Enhanced SWAP Model for Simulating Evapotranspiration and Cotton Growth Under Mulched Drip Irrigation in the Manas River Basin
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experiment Design
2.3. Data Measurement
2.3.1. Cotton Field Evapotranspiration
2.3.2. Soil Moisture Content
2.3.3. Soil Temperature
2.3.4. Growth Temperature
2.3.5. Growth Indicators and Dry Biomass
2.4. Modification Model
2.4.1. Modification of the Soil Temperature Module
2.4.2. Modification of the Evapotranspiration Module
2.4.3. Modification of the Crop Growth Module
2.4.4. Parameter Calibration
2.5. Evaluation of Simulation Effects
3. Results
3.1. Simulation of Evapotranspiration in Mulched Cotton Fields
3.1.1. Simulation of the Temporal Course of Evapotranspiration in Cotton Fields
3.1.2. Correlation Between Evapotranspiration in Cotton Fields and Meteorological Factors
3.1.3. Simulation of Daily Evaporation and Transpiration in Cotton Fields
3.2. Crop Growth Process Simulation
3.2.1. Simulation of Leaf Area Index
3.2.2. Simulation of Cotton Dry Weight
4. Discussion
4.1. Simulation and Evaluation of Evaporation and Transpiration in Mulched Cotton Fields
4.2. Simulation Evaluation of Cotton Dry Matter
4.3. Improvement of Limitations Analysis of the SWAP Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Qin, J.; Tong, Y.; Farid, M.A.; Zhang, H.; Tian, H.; Li, X.; He, X.; Xue, L.; Li, Y.; Gao, Y.; et al. Multidimensional water-economic-ecological joint optimization for Manas River Basin, China, using a dual-population co-evolutionary algorithm. J. Hydrol.-Reg. Stud. 2025, 60, 102465. [Google Scholar] [CrossRef]
- Wang, F.; Liang, W.; Fu, B.; Jin, Z.; Yan, J.; Zhang, W.; Fu, S.; Yan, N. Changes of cropland evapotranspiration and its driving factors on the loess plateau of China. Sci. Total Environ. 2020, 728, 138582. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, G.; Xia, Z.; Wu, M.; Bai, J.; Lu, H. Optimizing plastic mulching improves the growth and increases grain yield and water use efficiency of spring maize in dryland of the Loess Plateau in China. Agric. Water Manag. 2022, 271, 107769. [Google Scholar] [CrossRef]
- Liao, Y.; Cao, H.-X.; Xue, W.-K.; Liu, X. Effects of the combination of mulching and deficit irrigation on the soil water and heat, growth and productivity of apples. Agric. Water Manag. 2021, 243, 106482. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Y.; Hu, Y.; Feng, S.; Wang, F.; Wang, Z. Effects of film mulching and soil wetted percentage of drip irrigation on soil hydrothermal conditions and sweet potato growth. Eur. J. Agron. 2023, 151, 126979. [Google Scholar] [CrossRef]
- Kasirajan, S.; Ngouajio, M. Polyethylene and biodegradable mulches for agricultural applications: A review (vol 32, pg 501, 2012). Agron. Sustain. Dev. 2013, 33, 443. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Wang, F.-X.; Shock, C.C.; Yang, K.-J.; Kang, S.-Z.; Qin, J.-T.; Li, S.-E. Influence of different plastic film mulches and wetted soil percentages on potato grown under drip irrigation. Agric. Water Manag. 2017, 180, 160–171. [Google Scholar] [CrossRef]
- Chen, N.; Li, X.; Shi, H.; Hu, Q.; Zhang, Y.; Hou, C.; Liu, Y. Modeling evapotranspiration and evaporation in corn/tomato intercropping ecosystem using a modified ERIN model considering plastic film mulching. Agric. Water Manag. 2022, 260, 107286. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Vermeulen, A.; Dong, J.; Duan, Z. Triple collocation-based merging of multi-source gridded evapotranspiration data in the Nordic Region. Agric. For. Meteorol. 2023, 335, 109451. [Google Scholar] [CrossRef]
- Li, H.J.; Li, C.Q.; Xing, K.C.; Lei, Y.P.; Shen, Y.J. Surface temperature adjustment in METRIC model for monitoring crop water consumption in North China Plain. Agric. Water Manag. 2024, 291, 108654. [Google Scholar] [CrossRef]
- Zhou, Q.-L.; Liu, Z.-M.; Yu, H.; Ma, Q.; Liang, W.; Jiang, Y.; Zhang, J.-Q.; Ma, Y.-P. Analyzing water balance characteristics with remote sensing evapotranspiration data in Zhangwu County, Liaoning Province, China. Ying Yong Sheng Tai Xue Bao = J. Appl. Ecol. 2025, 36, 1461–1468. [Google Scholar] [CrossRef]
- Jiao, Y.Y.; Zhu, G.F.; Meng, G.J.; Lu, S.Y.; Qiu, D.D.; Lin, X.R.; Li, R.; Wang, Q.Q.; Chen, L.H.; Zhao, L.; et al. Estimating non-productive water loss in irrigated farmland in arid oasis regions: Based on stable isotope data. Agric. Water Manag. 2023, 289, 108515. [Google Scholar] [CrossRef]
- Li, B.B.; Yang, W.C.; Wu, X.J.; Li, Z. Partitioning and controlling factors of evapotranspiration: 2. Dynamics and controls of ratio of transpiration to evapotranspiration at multiple timescales in agroforestry system. Agric. Ecosyst. Environ. 2024, 374, 109192. [Google Scholar] [CrossRef]
- Kashyap, P.S.; Panda, R.K. Evaluation of evapotranspiration estimation methods and development of crop-coefficients for potato crop in a sub-humid region. Agric. Water Manag. 2001, 50, 9–25. [Google Scholar] [CrossRef]
- Yan, W.M.; Zhong, Y.Q.W.; Liu, W.Z.; Shangguan, Z.P. Asymmetric response of ecosystem carbon components and soil water consumption to nitrogen fertilization in farmland. Agric. Ecosyst. Environ. 2021, 305, 107166. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Xiao, L.; Hoogenboom, G.; Boote, K.J.; Kassie, B.T.; Pavan, W.; Shelia, V.; Kim, K.S.; Hernandez-Ochoa, I.M.; et al. A SIMPLE crop model. Eur. J. Agron. 2019, 104, 97–106. [Google Scholar] [CrossRef]
- Pacetti, T.; Renzi, N.; Lompi, M.; Setti, A.; Spinelli, D.; Castelli, G.; Bresci, E.; Caporali, E. Water footprint and water productivity analysis of an alternative organic mulching technology for irrigated agriculture. Agric. Water Manag. 2025, 310, 109380. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Chen, X.; Niu, Z.; Zhang, M.; Sun, J.; Zhao, J. Quantifying the effects of aerosols and cloud radiative effect on rice growth and yield. Agric. For. Meteorol. 2025, 364, 110453. [Google Scholar] [CrossRef]
- Quintero, D.; Mishra, V.; Limaye, A.S.; Van Abel, N.; Ross, J.B.; Rashid, A. Bayesian calibration of management practices for a crop model implemented in a subsistence farming region. Eur. J. Agron. 2025, 164, 127524. [Google Scholar] [CrossRef]
- Wu, S.; Yang, P.; Ren, J.; Chen, Z.; Li, H. Regional winter wheat yield estimation based on the WOFOST model and a novel VW-4DEnSRF assimilation algorithm. Remote Sens. Environ. 2021, 255, 112276. [Google Scholar] [CrossRef]
- de Melo, M.L.A.; van Lier, Q.d.J.; da Silva, E.H.F.M.; Pereira, R.A.d.A.; van Dam, J.C.; Heinen, M.; Marin, F.R. Field-scale modeling of root water uptake and crop growth in a tropical scenario. Field Crops Res. 2025, 322, 109749. [Google Scholar] [CrossRef]
- Heinen, M.; Mulder, M.; van Dam, J.; Bartholomeus, R.; van Lier, Q.d.J.; de Wit, J.; de Wit, A.; Hack-ten Broeke, M. SWAP 50 years: Advances in modelling soil-water-atmosphere-plant interactions. Agric. Water Manag. 2024, 298, 108883. [Google Scholar] [CrossRef]
- Vianna, M.d.S.; Metselaar, K.; van Lier, Q.d.J.; Gaiser, T.; Marin, F.R. The importance of model structure and soil data detail on the simulations of crop growth and water use: A case study for sugarcane. Agric. Water Manag. 2024, 301, 108938. [Google Scholar] [CrossRef]
- Delgado, D.C.E.; De Swaef, T.; Vanderborght, J.; Laloy, E.; Cnops, G.; De Boever, M.; Hirich, A.; El Mouttaqi, A.; Garre, S. Modeling quinoa growth under saline and water-limiting conditions using SWAP-WOFOST. Agric. Water Manag. 2025, 309, 109356. [Google Scholar] [CrossRef]
- Yuan, C. Simulation of water-salt transport and balance in cultivated-wasteland system based on SWAP model in Hetao Irrigation District of China. Agric. Water Manag. 2024, 305, 109132. [Google Scholar] [CrossRef]
- Zhao, Y.; Mao, X.; Shukla, M.K.; Li, S. Modeling Soil Water-Heat Dynamic Changes in Seed-Maize Fields under Film Mulching and Deficit Irrigation Conditions. Water 2020, 12, 1330. [Google Scholar] [CrossRef]
- Vincent, A.; Davies, S.J. Effects of nutrient addition, mulching and planting-hole size on early performance of Dryobalanops aromatica and Shorea parvifolia planted in secondary forest in Sarawak, Malaysia. For. Ecol. Manag. 2003, 180, 261–271. [Google Scholar] [CrossRef]
- Qiao, X.J.; Yang, G.; Shi, J.C.; Zuo, Q.; Liu, L.N.; Niu, M.; Wu, X.; Ben-Gal, A. Remote Sensing Data Fusion to Evaluate Patterns of Regional Evapotranspiration: A Case Study for Dynamics of Film-Mulched Drip-Irrigated Cotton in China’s Manas River Basin over 20 Years. Remote Sens. 2022, 14, 3438. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhan, H.; Yang, W.; Jiang, Q.; Wang, Y.; Guo, F. An ecohydrological perspective of reconstructed vegetation in the semi-arid region in drought seasons. Agric. Water Manag. 2021, 243, 106488. [Google Scholar] [CrossRef]
- Ferreira, L.B.; da Cunha, F.F. New approach to estimate daily reference evapotranspiration based on hourly temperature and relative humidity using machine learning and deep learning. Agric. Water Manag. 2020, 234, 106113. [Google Scholar] [CrossRef]
- Walker, J.P.; Willgoose, G.R.; Kalma, J.D. In situ measurement of soil moisture: A comparison of techniques. J. Hydrol. 2004, 293, 85–99. [Google Scholar] [CrossRef]
- Yang, S.S.; Logan, J.; Coffey, D.L. Mathematical formulas for calculating the base temperature for growing degree-days. Agric. For. Meteorol. 1995, 74, 61–74. [Google Scholar] [CrossRef]
- Sabzzadeh, I.; Alimohammadi, S. Spatiotemporal Simulation of Nitrate, Phosphate, and Salinity in the Unsaturated Zone for an Irrigation District West of Iran Using SWAP-ANIMO Model. J. Hydrol. Eng. 2023, 28. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, W.; Ao, C.; Lei, G.; Wu, J.; Huang, J.; Gaiser, T.; Srivastava, A.K. Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth. Agric. Water Manag. 2022, 270, 107747. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Y.; Liu, J.; Wang, J.; Zhang, Z.; Xiao, N. Changes of Soil Water and Heat Transport and Yield of Tomato (Solanum lycopersicum) in Greenhouses with Micro-Sprinkler Irrigation under Plastic Film. Agronomy 2022, 12, 664. [Google Scholar] [CrossRef]
- Kang, S.; Kim, S.; Oh, S.; Lee, D. Predicting spatial and temporal patterns of soil temperature based on topography, surface cover and air temperature. For. Ecol. Manag. 2000, 136, 173–184. [Google Scholar] [CrossRef]
- Huang, X.; Zhao, Y.; Guo, T.; Mao, X. Enhancing SWAP simulation accuracy via assimilation of leaf area index and soil moisture under different irrigation, film mulching and maize varieties conditions. Comput. Electron. Agric. 2024, 218, 108625. [Google Scholar] [CrossRef]
- Yin, T.; Yao, Z.; Yan, C.; Liu, Q.; Ding, X.; He, W. Maize yield reduction is more strongly related to soil moisture fluctuation than soil temperature change under biodegradable film vs plastic film mulching in a semi-arid region of northern China. Agric. Water Manag. 2023, 287, 108351. [Google Scholar] [CrossRef]
- Zhang, C.; Kong, J.; Tang, M.; Lin, W.; Ding, D.; Feng, H. Improving maize growth and development simulation by integrating temperature compensatory effect under plastic film mulching into the AquaCrop model. Crop J. 2023, 11, 1559–1568. [Google Scholar] [CrossRef]
- Haraguchi, T.; Marui, A.; Mori, K.; Nakano, Y. Movement of water collected by vegetables in plastic-mulching field. J. Fac. Agric. Kyushu Univ. 2003, 48, 237–245. [Google Scholar] [CrossRef]
- Thidar, M.; Gong, D.; Mei, X.; Gao, L.; Li, H.; Hao, W.; Gu, F. Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China. Agric. Water Manag. 2020, 241, 106340. [Google Scholar] [CrossRef]
- Li, Y.; Shao, M.G.; Wang, W.Y.; Wang, Q.J.; Horton, R. Open-hole effects of perforated plastic mulches on soil water evaporation. Soil Sci. 2003, 168, 751–758. [Google Scholar] [CrossRef]
- Sun, Y.; He, Y.; Irfan, A.R.; Liu, X.; Yu, Q.; Zhang, Q.; Yang, D. Exogenous Brassinolide Enhances the Growth and Cold Resistance of Maize (Zea mays L.) Seedlings under Chilling Stress. Agronomy 2020, 10, 488. [Google Scholar] [CrossRef]
- Li, Z.; Wang, B.; Liu, Z.; Zhang, P.; Yang, B.; Jia, Z. Ridge-furrow planting with film mulching and biochar addition can enhance the spring maize yield and water and nitrogen use efficiency by promoting root growth. Field Crops Res. 2023, 303, 109139. [Google Scholar] [CrossRef]
- Zhao, Y.; Mao, X.; Li, S.; Huang, X.; Che, J.; Ma, C. A Review of Plastic Film Mulching on Water, Heat, Nitrogen Balance, and Crop Growth in Farmland in China. Agron.-Basel 2023, 13, 2515. [Google Scholar] [CrossRef]
- Liao, Z.; Zhang, C.; Yu, S.; Lai, Z.; Wang, H.; Zhang, F.; Li, Z.; Wu, P.; Fan, J. Ridge-furrow planting with black film mulching increases rainfed summer maize production by improving resources utilization on the Loess Plateau of China. Agric. Water Manag. 2023, 289, 108558. [Google Scholar] [CrossRef]
- Tao, Z.-Q.; Wang, D.-M.; Ma, S.-K.; Yang, Y.-S.; Zhao, G.-C.; Chang, X.-H. Light interception and radiation use efficiency response to tridimensional uniform sowing in winter wheat. J. Integr. Agric. 2018, 17, 566–578. [Google Scholar] [CrossRef]
- Hassanli, M.; Ebrahimian, H.; Mohammadi, E.; Rahimi, A.; Shokouhi, A. Simulating maize yields when irrigating with saline water, using the AquaCrop, SALTMED, and SWAP models. Agric. Water Manag. 2016, 176, 91–99. [Google Scholar] [CrossRef]
- Ravensbergen, A.P.P.; van Ittersum, M.K.; Kempenaar, C.; Ramsebner, N.; de Wit, D.; Reidsma, P. Coupling field monitoring with crop growth modelling provides detailed insights on yield gaps at field level: A case study on ware potato production in the Netherlands. Field Crops Res. 2024, 308, 109295. [Google Scholar] [CrossRef]
- Kroes, J.G.; van Dam, J.C.; Bartholomeus, R.P.; Groenendijk, P.; Heinen, M.; Hendriks, R.F.A.; Mulder, H.M.; Supit, I.; van Walsum, R.E.V. SWAP Version 4, Theory Description and User Manual; Wageningen Environmental Research: Wageningen, The Netherlands, 2017. [Google Scholar]
- Cheng, Z.; Meng, J.; Wang, Y. Improving Spring Maize Yield Estimation at Field Scale by Assimilating Time-Series HJ-1 CCD Data into the WOFOST Model Using a New Method with Fast Algorithms. Remote Sens. 2016, 8, 303. [Google Scholar] [CrossRef]
- Launay, M.; Guerif, M. Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications. Agric. Ecosyst. Environ. 2005, 111, 321–339. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, Y.; Ma, Z.; He, J.; Guo, C.; Zhou, Q.; Song, L. Simulating the impact of climate change on the suitable area for cotton in Xinjiang based on SDMs model. Ind. Crops Prod. 2025, 227, 120750. [Google Scholar] [CrossRef]
- Cui, N.; He, Z.; Jiang, S.; Wang, M.; Yu, X.; Zhao, L.; Qiu, R.; Gong, D.; Wang, Y.; Feng, Y. Inter-comparison of the Penman-Monteith type model in modeling the evapotranspiration and its components in an orchard plantation of Southwest China. Agric. Water Manag. 2023, 289, 108541. [Google Scholar] [CrossRef]
- Wu, Z.; Cui, N.; Gong, D.; Zhu, F.; Xing, L.; Zhu, B.; Chen, X.; Wen, S.; Liu, Q. Simulation of daily maize evapotranspiration at different growth stages using four machine learning models in semi-humid regions of northwest China. J. Hydrol. 2023, 617, 128947. [Google Scholar] [CrossRef]
- Yang, X.; Hou, M. Identification of key meteorological factors influencing crop evapotranspiration using time-frequency domain analysis. Agron. J. 2025, 117, e70090. [Google Scholar] [CrossRef]
- Ahmadi, A.; Daccache, A.; Snyder, R.L.; Suvocarev, K. Meteorological driving forces of reference evapotranspiration and their trends in California. Sci. Total Environ. 2022, 849, 157823. [Google Scholar] [CrossRef]
- Shan, N.; Ju, W.; Migliavacca, M.; Martini, D.; Guanter, L.; Chen, J.; Goulas, Y.; Zhang, Y. Modeling canopy conductance and transpiration from solar-induced chlorophyll fluorescence. Agric. For. Meteorol. 2019, 268, 189–201. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Basit, A.; Mohamed, H.I.; Ali, I.; Ullah, S.; Kamel, E.A.R.; Shalaby, T.A.; Ramadan, K.M.A.; Alkhateeb, A.A.; Ghazzawy, H.S. Mulching as a Sustainable Water and Soil Saving Practice in Agriculture: A Review. Agronomy 2022, 12, 1881. [Google Scholar] [CrossRef]
- Sandhu, R.; Irmak, S. Assessment of AquaCrop model in simulating maize canopy cover, soil-water, evapotranspiration, yield, and water productivity for different planting dates and densities under irrigated and rainfed conditions. Agric. Water Manag. 2019, 224, 105753. [Google Scholar] [CrossRef]
- Cheng, M.; Wang, H.; Fan, J.; Xiang, Y.; Liu, X.; Liao, Z.; Abdelghany, A.E.; Zhang, F.; Li, Z. Evaluation of AquaCrop model for greenhouse cherry tomato with plastic film mulch under various water and nitrogen supplies. Agric. Water Manag. 2022, 274, 107949. [Google Scholar] [CrossRef]
- Zhao, Y.; Mao, X.; Shukla, M.K.; Tian, F.; Hou, M.; Zhang, T.; Li, S. How does film mulching modify available energy, evapotranspiration, and crop coefficient during the seed-maize growing season in northwest China? Agric. Water Manag. 2021, 245, 106666. [Google Scholar] [CrossRef]
- Ramos, T.B.; Darouich, H.; Pereira, L.S. Mulching effects on soil evaporation, crop evapotranspiration and crop coefficients: A review aimed at improved irrigation management. Irrig. Sci. 2024, 42, 525–539. [Google Scholar] [CrossRef]
- Xiang, K.; Li, Y.; Horton, R.; Feng, H. Similarity and difference of potential evapotranspiration and reference crop evapotranspiration—A review. Agric. Water Manag. 2020, 232, 106043. [Google Scholar] [CrossRef]
- Chai, Y.; Chai, Q.; Yang, C.; Chen, Y.; Li, R.; Li, Y.; Chang, L.; Lan, X.; Cheng, H.; Chai, S. Plastic film mulching increases yield, water productivity, and net income of rain-fed winter wheat compared with no mulching in semiarid Northwest China. Agric. Water Manag. 2022, 262, 107420. [Google Scholar] [CrossRef]
- Xiao, L.; Wei, X.; Wang, C.; Zhao, R. Plastic film mulching significantly boosts crop production and water use efficiency but not evapotranspiration in China. Agric. Water Manag. 2023, 275, 108023. [Google Scholar] [CrossRef]
- Qin, Y.; Chai, Y.; Li, R.; Li, Y.; Ma, J.; Cheng, H.; Chang, L.; Chai, S. Evaluation of straw and plastic film mulching on wheat production: A meta-analysis in Loess Plateau of China. Field Crops Res. 2022, 275, 108333. [Google Scholar] [CrossRef]
- Wu, L.; Quan, H.; Wu, L.; Zhang, X.; Feng, H.; Ding, D.; Siddique, K.H.M. Responses of winter wheat yield and water productivity to sowing time and plastic mulching in the Loess Plateau. Agric. Water Manag. 2023, 289, 108572. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Wang, J.; Feng, H.; Zhang, R.; Zhang, W.; Siddique, K.H.M. Considering water-temperature synergistic factors improves simulations of stomatal conductance models under plastic film mulching. Agric. Water Manag. 2024, 306, 109211. [Google Scholar] [CrossRef]
- Liu, S.; Jin, X.; Nie, C.; Wang, S.; Yu, X.; Cheng, M.; Shao, M.; Wang, Z.; Tuohuti, N.; Bai, Y.; et al. Estimating leaf area index using unmanned aerial vehicle data: Shallow vs. deep machine learning algorithms. Plant Physiol. 2021, 187, 1551–1576. [Google Scholar] [CrossRef] [PubMed]
- Bayatvarkeshi, M.; Bhagat, S.K.; Mohammadi, K.; Kisi, O.; Farahani, M.; Hasani, A.; Deo, R.; Yaseen, Z.M. Modeling soil temperature using air temperature features in diverse climatic conditions with complementary machine learning models. Comput. Electron. Agric. 2021, 185, 106158. [Google Scholar] [CrossRef]
- Wang, D.; Wang, L.; Zhang, R. Measurement and modeling of canopy interception losses by two differently aged apple orchards in a subhumid region of the Yellow River Basin. Agric. Water Manag. 2022, 269, 107667. [Google Scholar] [CrossRef]
- Xing, L.; Feng, Y.; Cui, N.; Guo, L.; Du, T.; Wu, Z.; Zhang, Y.; Wen, S.; Gong, D.; Zhao, L. Estimating reference evapotranspiration using Penman-Monteith equation integrated with optimized solar radiation models. J. Hydrol. 2023, 620, 129407. [Google Scholar] [CrossRef]








| Soil Depth /cm | Sand /% | Silt /% | Clay /% | International Soil Texture | Saturated Water Content /% | Field Capacity /% |
|---|---|---|---|---|---|---|
| 0–30 | 31.73 | 40.94 | 27.33 | Loam | 43.7 | 30.7 |
| 30–60 | 30.54 | 41.45 | 28.01 | Loam | 43.3 | 30.2 |
| 60–100 | 29.02 | 40.87 | 30.11 | Loam | 44.2 | 32.3 |
| Year | Growing Period | Date /(mm/dd) | Irrigation Time | Irrigation Quota /m3·hm−2 | Irrigation Quota /m3·hm−2 | Irrigation Quota /m3·hm−2 |
|---|---|---|---|---|---|---|
| 2023 | Sowing | 04/24 | 1 | 336 | 420 | 504 |
| Seeding | 05/06–06/04 | 1 | 336 | 420 | 504 | |
| Flowering | 06/05–07/08 | 2 | 268.8 | 336 | 403.2 | |
| Boling | 07/09–08/19 | 6 | 336 | 420 | 504 | |
| Boll opening | 08/20–09/25 | 2 | 235.2 | 294 | 352.8 | |
| Total | 12 | 3696 | 4640 | 5544 | ||
| 2024 | Sowing | 04/25 | 1 | 336 | 420 | 504 |
| Seeding | 05/08–06/06 | 1 | 336 | 420 | 504 | |
| Flowering | 06/07–07/10 | 2 | 268.8 | 336 | 403.2 | |
| Boling | 07/11–08/21 | 6 | 336 | 420 | 504 | |
| Boll opening | 08/22–09/27 | 2 | 235.2 | 294 | 352.8 | |
| Total | 12 | 3696 | 4640 | 5544 | ||
| Serial Number | Parameter | Initial Value | Correction Value | Source of Parameter |
|---|---|---|---|---|
| 1 | TSUME | 750.0 | 886.6 | Measured |
| 2 | TSUMAM | 1550.0 | 1045.1 | Measured |
| 3 | TDWI | 75.0 | 6.185 | Measured |
| 4 | RGRLAI | 0.012 | 0.0400 | Measured |
| 5 | SLA (0—0.55—0.86—1.17—1.75—2) | 0.003—0.003—0.0015—0—0—0 | 0.003—0.003—0.0035—0.0025—0.024 | Measured |
| 6 | SPAN | 47.0 | 60.0 | Measured |
| 7 | RML (kg CH2O kg d−1) | 0.0300 | 0.0300 | J.G. Kroes [50] |
| 8 | RMO (kg·kg−1) | 0.60 | 0.50 | J.G. Kroes [50] |
| 9 | CVL | 0.72 | 0.70 | Cheng, et al. [51] |
| 10 | CVR | 0.72 | 0.70 | Measured |
| 11 | CVO | 0.85 | 0.50 | Measured |
| 12 | CVS (kg·kg−1) | 0.69 | 0.80 | Measured |
| 13 | FR (0.53—0.87—1.19—1.77) | 0.2—0.2—0—0 | 0.19—0.13—0.06—0.10 | J.G. Kroes [50] |
| 14 | KDIF | 1.0 | 0.6 | J.G. Kroes [50] |
| 15 | KDIR | 0.75 | 0.2 | J.G. Kroes [50] |
| 16 | AMAX (kg·ha·h−1) (0—1—1.7—2) | 30.0—30.0—30.0—0.0 | 30.0—40.0—40.0—30.0 | J.G. Kroes [50] |
| Depth /cm | Residual Water Content /cm3·cm−3 | Saturated Water Content /cm3·cm−3 | Shape Parameter /cm−1 | Parameter of Curve | Saturated Hydraulic Conductivity /cm·d−1 | Hydraulic Conductivity Shape Factor |
|---|---|---|---|---|---|---|
| 0–30 | 0.030 | 0.437 | 0.006 | 1.619 | 64.89 | 0.5 |
| 30–60 | 0.030 | 0.433 | 0.008 | 1.652 | 80.35 | 0.5 |
| 60–100 | 0.035 | 0.442 | 0.010 | 1.586 | 71.64 | 0.5 |
| Models | Irrigation Treatment | 2023 | 2024 | ||
|---|---|---|---|---|---|
| RMSE /mm | MRE /% | RMSE /mm | MRE /% | ||
| Original | W2 | 1.46 | 2.54 | 2.05 | 2.52 |
| Modified | W2 | 0.91 | 1.47 | 0.98 | 1.76 |
| Models | Irrigation Treatment | 2023 | 2024 | ||
|---|---|---|---|---|---|
| RMSE/mm | MRE/% | RMSE/mm | MRE/% | ||
| Original | W1 | 2.02 | 23.45 | 1.82 | 23.36 |
| W2 | 1.41 | 20.13 | 2.35 | 22.96 | |
| W3 | 1.15 | 19.08 | 2.18 | 14.25 | |
| Modified | W1 | 1.00 | 15.06 | 0.85 | 9.53 |
| W2 | 1.20 | 16.33 | 1.03 | 8.56 | |
| W3 | 1.24 | 15.99 | 1.38 | 10.27 | |
| Models | Irrigation Treatment | 2023 | 2024 | ||
|---|---|---|---|---|---|
| RMSE | MRE/% | RMSE | MRE% | ||
| Original | W1 | 0.07 | 16.03 | 0.16 | 10.18 |
| W2 | 0.25 | 11.94 | 0.08 | 17.10 | |
| W3 | 0.17 | 11.07 | 0.06 | 17.13 | |
| Modified | W1 | 0.05 | 12.01 | 0.03 | 3.14 |
| W2 | 0.15 | 11.63 | 0.18 | 7.60 | |
| W3 | 0.12 | 10.46 | 0.03 | 7.39 | |
| Models | Irrigation Treatment | 2023 | 2024 | ||
|---|---|---|---|---|---|
| RMSE/kg·hm−2 | MRE/% | RMSE/kg·hm−2 | MRE/% | ||
| Original | W1 | 184.4 | 18.60 | 161.4 | 9.04 |
| W2 | 193.10 | 15.57 | 156.11 | 14.55 | |
| W3 | 193.52 | 15.60 | 122.23 | 14.63 | |
| Modified | W1 | 56.4 | 5.70 | 55.01 | 4.74 |
| W2 | 66.83 | 3.64 | 55.76 | 4.57 | |
| W3 | 69.00 | 6.37 | 58.25 | 4.09 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Gao, T.; Sun, R.; Farid, M.A.; Wang, C.; Gong, P.; Gao, Y.; He, X.; Li, F.; Li, Y.; et al. Enhanced SWAP Model for Simulating Evapotranspiration and Cotton Growth Under Mulched Drip Irrigation in the Manas River Basin. Agriculture 2025, 15, 2178. https://doi.org/10.3390/agriculture15202178
Zhang S, Gao T, Sun R, Farid MA, Wang C, Gong P, Gao Y, He X, Li F, Li Y, et al. Enhanced SWAP Model for Simulating Evapotranspiration and Cotton Growth Under Mulched Drip Irrigation in the Manas River Basin. Agriculture. 2025; 15(20):2178. https://doi.org/10.3390/agriculture15202178
Chicago/Turabian StyleZhang, Shuo, Tian Gao, Rui Sun, Muhammad Arsalan Farid, Chunxia Wang, Ping Gong, Yongli Gao, Xinlin He, Fadong Li, Yi Li, and et al. 2025. "Enhanced SWAP Model for Simulating Evapotranspiration and Cotton Growth Under Mulched Drip Irrigation in the Manas River Basin" Agriculture 15, no. 20: 2178. https://doi.org/10.3390/agriculture15202178
APA StyleZhang, S., Gao, T., Sun, R., Farid, M. A., Wang, C., Gong, P., Gao, Y., He, X., Li, F., Li, Y., Xue, L., & Yang, G. (2025). Enhanced SWAP Model for Simulating Evapotranspiration and Cotton Growth Under Mulched Drip Irrigation in the Manas River Basin. Agriculture, 15(20), 2178. https://doi.org/10.3390/agriculture15202178

