric. For. Meteorol. 2022, 326, 109175. [Google Scholar] [CrossRef]
- Cicuéndez, V.; Inclán, R.; Sánchez-Cañete, E.P.; Román-Cascón, C.; Sáenz, C.; Yagüe, C. Modeling Gross Primary Production (GPP) of a Mediterranean Grassland in Central Spain Using Sentinel-2 NDVI and Meteorological Field Information. Agronomy 2024, 14, 1243. [Google Scholar] [CrossRef]
- He, L.; Mostovoy, G. Cotton yield estimate using Sentinel-2 data and an ecosystem model over the southern US. Remote Sens. 2019, 11, 2000. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, Y.; Yue, C.; Wang, Y.; Wang, X.; Lyu, G.; Wei, J.; Yang, H.; Piao, S. Progress and challenges in remotely sensed terrestrial carbon fluxes. Geo-Spat. Inf. Sci. 2024, 28, 1–21. [Google Scholar] [CrossRef]
- Yan, Y.; Xu, X.; Liu, X.; Wen, Y.; Ou, J. Assessing the contributions of climate change and human activities to cropland productivity by means of remote sensing. Int. J. Remote Sens. 2020, 41, 2004–2021. [Google Scholar] [CrossRef]
- Feng, X.; Liu, G.; Chen, J.M.; Chen, M.; Liu, J.; Ju, W.M.; Sun, R.; Zhou, W. Net primary productivity of China’s terrestrial ecosystems from a process model driven by remote sensing. J. Environ. Manag. 2007, 85, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Han, W.; Peng, M. Improving the spatial and temporal estimating of daytime variation in maize net primary production using unmanned aerial vehicle-based remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102467. [Google Scholar] [CrossRef]
- Niedertscheider, M.; Kastner, T.; Fetzel, T.; Haberl, H.; Kroisleitner, C.; Plutzar, C.; Erb, K.H. Mapping and analysing cropland use intensity from a NPP perspective. Environ. Res. Lett. 2016, 11, 014008. [Google Scholar] [CrossRef]
- Xu, L.; Zhao, Z.; Wang, C.; Wang, H.; Ma, C. Quantitative estimation of net primary productivity by an improved tCASA model using Landsat time series data: A case study of Central Plains, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 10403–10418. [Google Scholar] [CrossRef]
- Li, J.; Xu, D.; Xu, Z.; Wang, Y.; Yang, J. Analysis of Spatio-Temporal Variation of Vegetation Npp and its Driving Factors in Tianshan Mountains Based on Casa Model. SSRN 2025. [Google Scholar]
- Baeza, S.; Paruelo, J.M. Spatial and temporal variation of human appropriation of net primary production in the Rio de la Plata grasslands. ISPRS J. Photogramm. Remote Sens. 2018, 145, 238–249. [Google Scholar] [CrossRef]
- Liu, Y.; Song, W. Mapping human appropriation of net primary production in agroecosystems in the Heihe River Basin, China. Agric. Ecosyst. Environ. 2022, 335, 107996. [Google Scholar] [CrossRef]
- Paudel, S.; Mueller, K.; Ovando-Montejo, G.; Tango, L.; Rushforth, R.; Lant, C. A dataset cataloging product-specific human appropriation of net primary production (HANPP) in US counties. Data Br. 2023, 50, 109530. [Google Scholar] [CrossRef]
- Matej, S.; Weidinger, F.; Kaufmann, L.; Roux, N.; Gingrich, S.; Haberl, H.; Krausmann, F.; Erb, K.H. A global land-use data cube 1992–2020 based on the Human Appropriation of Net Primary Production. Sci. Data 2025, 12, 511. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Sun, X.; Wang, M.; Li, G.; Hou, X. Crop mapping and quantitative evaluation of cultivated land use intensity in Shandong Province, 2018–2022. L. Degrad. Dev. 2024, 35, 4648–4665. [Google Scholar] [CrossRef]
- Cai, W.; Ullah, S.; Yan, L.; Lin, Y. Remote sensing of ecosystem water use efficiency: A review of direct and indirect estimation methods. Remote Sens. 2021, 13, 2393. [Google Scholar] [CrossRef]
- Yu, X.; Yin, Q.; Zhao, T.; Chen, K.; Qian, L.; Wang, W.; Hu, X.; Zhang, B. Detecting ecosystem water use efficiency responses to drought from long-term remote sensing data. Ecol. Indic. 2025, 177, 113734. [Google Scholar] [CrossRef]
- Rao, S.; Kisekka, I. Science of the Total Environment Carbon—Water coupling in California almond orchards: A multi-scale assessment of ecosystem water use efficiency using eddy covariance and remote sensing. Sci. Total Environ. 2025, 990, 179914. [Google Scholar]
- Jiang, L.; Zhang, F.; Chi, J.; Yan, P.; Bu, X.; He, Y.; Bai, T. Evaluation of pear orchard yield and water use efficiency at the field scale by assimilating remotely sensed LAI and SM into the WOFOST model. Comput. Electron. Agric. 2025, 233, 110145. [Google Scholar] [CrossRef]
- He, J.; Zhou, Y.; Liu, X.; Duan, W.; Pan, N. Spatiotemporal Changes in Water-Use Efficiency of China’s Terrestrial Ecosystems During 2001–2020 and the Driving Factors. Remote Sens. 2025, 17, 136. [Google Scholar] [CrossRef]
- Ali, A.; Kaul, H.P. Monitoring Yield and Quality of Forages and Grassland in the View of Precision Agriculture Applications—A Review. Remote Sens. 2025, 17, 279. [Google Scholar] [CrossRef]
- Guillevic, P.C.; Aouizerats, B.; Burger, R.; Den Besten, N.; Jackson, D.; Ridderikhoff, M.; Zajdband, A.; Houborg, R.; Franz, T.E.; Robertson, G.P.; et al. Planet’s Biomass Proxy for monitoring aboveground agricultural biomass and estimating crop yield. F. Crop. Res. 2024, 316, 109511. [Google Scholar] [CrossRef]
- Reinermann, S.; Boos, C.; Kaim, A.; Schucknecht, A.; Asam, S.; Annuth, S.H.; Schmitt, T.M.; Koellner, T.; Kiese, R. Grassland yield estimations-potentials and limitations of remote sensing, process-based modelling and field measurements. EGUsphere 2025. [Google Scholar]
- Åström, O.; Månsson, S.; Lazar, I.; Nilsson, M.; Ekelöf, J.; Oxenstierna, A.; Sopasakis, A. Predicting Intra-Field Yield Variations for Winter Wheat Using Remote Sensing and Graph Attention Networks. SSRN Electron. J. 2025, 237, 110499. [Google Scholar] [CrossRef]
- Muruganantham, P.; Wibowo, S.; Grandhi, S.; Samrat, N.H.; Islam, N. A Systematic Literature Review on Crop Yield Prediction with Deep Learning and Remote Sensing. Remote Sens. 2022, 14, 1990. [Google Scholar] [CrossRef]
- Luo, L.; Sun, S.; Xue, J.; Gao, Z.; Zhao, J.; Yin, Y.; Gao, F.; Luan, X. Crop yield estimation based on assimilation of crop models and remote sensing data: A systematic evaluation. Agric. Syst. 2023, 210, 103711. [Google Scholar] [CrossRef]
- Filippi, P.; Jones, E.J.; Ginns, B.J.; Whelan, B.M.; Roth, G.W.; Bishop, T.F.A. Mapping the depth-to-soil pH constraint, and the relationship with cotton and grain yield at the within-field scale. Agronomy 2019, 9, 251. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.; Li, K.; Liu, Y.; Ochir, A.; Davaasuren, D. Assessment of grazing livestock balance on the Eastern Mongolian Plateau based on remote sensing monitoring and grassland carrying capacity evaluation. Sci. Rep. 2024, 14, 32151. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, N.; Liu, X.; Wu, S.; Li, D. Dynamic Harvest Index Estimation of Winter Wheat Based on UAV Hyperspectral Remote Sensing Considering Crop Aboveground Biomass Change and the Grain Filling Process. Remote Sens. 2022, 14, 1955. [Google Scholar] [CrossRef]
- Xu, J.; Meng, J.; Quackenbush, L.J. Use of remote sensing to predict the optimal harvest date of corn. F. Crop. Res. 2019, 236, 1–13. [Google Scholar] [CrossRef]
- Li, H.; Luo, Y.; Xue, X.; Zhao, Y.; Zhao, H.; Li, F. A comparison of harvest index estimation methods of winter wheat based on field measurements of biophysical and spectral data. Biosyst. Eng. 2011, 109, 396–403. [Google Scholar] [CrossRef]
- Yue, J.; Yao, Y.; Shen, J.; Li, T.; Xu, N.; Feng, H.; Wei, Y.; Xu, X.; Lin, Y.; Guo, W.; et al. Winter wheat harvest detection via Sentinel-2 MSI images. Int. J. Remote Sens. 2025, 46, 2482–2500. [Google Scholar] [CrossRef]
- Paz-Kagan, T.; Zaady, E.; Salbach, C.; Schmidt, A.; Lausch, A.; Zacharias, S.; Notesco, G.; Ben-Dor, E.; Karnieli, A. Mapping the spectral soil quality index (SSQI) using airborne imaging spectroscopy. Remote Sens. 2015, 7, 15748–15781. [Google Scholar] [CrossRef]
- Baroudy, A.A.E.; Ali, A.M.; Mohamed, E.S.; Moghanm, F.S.; Shokr, M.S.; Savin, I.; Poddubsky, A.; Ding, Z.; Kheir, A.M.S.; Aldosari, A.A.; et al. Modeling Land Suitability for Rice Crop Using Remote Sensing and Soil Quality Indicators: The Case Study of the Nile Delta. Sustainability 2020, 12, 9653. [Google Scholar] [CrossRef]
- Kumar, U.S.; Kapali, B.S.C.; Nageswaran, A.; Umapathy, K.; Jangir, P.; Swetha, K.; Begum, M.A. Fusion of MobileNet and GRU: Enhancing Remote Sensing Applications for Sustainable Agriculture and Food Security. Remote Sens. Earth Syst. Sci. 2024, 8, 118–131. [Google Scholar] [CrossRef]
- Dedeoğlu, M.; Başayiğit, L.; Yüksel, M.; Kaya, F. Assessment of the vegetation indices on Sentinel-2A images for predicting the soil productivity potential in Bursa, Turkey. Environ. Monit. Assess. 2020, 192, 16. [Google Scholar] [CrossRef] [PubMed]
- Fadl, M.E.; AbdelRahman, M.A.E.; El-Desoky, A.I.; Sayed, Y.A. Assessing soil productivity potential in arid region using remote sensing vegetation indices. J. Arid Environ. 2024, 222, 105166. [Google Scholar] [CrossRef]
- Rieser, J.; Veste, M.; Thiel, M.; Schönbrodt-stitt, S. Coverage and rainfall response of biological soil crusts using multi-temporal sentinel-2 data in a central european temperate dry acid grassland. Remote Sens. 2021, 13, 3093. [Google Scholar] [CrossRef]
- Crucil, G.; Van Oost, K. Towards mapping of soil crust using multispectral imaging. Sensors 2021, 21, 1850. [Google Scholar] [CrossRef]
- Weber, B.; Hill, J. Remote Sensing of Biological Soil Crusts at Different Scales. In Biological Soil Crusts: An Organizing Principle in Drylands; Springer: Berlin/Heidelberg, Germany, 2016; pp. 215–234. [Google Scholar]
- Crucil, G. Characterizing soil Physical Crusts in Loamy Soils Using Spectral Data Processing Techniques from Proximal and Remote Sensing. Ph.D. Thesis, UCL-Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgique, 2022. [Google Scholar]
- Han, H.Q.; Yin, C.Y.; Wang, K.; Zhou, H.Y. Progress and Prospects of Research on Karst Ecosystem Services. Appl. Ecol. Environ. Res. 2025, 23, 507–529. [Google Scholar] [CrossRef]
- Wu, C.; Wu, Z.; Wang, Y.; Yang, Y. Effect of soil crust on the prediction of soil organic matter based on soil colour. Catena 2025, 251, 108818. [Google Scholar] [CrossRef]
- Beaugendre, N.; Malam Issa, O.; Choné, A.; Cerdan, O.; Desprats, J.F.; Rajot, J.L.; Sannier, C.; Valentin, C. Developing a predictive environment-based model for mapping biological soil crust patterns at the local scale in the Sahel. Catena 2017, 158, 250–265. [Google Scholar] [CrossRef]
- Brom, J.; Duffková, R.; Haberle, J.; Zajíček, A.; Nedbal, V.; Bernasová, T.; Křováková, K. Identification of infiltration features and hydraulic properties of soils based on crop water stress derived from remotely sensed data. Remote Sens. 2021, 13, 4127. [Google Scholar] [CrossRef]
- Francos, N.; Romano, N.; Nasta, P.; Zeng, Y.; Szabó, B.; Manfreda, S.; Ciraolo, G.; Mészáros, J.; Zhuang, R.; Su, B.; et al. Mapping water infiltration rate using ground and uav hyperspectral data: A case study of alento, italy. Remote Sens. 2021, 13, 2606. [Google Scholar] [CrossRef]
- Geng, Y.; Zhou, T.; Zhang, Z.; Cui, B.; Sun, J.; Zeng, L.; Yang, R.; Wu, N.; Liu, T.; Pan, J.; et al. Continental-scale mapping of soil pH with SAR-optical fusion based on long-term earth observation data in google earth engine. Ecol. Indic. 2024, 165, 112246. [Google Scholar] [CrossRef]
- Zhang, Y.; Sui, B.; Shen, H.; Wang, Z. Estimating temporal changes in soil pH in the black soil region of Northeast China using remote sensing. Comput. Electron. Agric. 2018, 154, 204–212. [Google Scholar] [CrossRef]
- Jia, P.; Shang, T.; Zhang, J.; Sun, Y. Inversion of soil pH during the dry and wet seasons in the Yinbei region of Ningxia, China, based on multi-source remote sensing data. Geoderma Reg. 2021, 25, e00399. [Google Scholar] [CrossRef]
- Webb, H.; Barnes, N.; Powell, S.; Jones, C. Does drone remote sensing accurately estimate soil pH in a spring wheat field in southwest Montana? Precis. Agric. 2021, 22, 1803–1815. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, W.; Liu, H. Comparing Soil pH Mapping from Multi-Temporal PlanetScope and Sentinel-2 Data Across Land Use Types. Remote Sens. 2025, 17, 189. [Google Scholar] [CrossRef]
- Molaeinasab, A.; Tarkesh, M.; Bashari, H.; Toomanian, N.; Aghasi, B.; Jalalian, A. Spatial modeling of soil chemical properties in an arid region of Central Iran using machine learning and remote sensing data. Model. Earth Syst. Environ. 2025, 11, 152. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Srivastava, S.; Singh, P.; Gupta, A.; Dugesar, V. Soil chemical properties estimation using hyperspectral remote sensing: A review. In Earth Observation for Monitoring and Modeling Land Use; Elsevier: Amsterdam, The Netherlands, 2025; pp. 25–43. [Google Scholar]
- Rogovska, N.; Blackmer, A.M. Remote sensing of soybean canopy as a tool to map high pH, calcareous soils at field scale. Precis. Agric. 2009, 10, 175–187. [Google Scholar] [CrossRef]
- Khanal, S.; Fulton, J.; Klopfenstein, A.; Douridas, N.; Shearer, S. Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield. Comput. Electron. Agric. 2018, 153, 213–225. [Google Scholar] [CrossRef]
- Šestak, I.; Mihaljevski Boltek, L.; Mesić, M.; Zgorelec, Ž.; Perčin, A. Hyperspectral sensing of soil ph, total carbon and total nitrogen content based on linear and non-linear calibration methods. J. Cent. Eur. Agric. 2019, 20, 504–523. [Google Scholar] [CrossRef]
- Jain, S.; Sethia, D.; Tiwari, K.C. Developing novel spectral indices for precise estimation of soil pH and organic carbon with hyperspectral data and machine learning. Environ. Monit. Assess. 2024, 196, 1255. [Google Scholar] [CrossRef]
- Scudiero, E.; Corwin, D.L.; Anderson, R.G.; Yemoto, K.; Clary, W.; Wang, Z.; Skaggs, T.H. Remote sensing is a viable tool for mapping soil salinity in agricultural lands. Calif. Agric. 2017, 71, 231–238. [Google Scholar] [CrossRef]
- Bai, L.; Wang, C.; Zang, S.; Wu, C.; Luo, J.; Wu, Y. Mapping soil alkalinity and salinity in northern songnen plain, China with the hj-1 hyperspectral imager data and partial least squares regression. Sensors 2018, 18, 3855. [Google Scholar] [CrossRef] [PubMed]
- Metternicht, G.I.; Zinck, J.A. Remote sensing of soil salinity: Potentials and constraints. Remote Sens. Environ. 2003, 85, 1–20. [Google Scholar] [CrossRef]
- Lazzeri, G.; Milewski, R.; Förster, S.; Moretti, S.; Chabrillat, S. Early Detection of Soil Salinization by Means of Spaceborne Hyperspectral Imagery. Remote Sens. 2025, 17, 2486. [Google Scholar] [CrossRef]
- Gorji, T.; Sertel, E.; Tanik, A. Monitoring soil salinity via remote sensing technology under data scarce conditions: A case study from Turkey. Ecol. Indic. 2017, 74, 384–391. [Google Scholar] [CrossRef]
- GORJİ, T.; YILDIRIM, A.; SERTEL, E.; TANIK, A. Remote sensing approaches and mapping methods for monitoring soil salinity under different climate regimes. Int. J. Environ. Geoinform. 2019, 6, 33–49. [Google Scholar] [CrossRef]
- Aldabaa, A.A.A.; Weindorf, D.C.; Chakraborty, S.; Sharma, A.; Li, B. Combination of proximal and remote sensing methods for rapid soil salinity quantification. Geoderma 2015, 239, 34–46. [Google Scholar] [CrossRef]
- Jingwei, W.; Vincent, B.; Jinzhong, Y.; Bouarfa, S.; Vidal, A. Remote sensing monitoring of changes in soil salinity: A case study in inner Mongolia, China. Sensors 2008, 8, 7035–7049. [Google Scholar] [CrossRef]
- AbdelRahman, M.A.E. An Overview of Land Degradation, Desertification and Sustainable Land Management Using GIS and Remote Sensing Applications; Springer International Publishing: Cham, Switzerland, 2023; Volume 34, ISBN 0123456789. [Google Scholar]
- Ruf, T.; Gilcher, M.; Udelhoven, T.; Emmerling, C. Implications of bioenergy cropping for soil: Remote sensing identification of silage maize cultivation and risk assessment concerning soil erosion and compaction. Land 2021, 10, 128. [Google Scholar] [CrossRef]
- Liu, S.; Dong, A.; Niu, B.; Xu, F.; Xu, J.; Yin, L.; Wang, S. Maize/cover crop intercropping mitigates soil erosion and enhances yield of ridge cultivation in Chinese Mollisol region. Catena 2025, 255, 109012. [Google Scholar] [CrossRef]
- Fahd, S.; Waqas, M.; Zafar, Z.; Soufan, W.; Almutairi, K.F.; Tariq, A. Integration of RUSLE model with remotely sensed data over Google Earth Engine to evaluate soil erosion in Central Indus Basin. Earth Surf. Process. Landf. 2025, 50, e70019. [Google Scholar] [CrossRef]
- Zhang, X.; Qin, C.; Ma, S.; Liu, J.; Wang, Y.; Liu, H.; An, Z.; Ma, Y. Study on the Extraction of Topsoil-Loss Areas of Cultivated Land Based on Multi-Source Remote Sensing Data. Remote Sens. 2025, 17, 547. [Google Scholar] [CrossRef]
- Gammoudi, A.; Guesmi, H.; Tebini, A.; Attia, R.; Chahed, T.S.; Trabelsi, H. Soil degradation risk prediction in an arid region (Northern Tataouine, Tunisia): Using an empirical model coupling with remote sensing and GIS. Environ. Res. Commun. 2025, 7, 015019. [Google Scholar] [CrossRef]
- Molua, O.C.; Ukpene, A.O.; Ighrakpata, F.C.; Emagbetere, J.U.; Nwachuku, D.N. Review on Nondestructive Methods of Detecting Compacted Soils and Effects of Compacted Soil on Crop Production. Open J. Agric. Sci. 2023, 4, 1–16. [Google Scholar] [CrossRef]
- Bento, N.L.; Ferraz, G.A.e.S.; Santana, L.S.; Faria, R.D.O.; Rossi, G.; Bambi, G. Plant Height and Soil Compaction in Coffee Crops Based on LiDAR and RGB Sensors Carried by Remotely Piloted Aircraft. Remote Sens. 2025, 17, 1445. [Google Scholar] [CrossRef]
- Mikhailova, E.A.; Post, C.J.; Zurqani, H.A.; Hutton, P.C.; Nelson, D.G. Enriching Earth Science Education with Direct and Proximal Remote Sensing of Soil Using a Mobile Geospatial Application. Earth 2025, 6, 8. [Google Scholar] [CrossRef]
- Lambot, S.; Wu, K.; Bates, J.; Fluhrer, A.; Montzka, C.; Henrion, M.; Peichl, M.; Dill, S.; Bruecker, P.; Engel, M.; et al. Multi-Sensor Drone Fleet for Soil and Crop Analyses: Integrating Gpr, Sar, Lidar, Multispectral and Infrared Imaging. SSRN 2025. [Google Scholar]
- Kulkarni, S.G.; Bajwa, S.G.; Huitink, G. Investigation of the effects of soil compaction in cotton. Trans. ASABE 2010, 53, 667–674. [Google Scholar] [CrossRef]
- Bento, N.L.; Silva Ferraz, G.A.e.; Santana, L.S.; de Oliveira Faria, R.; da Silva Amorim, J.; de Lourdes Oliveira e Silva, M.; Silva, M.M.A.; Alonso, D.J.C. Soil compaction mapping by plant height and spectral responses of coffee in multispectral images obtained by remotely piloted aircraft system. Precis. Agric. 2024, 25, 729–750. [Google Scholar] [CrossRef]
- Milewski, R.; Schmid, T.; Chabrillat, S.; Jiménez, M.; Escribano, P.; Pelayo, M.; Ben-Dor, E. Analyses of the Impact of Soil Conditions and Soil Degradation on Vegetation Vitality and Crop Productivity Based on Airborne Hyperspectral VNIR–SWIR–TIR Data in a Semi-Arid Rainfed Agricultural Area (Camarena, Central Spain). Remote Sens. 2022, 14, 5131. [Google Scholar] [CrossRef]
- Serrano, J.; Marques, J.; Shahidian, S.; Carreira, E.; Marques da Silva, J.; Paixão, L.; Paniagua, L.L.; Moral, F.; Ferraz de Oliveira, I.; Sales-Baptista, E. Sensing and Mapping the Effects of Cow Trampling on the Soil Compaction of the Montado Mediterranean Ecosystem. Sensors 2023, 23, 888. [Google Scholar] [CrossRef]
- Kuemmerle, T.; Fernandez, P.D.; Baumann, M.; Burton, J. Uncovering patterns of cattle intensification across South America’s dry diagonal. Environ. Res. Lett. 2025, 20, 074004. [Google Scholar] [CrossRef]
- Gómez Giménez, M.; de Jong, R.; Della Peruta, R.; Keller, A.; Schaepman, M.E. Determination of grassland use intensity based on multi-temporal remote sensing data and ecological indicators. Remote Sens. Environ. 2017, 198, 126–139. [Google Scholar] [CrossRef]
- De Vroey, M.; Radoux, J.; Defourny, P. Grassland Mowing Detection Using Sentinel-1 Time Series: Potential and Limitations. Remote Sens. 2021, 13, 348. [Google Scholar] [CrossRef]
- Potočnik Buhvald, A.; Račič, M.; Immitzer, M.; Oštir, K.; Veljanovski, T. Grassland Use Intensity Classification Using Intra-Annual Sentinel-1 and -2 Time Series and Environmental Variables. Remote Sens. 2022, 14, 3387. [Google Scholar] [CrossRef]
- Rivas, H.; Touchais, H.; Thierion, V.; Millet, J.; Curtet, L.; Fauvel, M. Nationwide operational mapping of grassland first mowing dates combining machine learning and Sentinel-2 time series. Remote Sens. Environ. 2024, 315, 114476. [Google Scholar] [CrossRef]
- Bekkema, M.E.; Eleveld, M. Mapping Grassland Management Intensity Using Sentinel-2 Satellite Data. GI_Forum 2018, 1, 194–213. [Google Scholar] [CrossRef]
- Wu, R.; Hong, Z.; Du, W.; Shan, Y.; Ying, H.; Wu, R.; Gantumur, B. A Generalized Spatiotemporally Weighted Boosted Regression to Predict the Occurrence of Grassland Fires in the Mongolian Plateau. Remote Sens. 2025, 17, 1485. [Google Scholar] [CrossRef]
- Molema, T.R.; Tesfamichael, S.G.; Fundisi, E. Optical and radar remote sensing for burn scar mapping in the grassland biome. Remote Sens. Appl. Soc. Environ. 2025, 38, 101548. [Google Scholar] [CrossRef]
- Mofokeng, O.D.; Adelabu, S.A.; Durowoju, O.S.; Adagbasa, E.A. Grass curing-driven fire danger index in a protected mountainous grassland using fused MODIS and Sentinel-2. Int. J. Remote Sens. 2024, 45, 5359–5384. [Google Scholar] [CrossRef]
- Hu, X.; Jiang, F.; Qin, X.; Huang, S.; Yang, X.; Meng, F. An Optimized Smoke Segmentation Method for Forest and Grassland Fire Based on the UNet Framework. Fire 2024, 7, 68. [Google Scholar] [CrossRef]
- Marčiš, M.; Fraštia, M.; Lieskovský, T.; Ambroz, M.; Mikula, K. Photogrammetric Measurement of Grassland Fire Spread: Techniques and Challenges with Low-Cost Unmanned Aerial Vehicles. Drones 2024, 8, 282. [Google Scholar] [CrossRef]
- Watzig, C.; Schaumberger, A.; Klingler, A.; Dujakovic, A.; Atzberger, C.; Vuolo, F. Grassland cut detection based on Sentinel-2 time series to respond to the environmental and technical challenges of the Austrian fodder production for livestock feeding. Remote Sens. Environ. 2023, 292, 113577. [Google Scholar] [CrossRef]
- Reuß, F.; Navacchi, C.; Greimeister-Pfeil, I.; Vreugdenhil, M.; Schaumberger, A.; Klingler, A.; Mayer, K.; Wagner, W. Evaluation of limiting factors for SAR backscatter based cut detection of alpine grasslands. Sci. Remote Sens. 2024, 9, 100117. [Google Scholar] [CrossRef]
- Dujakovic, A.; Watzig, C.; Schaumberger, A.; Klingler, A.; Atzberger, C.; Vuolo, F. Enhancing grassland cut detection using Sentinel-2 time series through integration of Sentinel-1 SAR and weather data. Remote Sens. Appl. Soc. Environ. 2025, 37, 101453. [Google Scholar] [CrossRef]
























| Established LUI Framework | Typical Dimensions/Indicators | Corresponding A-LUI Indicator Categories | Conceptual Overlap | Novel Contributions in This Study |
|---|---|---|---|---|
| Inputs (fertiliser, irrigation, energy, labour, pesticides) | Input intensity, chemical/energy flows | Trait; Functional | Inputs affect plant/soil traits measurable by RS (leaf N, chlorophyll, soil moisture) | Operationalisation of inputs through RS proxies (e.g., irrigation from Sentinel-1, N status from hyperspectral) |
| Outputs (yield, production, harvested biomass) | Productivity, output per hectare | Functional | Yield proxies and biomass reflect outputs | Explicit RS yield models, link to SDG indicators, inclusion of uncertainty quantification |
| System-level impacts (biodiversity, soil quality, GHG emissions) | Ecosystem services, species diversity, carbon balance | Structural; Taxonomic; Functional | Impacts partly addressed via land cover, diversity, ecological functions | New explicit categories: Structural (field geometry, fragmentation) and Taxonomic (crop diversity mapping via RS) |
| Land use/cover change intensity | Expansion, abandonment, conversion rates | Genesis | Sometimes treated as part of ‘impacts’ | New focus on temporal dynamics and trajectories (e.g., crop rotations, double cropping, abandonment) |
| Efficiency measures | Output per input (yield per fertiliser, water use efficiency) | Trait; Functional | Implied in productivity frameworks | Potential to derive efficiency metrics from RS (e.g., biomass per water unit via evapotranspiration modelling) |
| Socioeconomic drivers (markets, subsidies, governance) | Institutional and policy-related intensity factors | Not directly covered | Socioeconomic context linked indirectly | RS–policy linkages highlighted; positioned as future integration pathway |
| Cross-scale integration (local–regional–global) | Aggregated indicators for monitoring | All categories + indicator appendix | Often missing in prior reviews | Indicator appendix as reference tool; bridging table (challenges → solutions) for operational uptake |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lausch, A.; Bumberger, J.; Jung, A.; Pause, M.; Selsam, P.; Zhou, T.; Herzog, F. Monitoring Agricultural Land Use Intensity with Remote Sensing and Traits. Agriculture 2025, 15, 2233. https://doi.org/10.3390/agriculture15212233
Lausch A, Bumberger J, Jung A, Pause M, Selsam P, Zhou T, Herzog F. Monitoring Agricultural Land Use Intensity with Remote Sensing and Traits. Agriculture. 2025; 15(21):2233. https://doi.org/10.3390/agriculture15212233
Chicago/Turabian StyleLausch, Angela, Jan Bumberger, András Jung, Marion Pause, Peter Selsam, Tao Zhou, and Felix Herzog. 2025. "Monitoring Agricultural Land Use Intensity with Remote Sensing and Traits" Agriculture 15, no. 21: 2233. https://doi.org/10.3390/agriculture15212233
APA StyleLausch, A., Bumberger, J., Jung, A., Pause, M., Selsam, P., Zhou, T., & Herzog, F. (2025). Monitoring Agricultural Land Use Intensity with Remote Sensing and Traits. Agriculture, 15(21), 2233. https://doi.org/10.3390/agriculture15212233

