The Use of Selected Essential Oils as an Alternative Method of Controlling Pathogenic Fungi, Weeds and Insects on Oilseed Rape (Brassica napus L.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Disease Control (Mycelium Growth In Vitro)
2.2. Weed Control
2.3. Insect Control
- Essential oils: 1% and 2% (solution).
- Lambda-cyhalothrin (Karate Zeon 050 CS containing 4.81% active ingredient): applied field dose—0.125 kg ha−1 (30 ppm a.i.) (ppm concentration was calculated, assuming the usage of 200 L of water per hectare).
2.4. Statistical Analysis
3. Results
3.1. Disease Control
3.2. Weed Control
3.3. Insect Control
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zamani-Noor, N. Baseline Sensitivity and Control Efficacy of Various Group of Fungicides against Sclerotinia sclerotiorum in Oilseed Rape Cultivation. Agronomy 2021, 11, 1758. [Google Scholar] [CrossRef]
- Zamani-Noor, N.; Brand, S. Overview of the joint research project “SkleroPro”-Evaluation of environmental factors affecting Sclerotinia sclerotiorum. In Working Group Integrated Control in Oilseed Crops, Proceedings of the Online Meeting; IOBC-WPRS: Braunschweig, Germany, 17–18 May 2022; Volume 157, pp. 36–39. [Google Scholar]
- Kumar, D.; Maurya, N.; Bharati, Y.K.; Kumar, A.; Kumar, K.; Srivastava, K.; Chand, G.; Kushwaha, C.; Singh, S.K.; Mishra, R.K.; et al. Alternaria blight of oilseed Brassicas: A comprehensive review. Afr. J. Microbiol. Res. 2014, 8, 2816–2829. [Google Scholar] [CrossRef]
- Boys, E.F.; Roques, S.E.; Ashby, A.M.; Evans, N.; Latunde-Dada, A.O.; Thomas, J.E.; West, J.S.; Fitt, B.D.L. Resistance to infection by stealth: Brassica napus (winter oilseed rape) and Pyrenopeziza brassicae (light leaf spot). Eur. J. Plant Pathol. 2007, 118, 307–321. [Google Scholar] [CrossRef]
- Karolewski, Z.; Evans, N.; Fitt, B.D.L.; Todd, A.D.; Baierl, A. Sporulation of Pyrenopeziza brassicae (light leaf spot) on oilseed rape leaves inoculated with ascospores or conidia at different temperatures and wetness durations. Plant Pathol. 2002, 51, 654–665. [Google Scholar] [CrossRef]
- Stankiewicz-Kosyl, M.; Synowiec, A.; Haliniarz, M.; Wenda-Piesik, A.; Domaradzki, K.; Parylak, D.; Wrochna, M.; Pytlarz, E.; Gala-Czekaj, D.; Marczewska-Kolasa, K.; et al. Herbicide Resistance and Management Options of Papaver rhoeas L. and Centaurea cyanus L. Agronomy 2020, 10, 874. [Google Scholar] [CrossRef]
- Jursik, M.; Holec, J.; Andr, J. Biology and control of another important weeds of the Czech Republic: Cornflower (Centaurea cyanus L.). Listy Cukrov. Reparske 2009, 125, 90–93. [Google Scholar]
- Petit, C.; Arnal, H.; Darmency, H. Effect of fragmentation and population size on the genetic diversity of Centaurea cyanus L. (Asteraceae) population. Plant. Ecol. Evolut. 2015, 148, 191–198. [Google Scholar] [CrossRef]
- Sutcliffe, O.L.; Kay, Q.O.N. Changes in the arable flora of central southern England since the 1960s. Biol. Conserv. 2000, 93, 1–8. [Google Scholar] [CrossRef]
- Baessler, C.; Klotz, S. Effects of changes in agricultural land-use on landscape structure and arable weed vegetation over the last 50 years. Agric. Ecosyst. Environ. 2006, 115, 43–50. [Google Scholar] [CrossRef]
- Kolárová, M.; Tyšer, L.; Soukup, J. Impact of site conditions and farming practices on the occurrence of rare and endangered weeds on arable land in the Czech Republic. Weed Res. 2013, 53, 489–498. [Google Scholar] [CrossRef]
- Dąbkowska, T.; Grabowska-Orządała, M.; Łabza, T. The study of the transformation of segetal flora richness and diversity in selected habitats of southern Poland over a 20-year interval. Acta Agrobot. 2017, 70, 1712. [Google Scholar] [CrossRef]
- Hofmeijer, M.A.; Gerowitt, B. The regional weed vegetation in organic spring-sown cereals is shaped by local management, crop diversity and site. Jul. Kühn Arch. 2018, 458, 288–294. [Google Scholar]
- Staniak, M.; Haliniarz, M.; Kwiecińska-Poppe, E.; Harasim, E.; Wesołowski, M. Diversity of agrocoenoses in the Lublin region, Poland. Acta Agrobot. 2017, 70, 1722. [Google Scholar] [CrossRef]
- Zamojska, J.; Węgorek, P.; Olejarski, P.; Mrówczyński, M. Differentiation of susceptibility levels of oilseed rape pests to the same active substances of insecticides on the example of pollen beetle and cabbage seed weevil. Prog. Plant Prot. 2014, 54, 163–166. [Google Scholar] [CrossRef]
- Isman, M.B. Plant essential oils for pest and disease management. Crop Prot. 2000, 19, 603–608. [Google Scholar] [CrossRef]
- Alkan, M. Essential Oils of Origanum Species from Turkey: Repellent Activity Against Stored Product Insect Pests. J. Agric. Sci. 2023, 29, 103–110. [Google Scholar] [CrossRef]
- Isman, M.B. Commercial opportunities for pesticides based on plant essential oils in agriculture, industry, and consumer products. Phytochem. Rev. 2010, 10, 197–204. [Google Scholar] [CrossRef]
- Ooka, Y.; Nacar, S.; Putievsky, E.; Ravid, U.; Yaniv, Z.; Spiegel, Y. Nematicidal activity of essential oils and their components against the root-knot nematode. Phytopathology 2000, 90, 710–715. [Google Scholar] [CrossRef]
- Okorska, S.B.; Dąbrowska, J.A.; Głowacka, K.; Pszczółkowska, A.; Jankowski, K.J.; Jastrzębski, J.P.; Oszako, T.; Okorski, A. The Fungicidal Effect of Essential Oils of Fennel and Hops against Fusarium Disease of Pea. Appl. Sci. 2023, 13, 6282. [Google Scholar] [CrossRef]
- Sivakumar, D.; Bautista-Baños, S. A review on the use of essential oils for postharvest decay control and maintenance of fruit quality during storage. Crop Prot. 2014, 64, 27–37. [Google Scholar] [CrossRef]
- Mourão, D.D.S.C.; Souza, M.R.D.; Dos Reis, J.V.L.; Ferreira, T.P.D.S.; Osorio, P.R.A.; Santos, E.R.D.; Da Silva, D.B.; Tschoeke, P.H.; Campos, F.S.; Dos Santos, G.R. Fungistatic activity of essential oils for the control of bipolaris leaf spot in maize. J. Med. Plants Res. 2019, 13, 280–287. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils: A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Cenobio-Galindo, A.d.J.; Hernández-Fuentes, A.D.; González-Lemus, U.; Zaldívar-Ortega, A.K.; González-Montiel, L.; Madariaga-Navarrete, A.; Hernández-Soto, I. Biofungicides based on plant extracts: On the road to organic farming. Int. J. Mol. Sci. 2024, 25, 6879. [Google Scholar] [CrossRef]
- Zhao, Z.; Yu, M.; Wei, Y.; Xu, F.; Jiang, S.; Chen, Y.; Ding, P.; Shao, X. Cinnamon Essential Oil Causes Cell Membrane Rupture and Oxidative Damage of Rhizopus Stolonifer to Control Soft Rot of Peaches. Food Control 2025, 170, 111039. [Google Scholar] [CrossRef]
- Attia, M.; Mohamad, A.; Baiumy, M.; Saleh, A.; Reyad, N.E.-H. Antifungal activity of thyme and clove essential oil nanoemulsions against pothos root rot. Egypt. J. Agric. Sci. 2024, 75, 78–92. [Google Scholar] [CrossRef]
- Liao, H.; Wen, J.; Nie, H.; Ling, C.; Zhang, L.; Xu, F.; Dong, X. Study on the inhibitory activity and mechanism of Mentha haplocalyx essential oil nanoemulsion against Fusarium oxysporum growth. Sci. Rep. 2024, 14, 16064. [Google Scholar] [CrossRef] [PubMed]
- Hou, T.; Sana, S.S.; Li, H.; Xing, Y.; Nanda, A.; Netala, V.R.; Zhang, Z. Essential oils and its antibacterial, antifungal, and antioxidant activity applications: A review. Food Biosci. 2022, 47, 101716. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, Q.; Zhang, Y.; Huang, J.; Ma, W.; Yang, Q.; Tong, Z.; Zhang, J. Antifungal activity and mechanism of Phoebe bournei wood essential oil against two dermatophytes. Front. Microbiol. 2025, 16, 1539918. [Google Scholar] [CrossRef]
- Shahina, Z.; Al Homsi, R.; Price, J.D.; Whiteway, M.; Sultana, T.; Dahms, T.E. Rosemary essential oil and its components 1, 8-cineole and α-pinene induce ROS-dependent lethality and ROS-independent virulence inhibition in Candida albicans. PLoS ONE 2022, 17, e0277097. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, Q.; Wu, X.; Jiang, M.; Jin, H.; Tao, K.; Hou, T. Unraveling the polypharmacology of a natural antifungal product, eugenol, against Rhizoctonia solani. Pest. Manag. Sci. 2021, 77, 3469–3483. [Google Scholar] [CrossRef]
- Liao, M.; Yang, Q.Q.; Xiao, J.J.; Huang, Y.; Zhou, L.J.; Hua, R.M.; Cao, H.Q. Toxicity of Melaleuca alternifolia essential oil to the mitochondrion and NAD+/NADH dehydrogenase in Tribolium confusum. Peer J. 2018, 6, e5693. [Google Scholar] [CrossRef]
- Fonseca-Guerra, I.R.; Posada, A.M.V.; Rozo, M.E.B.; Pineda, M.E.B. Essential oils of thyme (Thymus vulgaris) and oregano (Origanum vulgare) as an alternative for the control of pesticide-resistant Fusarium spp. in quinoa seeds. J. Sci. Food Agric. 2025, 15, 2236–2245. [Google Scholar] [CrossRef]
- Siddiqui, T.; Khan, M.U.; Sharma, V.; Gupta, K. Terpenoids in Essential Oils: Chemistry, classification, and potential 621 impact on human health and industry. Phytomed. Plus 2024, 4, 100549. [Google Scholar] [CrossRef]
- Koul, O.; Singh, R.; Kaur, B.; Kanda, D. Comparative study on the behavioral response and acute toxicity of some essential oil compounds and their binary mixtures to larvae of Helicoverpa armigera, Spodoptera litura and Chilo partellus. Ind. Crops Prod. 2008, 49, 428–436. [Google Scholar] [CrossRef]
- Mwamburi, L.A. Role of Plant Essential Oils in Pest Management. In New and Future Development in Biopesticide Research: Biotechnological Exploration; Mandal, S.D., Ramkumar, G., Karthi, S., Jin, F., Eds.; Springer: Singapore, 2022; pp. 157–185. [Google Scholar]
- Regnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential oils in insect control: Low-risk products in a high-stakes world. Annu. Rev. Entomol. 2012, 57, 405–424. [Google Scholar] [CrossRef]
- Pavela, R. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind. Crops Prod. 2015, 76, 174–187. [Google Scholar] [CrossRef]
- Božik, M.; Nový, P.; Klouček, P. Chemical composition and antimicrobial activity of cinnamon, thyme, oregano and clove essential oils against plant pathogenic bacteria. Acta Univ. Agric. Silvic. Mendel. Brun. 2017, 65, 1129–1134. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant. Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.Z.; Bai, H.D.; Han, J.C.; Zhou, Y.; Bai, Z.D.; Luo, S.Q.; Xu, J.; Jin, C.; Li, Z. Inhibitory activities of essential oils from Syzygium aromaticum inhibition of Echinochloa crusgalli. PLoS ONE 2024, 16, e0304863. [Google Scholar] [CrossRef]
- Kaur, S.; Singh, H.P.; Batish, D.R.; Kohli, R.K. Chemical characterization and allelopathic potential of volatile oil of Eucalyptus tereticornis against Amaranthus viridis. J. Plant Interact. 2011, 6, 297–302. [Google Scholar] [CrossRef]
- Raveau, R.; Fontaine, J.; Lounès-Hadj Sahraoui, A. Essential oils as potential alternative biocontrol products against plant pathogens and weeds: A review. Foods 2020, 9, 365. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Hu, Y.; Wang, W.; Yan, W.; Ye, Y. The Progress towards Novel Herbicide Modes of Action and Targeted Herbicide Development. Agronomy 2022, 12, 2792. [Google Scholar] [CrossRef]
- Stankiewicz-Kosyl, M.; Haliniarz, M.; Wrochna, M.; Synowiec, A.; Wenda-Piesik, A.; Tendziagolska, E.; Sobolewska, M.; Domaradzki, K.; Skrzypczak, G.; Łykowski, W.; et al. Herbicide Resistance of Centaurea cyanus L. in Poland in the Context of Its Management. Agronomy 2021, 11, 1954. [Google Scholar] [CrossRef]
- HRAC Europe 2023. Weed Fact Sheet Centaurea cyanus. 2023. Available online: https://hracglobal.com/europe/publications-1 (accessed on 16 October 2025).
- Grzanka, M.; Sobiech, Ł.; Danielewicz, J.; Horoszkiewicz-Janka, J.; Skrzypczak, G.; Sawinska, Z.; Radzikowska, D.; Świtek, S. Effect of selected essential oils on the efficacy of volunteer oilseed rape control and phytotoxicity in maize plants. Chil. J. Agric. Res. 2022, 82, 88–96. [Google Scholar] [CrossRef]
- Rencher, A.C. Interpretation of canonical discriminant functions, canonical variates, and principal components. Am. Stat. 1992, 46, 217–225. [Google Scholar] [CrossRef]
- Seidler-Łożykowska, K.; Bocianowski, J. Evaluation of variability of morphological traits of selected caraway (Carum carvi L.) genotypes. Ind. Crops Prod. 2012, 35, 140–145. [Google Scholar] [CrossRef]
- Mahalanobis, P.C. On the generalized distance in statistics. Proc. Natl. Inst. Sci. India 1936, 12, 49–55. [Google Scholar]
- Arshad, Z.; Asif Hanif, M.; Waseem Khan Qadri, R.; Mumtaz Khan, M. Role of essential oils in plant diseases protection: A review. Int. J. Chem. Biochem. Sci. 2014, 6, 11–17. [Google Scholar]
- Behnam, S.; Farzaneh, M.; Ahmadzadeh, M.; Tehrani, A.S. Composition and antifungal activity of essential oils of Mentha piperita and Lavendula angustifolia on post-harvest phytopathogens. Commun. Agric. Appl. Biol. Sci. 2006, 71Pt B, 1321–1326. [Google Scholar]
- Alonso-Gato, M.; Astray, G.; Mejuto, J.C.; Simal-Gandara, J. Essential oils as antimicrobials in crop pro-tection. Antibiotics 2021, 10, 34. [Google Scholar] [CrossRef]
- Peighami-Ashnaei, S.; Farzaneh, M.; Sharifi-Tehrani, A.; Behboudi, K. Effect of essential oils in control of plant diseases. Commun. Agric. Appl. Biol. Sci. 2009, 74, 843–847. [Google Scholar] [PubMed]
- Tanasă, F.; Nechifor, M.; Teacă, C.-A. Essential Oils as Alternative Green Broad-Spectrum Biocides. Plants 2024, 13, 3442. [Google Scholar] [CrossRef]
- Sadowska, K.; Łukaszewska-Skrzypniak, N.; Wojczyńska, J.; Stępniewska-Jarosz, S.; Tyrakowska, M.; Rataj-Guranowska, M. Evaluation of susceptibility of potential rape pathogens to selected essential oils. Prog. Plant Prot. 2017, 57, 201–205. [Google Scholar] [CrossRef]
- Zalewska, E.D.; Zawiślak, G.; Papliński, R.; Walasek-Janusz, M.; Gruszecki, R. Antifungal effects of some essential oils on selected allergenic fungi in vitro. Acta Sci. Pol. Hortorum Cultus 2022, 21, 115–127. [Google Scholar] [CrossRef]
- Kesraoui, S.; Andrés, M.F.; Berrocal-Lobo, M.; Soudani, S.; Gonzalez-Coloma, A. Direct and Indirect Effects of Essential Oils for Sustainable Crop Protection. Plants 2022, 11, 2144. [Google Scholar] [CrossRef]
- Fontana, D.C.; Schmidt, D.; Kulczynski, S.M.; Caron, B.O.; Pretto, M.M.; Mariotto, A.B.; Santos, J.; Holz, E. Fungicidal potential of essential oils in control of Fusarium spp. and Sclerotinia sclerotiorum. AIB 2020, 87, e0612019. [Google Scholar] [CrossRef]
- Christova, P.K.; Dobreva, A.M.; Dzhurmanski, A.G.; Dincheva, I.N.; Dimkova, S.D.; Zapryanova, N.G. The impact of plant essential oils on the growth of the pathogens Botrytis cinerea, Fusarium solani, and Phytophthora pseudocryptogea. Life 2024, 14, 817. [Google Scholar] [CrossRef]
- Parikh, L.; Agindotan, B.O.; Burrows, M.E. Antifungal Activity of Plant-Derived Essential Oils on Pathogens of Pulse Crops. Plant Dis. 2021, 105, 1692–1701. [Google Scholar] [CrossRef] [PubMed]
- Gucwa, K.; Milewski, S.; Dymerski, T.; Szweda, P. Investigation of the Antifungal Activity and Mode of Action of Thymus vulgaris, Citrus limonum, Pelargonium graveolens, Cinnamomum cassia, Ocimum basilicum, and Eugenia caryophyllus Essential Oils. Molecules 2018, 23, 1116. [Google Scholar] [CrossRef] [PubMed]
- Essid, R.; Hammami, M.; Gharbi, D.; Karkouch, I.; Hamouda, T.B.; Elkahoui, S.; Limam, F.; Tabbene, O. Antifungal mechanism of the combination of Cinnamomum verum and Pelargonium graveolens essential oils with fluconazole against pathogenic Candida strains. Appl. Microbiol. Biotechnol. 2017, 101, 6993–7006. [Google Scholar] [CrossRef]
- Elansary, H.O.; Salem, M.Z.M.; Ashmawy, N.A.; Yessoufou, K.; El-Settawy, A.A.A. In vitro antibacterial, antifungal and antioxidant activities of Eucalyptus spp. leaf extracts related to phenolic composition. Nat. Prod. Res. 2017, 31, 2927–2930. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.K.; Andersen, S.B.; Ottosen, C.O.; Rosenqvist, E. Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiol. Plant. 2015, 153, 284–298. [Google Scholar] [CrossRef] [PubMed]
- Björkman, O.; Demmig, B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics of 77K among vascular plants of diverse origins. Planta 1987, 170, 489–504. [Google Scholar] [CrossRef]
- Misra, A.N.; Misra, M.; Singh, R. Chlorophyll Fluorescence in Plant Biology. In Biophysics; Misra, A.N., Ed.; InTech: London, UK, 2012; p. 220. ISBN 978-953-51-0376-9. [Google Scholar]
- Baker, N.R. Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef]
- Kalaji, M.H.; Łoboda, T. Fluorescencja Chlorofilu w Badaniach Stanu Fizjologicznego Roślin/Chlorophyll Fluorescence in the Study of the Physiological State of Plants, 2nd ed.; SGGW: Warsaw, Poland, 2010; p. 116. (In Polish) [Google Scholar]
- Pavela, R. Insecticidal and repellent activity of selected essential oils against of the pollen beetle, Meligethes aeneus (Fabricius) adults. Ind. Crops Prod. 2011, 34, 888–892. [Google Scholar] [CrossRef]
- Sulg, S.; Kaasik, R.; Kallavus, T.; Veromann, E. Toxicity of essential oils on cabbage seedpod weevil (Ceutorhynchus obstrictus) and a model parasitoid (Nasonia vitripennis). Front. Agron. 2023, 5, 1107201. [Google Scholar] [CrossRef]





| Chemical Compounds [%] | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Pine EO | Patchouli EO | Geranium EO | Spruce EO | Coriander EO | Eucalyptus EO | ||||||
| α-pinene | 39.2 | patchoulol | 22.7 | Citronellol | 37.5 | α-Pinene | 17.5 | o-Cymene | 2.39 | α-Pinene | 8.44 |
| β-pinene | 12.6 | δ-Guaiene | 18.8 | Geraniol | 6.2 | β-Pinene | 10.1 | Beta-Linalool | 73.92 | β-Myrcene | 7.78 |
| β-phellandrene | 11.6 | α-Guaiene | 18.6 | Caryophyllene oxide | 3.7 | Myrcene | 15.2 | Camphor | 2.55 | p-Cymene | 10.1 |
| kamfen | 6.8 | Trans-caryophyllene | 7.9 | Menthone | 3.3 | Bornyl acetate | 10.1 | Geranyl acetate | 4.44 | Eucalyptol | 54.29 |
| α-terpineol | 8.1 | Azulene, 1,2,3,5,6,7,8,8a-octahydro-1,4-dimethyl-7-(1-methylethenyl) | 8.7 | Linalool | 3.2 | α-Cadinol | 11.3 | Propanal, 2-methyl-3-pheny-l | 1.67 | γ-Terpinene | 1.73 |
| No. | Essential Oils (1) | Dose [ml∙L−1] | S. sclerotiorum | B. cinerea | A. brassicicola | C. concentricum |
|---|---|---|---|---|---|---|
| 1 | Control | 90.00 a | 90.00 a | 90.00 a | 90.00 a | |
| 2 | Pine EO 1 | 5.0 | 46.33 b | 41.67 bc | 7.00 de | 39.00 c |
| 3 | Pine EO 2 | 10.0 | 3.33 c | 5.67 f | 3.33 de | 20.67 ef |
| 4 | Patchouli EO 1 | 5.0 | 14.67 c | 35.33 cd | 7.00 de | 25.00 def |
| 5 | Patchouli EO 2 | 10.0 | 6.33 c | 32.33 d | 4.00 de | 18.33 fg |
| 6 | Geranium EO 1 | 5.0 | 0.00 c | 0.00 f | 4.67 e | 0.00 h |
| 7 | Geranium EO 2 | 10.0 | 0.00 c | 0.00 f | 0.00 e | 0.00 h |
| 8 | Spruce EO 1 | 5.0 | 90.00 a | 86.67 a | 47.67 b | 75.33 b |
| 9 | Spruce EO 2 | 10.0 | 58.33 b | 45.67 b | 28.00 c | 31.67 d |
| 10 | Coriander EO 1 | 5.0 | 0.00 c | 0.00 f | 6.67 de | 0.00 h |
| 11 | Coriander EO 2 | 10.0 | 0.00 c | 0.00 f | 1.67 e | 0.00 h |
| 12 | Eucalyptus EO 1 | 5.0 | 53.33 b | 90.00 a | 85.00 a | 90.00 a |
| 13 | Eucalyptus EO 2 | 10.0 | 0.00 c | 5.00 f | 32.00 c | 27.33 de |
| 14 | Prothioconazole 1 | 1.75 | 3.00 c | 24.33 e | 9.67 d | 18.67 fg |
| 15 | Prothioconazole 2 | 3.25 | 0.00 c | 7.00 f | 5.67 de | 11.67 g |
| LSD 0.05 | 19.71 | 7.066 | 7.73 | 8.218 | ||
| F-ANOVA (2) | 24.49 *** | 193.24 *** | 124.4 *** | 120.5 *** |
| Control | Pine EO 1 | Pine EO 2 | Patchouli EO 1 | Patchouli EO 2 | Geranium EO 1 | Geranium EO 2 | Spruce EO 1 | Spruce EO 2 | Coriander EO 1 | Coriander EO 2 | Eucalyptus EO 1 | Eucalyptus EO 2 | Prothioconazole 1 | Prothioconazole 2 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Control | 0 | ||||||||||||||
| Pine EO 1 | 19.36 | 0 | |||||||||||||
| Pine EO 2 | 24.5 | 8.83 | 0 | ||||||||||||
| Patchouli EO 1 | 20.45 | 3.82 | 7.67 | 0 | |||||||||||
| Patchouli EO 2 | 21.48 | 5.14 | 7.65 | 1.44 | 0 | ||||||||||
| Geranium EO 1 | 25.69 | 11.06 | 4.73 | 8.71 | 8.06 | 0 | |||||||||
| Geranium EO 2 | 25.88 | 10.94 | 4.57 | 8.62 | 7.95 | 0.42 | 0 | ||||||||
| Spruce EO 1 | 9.52 | 12.33 | 19.89 | 14.2 | 15.36 | 21.54 | 21.59 | 0 | |||||||
| Spruce EO 2 | 15.45 | 6.76 | 11.34 | 6.46 | 7.18 | 11.48 | 11.59 | 10.73 | 0 | ||||||
| Coriander EO 1 | 25.16 | 11.52 | 5.38 | 9.12 | 8.51 | 1.27 | 1.69 | 21.45 | 11.23 | 0 | |||||
| Coriander EO 2 | 25.69 | 11.06 | 4.73 | 8.71 | 8.06 | 0 | 0.42 | 21.54 | 11.48 | 1.27 | 0 | ||||
| Eucalyptus EO 1 | 3.72 | 18.08 | 23.38 | 18.99 | 20.01 | 24.81 | 24.97 | 8.51 | 14.86 | 24.36 | 24.81 | 0 | |||
| Eucalyptus EO 2 | 21.6 | 12.15 | 6.7 | 10.91 | 11.09 | 7.42 | 7.68 | 19.7 | 11.23 | 6.72 | 7.42 | 20.85 | 0 | ||
| Prothioconazole 1 | 21.35 | 6.07 | 5.57 | 3.03 | 2.73 | 5.98 | 5.95 | 16.21 | 7.15 | 6.26 | 5.98 | 20.03 | 8.4 | 0 | |
| Prothioconazole 2 | 24.06 | 9.07 | 2.77 | 6.96 | 6.58 | 2.52 | 2.48 | 19.68 | 10.18 | 3.03 | 2.52 | 23 | 6.39 | 4.21 | 0 |
| Treatments | Dose [L ha−1] | Cornflower | Winter Oilseed Rape | ||
|---|---|---|---|---|---|
| 1 DAA | 10 DAA | 1 DAA | 10 DAA | ||
| Control | - | 0 c | 0 | 0 d | 0 c |
| 2 | 0 c | 0 | 0 d | 0 c | |
| Geranium EO | 5 | 1.7 bc | 0 | 6.7 bc | 3.3 ab |
| 10 | 3.3 ab | 0 | 10.0 ab | 3.3 ab | |
| 2 | 0 c | 0 | 0 d | 0 c | |
| Spruce EO | 5 | 0 c | 0 | 0 d | 0 c |
| 10 | 0 c | 0 | 0 d | 0 c | |
| 2 | 0 c | 0 | 0 d | 0 c | |
| Coriander EO | 5 | 0 c | 0 | 0 d | 0 c |
| 10 | 0 c | 0 | 5.0 c | 0 c | |
| 2 | 0 c | 0 | 0 d | 1.7 bc | |
| Eucalyptus EO | 5 | 0 c | 0 | 0 d | 0 c |
| 10 | 0 c | 0 | 0 d | 0 c | |
| 2 | 0 c | 0 | 0 d | 0 c | |
| Patchouli EO | 5 | 0 c | 0 | 5.0 c | 1.7 bc |
| 10 | 5.0 a | 0 | 13.0 a | 5.0 a | |
| 2 | 0 c | 0 | 0 d | 0 c | |
| Pine EO | 5 | 0 c | 0 | 0 d | 0 c |
| 10 | 0 c | 0 | 0 d | 0 c | |
| Treatments | Dose [L ha−1] | Fv/Fm–1 DAA | |
|---|---|---|---|
| Cornflower | Oilseed Rape | ||
| Control | - | 0.816 | 0.799 ab |
| 2 | 0.815 | 0.786 ab | |
| Geranium EO | 5 | 0.816 | 0.801 a |
| 10 | 0.812 | 0.762 cd | |
| 2 | 0.805 | 0.796 ab | |
| Spruce EO | 5 | 0.811 | 0.788 ab |
| 10 | 0.807 | 0.786 ab | |
| 2 | 0.800 | 0.793 ab | |
| Coriander EO | 5 | 0.802 | 0.788 ab |
| 10 | 0.808 | 0.791 ab | |
| 2 | 0.807 | 0.795 ab | |
| Eucalyptus EO | 5 | 0.793 | 0.790 ab |
| 10 | 0.811 | 0.787 ab | |
| 2 | 0.801 | 0789 ab | |
| Patchouli EO | 5 | 0.804 | 0.780 bc |
| 10 | 0.813 | 0.757 d | |
| 2 | 0.808 | 0.784 ab | |
| Pine EO | 5 | 0.814 | 0.783 ab |
| 10 | 0.809 | 0.784 ab | |
| Oil | Concentration | Average | ||||
|---|---|---|---|---|---|---|
| 1% | 2% | |||||
| Mean | SD | Mean | SD | Mean | SD | |
| Pine EO | 0 | 0 | 5.00 | 0 | 2.50 | 2.74 |
| Patchouli EO | 21.67 | 7.638 | 55.00 | 13.229 | 38.33 | 20.66 |
| Geranium EO | 78.33 | 12.583 | 96.67 | 5.774 | 87.50 | 13.32 |
| Spruce EO | 11.67 | 2.887 | 30.00 | 5.000 | 20.83 | 10.68 |
| Coriander EO | 75.00 | 21.794 | 100.00 | 0 | 87.50 | 19.43 |
| Eucalyptus EO | 31.67 | 7.638 | 33.33 | 11.547 | 32.50 | 8.80 |
| Average | 36.39 | 32.350 | 53.33 | 36.580 | - | - |
| LSD 0.05 | Oil: 11.54; Concentration: 6.66; Oil × Concentration: 16.32 | |||||
| Oil | Concentration | Average | ||||
|---|---|---|---|---|---|---|
| 1% | 2% | |||||
| Mean | SD | Mean | SD | Mean | SD | |
| Pine EO | 3.33 | 2.887 | 3.33 | 2.887 | 3.33 | 2.58 |
| Patchouli EO | 25.00 | 5.000 | 60.00 | 8.660 | 42.50 | 20.19 |
| Geranium EO | 71.67 | 2.887 | 100.00 | 0 | 85.83 | 15.63 |
| Spruce EO | 11.67 | 2.887 | 25.00 | 5.000 | 18.33 | 8.16 |
| Coriander EO | 76.67 | 2.887 | 100.00 | 0 | 88.33 | 12.91 |
| Eucalyptus EO | 23.33 | 5.774 | 40.00 | 5.000 | 31.67 | 10.33 |
| Average | 35.28 | 29.48 | 54.72 | 37.47 | - | - |
| LSD 0.05 | Oil: 5.16; Concentration: 2.979; Oil × Concentration: 7.297 | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danielewicz, J.; Horoszkiewicz, J.; Jajor, E.; Korbas, M.; Zamojska, J.; Dworzańska, D.; Węgorek, P.; Grzanka, M.; Sobiech, Ł.; Idziak, R.; et al. The Use of Selected Essential Oils as an Alternative Method of Controlling Pathogenic Fungi, Weeds and Insects on Oilseed Rape (Brassica napus L.). Agriculture 2025, 15, 2214. https://doi.org/10.3390/agriculture15212214
Danielewicz J, Horoszkiewicz J, Jajor E, Korbas M, Zamojska J, Dworzańska D, Węgorek P, Grzanka M, Sobiech Ł, Idziak R, et al. The Use of Selected Essential Oils as an Alternative Method of Controlling Pathogenic Fungi, Weeds and Insects on Oilseed Rape (Brassica napus L.). Agriculture. 2025; 15(21):2214. https://doi.org/10.3390/agriculture15212214
Chicago/Turabian StyleDanielewicz, Jakub, Joanna Horoszkiewicz, Ewa Jajor, Marek Korbas, Joanna Zamojska, Daria Dworzańska, Paweł Węgorek, Monika Grzanka, Łukasz Sobiech, Robert Idziak, and et al. 2025. "The Use of Selected Essential Oils as an Alternative Method of Controlling Pathogenic Fungi, Weeds and Insects on Oilseed Rape (Brassica napus L.)" Agriculture 15, no. 21: 2214. https://doi.org/10.3390/agriculture15212214
APA StyleDanielewicz, J., Horoszkiewicz, J., Jajor, E., Korbas, M., Zamojska, J., Dworzańska, D., Węgorek, P., Grzanka, M., Sobiech, Ł., Idziak, R., Bocianowski, J., Stuper-Szablewska, K., & Buśko, M. (2025). The Use of Selected Essential Oils as an Alternative Method of Controlling Pathogenic Fungi, Weeds and Insects on Oilseed Rape (Brassica napus L.). Agriculture, 15(21), 2214. https://doi.org/10.3390/agriculture15212214

