A Farm-Scale Water Balance Assessment of Various Rice Irrigation Strategies Using a Bucket-Model Approach in Spain
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Farm
2.2. Model Description
2.3. Model Parametrization
2.4. Calibration and Validation of the Model
2.4.1. Input Data
2.4.2. Model Calibration
2.4.3. Model Performance
2.5. Scenarios of Alternative Water Management Practices
2.6. Water Management Indicators
3. Results and Discussion
3.1. Model Development
3.1.1. Conceptualization of the System
3.1.2. Model Parameters
3.2. Model Calibration and Validation
3.3. Simulation of Alternative Water Management Scenarios
3.3.1. Water Mass Balance Results
3.3.2. Water Savings of the Irrigation Practices
3.3.3. Irrigation Performance Indexes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gangopadhyay, S.; Banerjee, R.; Batabyal, S.; Das, N.; Mondal, A.; Pal, S.C.; Mandal, S. Carbon sequestration and greenhouse gas emissions for different rice cultivation practices. Sustain. Prod. Consum. 2022, 34, 90–104. [Google Scholar] [CrossRef]
- Picazo-Tadeo, A.J.; Reig-Martínez, E.; Estruch, V. Farming efficiency and the survival of valuable agro-ecosystems: A case study of rice farming in European Mediterranean wetlands. Open Environ. Sci. 2009, 3, 42–51. [Google Scholar] [CrossRef]
- Anan, M.; Yuge, K.; Nakano, Y.; Saptomo, S.; Haraguchi, T. Quantification of the effect of rice paddy area changes on recharging groundwater. Paddy Water Environ. 2007, 5, 41–47. [Google Scholar] [CrossRef]
- Gharsallah, O.; Rienzner, M.; Mayer, A.; Tkachencko, D.; Corsi, S.; Vuciterna, R.; Romani, M.; Ricciardelli, A.; Cadei, E.; Trevisan, M.; et al. Economic, environmental and social sustainability of Alternate Wetting and Drying irrigaiton for rice in northern Italy. Front. Water 2023, 5, 1213047. [Google Scholar] [CrossRef]
- Singh, R.; van Dam, J.C.; Jhorar, R.K. Water and salt balance at farmer fields. In Water Productivity of Irrigated Crops in Sirsa District, India; van Dam, J.C., Malik, R.S., Eds.; Wageningen University & Research: Wageningen, The Netherlands, 2003; pp. 41–58. [Google Scholar]
- Tuong, T.P.; Bouman, B.A.M.; Mortimer, M. More rice, less water—Integrated approaches for increasing water productivity in irrigated rice-based systems in Asia. Plant Prod. Sci. 2005, 8, 231–241. [Google Scholar] [CrossRef]
- Linquist, B.; Snyder, R.; Anderson, F.; Espino, L.; Inglese, G.; Marras, S.; Moratiel, R.; Mutters, R.; Nicolosi, P.; Rejmanek, H.; et al. Water balances and evapotranspiration in water- and dry-seeded rice systems. Irrig. Sci. 2015, 33, 375–385. [Google Scholar] [CrossRef]
- Zhuang, Y.; Zhang, L.; Li, S.; Liu, H.; Zhai, L.; Zhou, F.; Ye, Y.; Ruan, S.; Wen, W. Effects and potential of water-saving irrigation for rice production in China. Agric. Water Manag. 2019, 217, 374–382. [Google Scholar] [CrossRef]
- Ariani, M.; Hanudin, E.; Haryono, E. The effect of contrasting soil textures on the efficiency of alternate wetting-drying to reduce water use and global warming potential. Agric. Water Manag. 2022, 274, 107970. [Google Scholar] [CrossRef]
- Surendran, U.; Raja, P.; Jayakumar, M.; Rama Subramoniam, S. Use of efficient water saving techniques for production of rice in India under climate change scenario: A critical review. J. Clean. Prod. 2021, 309, 127–272. [Google Scholar] [CrossRef]
- Aurona, A.; Dzomeku, I.K.; Shaibu, A.G.; Nurudeen, A.R. Water management for sustainable irrigation in rice (Oryza sativa L.) production: A review. Agronomy 2023, 13, 1522. [Google Scholar] [CrossRef]
- Mallareddy, M.; Thirumalaikumar, R.; Balasubramanian, P.; Naseerddin, R.; Nithya, N.; Mariadoss, A.; Eazhilkrishna, N.; Choudhary, A.K.; Deiveegan, M.; Subramanian, E.; et al. Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies. Water 2023, 15, 1802. [Google Scholar] [CrossRef]
- Peyron, M.; Bertora, C.; Pelissetti, S.; Said-Pullicino, D.; Celi, L.; Miniotti, E.; Romani, M.; Sacco, D. Greenhouse gas emissions as affected by different water management practices in temperate rice paddies. Agric. Ecosyst. Environ. 2016, 232, 17–28. [Google Scholar] [CrossRef]
- Cesari de Maria, S.; Bischetti, G.B.; Chiaradia, E.A.; Facchi, A.; Miniotti, E.F.; Rienzner, M.; Romani, M.; Tenni, D.; Gandolfi, C. The role of water management and environmental factors on field irrigation requirements and water productivity of rice. Irrig. Sci. 2017, 35, 11–26. [Google Scholar] [CrossRef]
- Arbat, G.; Cufí, S.; Duran-Ros, M.; Pinsach, J.; Puig-Bargués, J.; Pujol, J.; Ramírez de Cartagena, F. Modeling approaches for determining dripline depth and irrigation frequency of subsurface drip irrigated rice on different soil textures. Water 2020, 12, 1724. [Google Scholar] [CrossRef]
- Zhao, Y.; De Maio, M.; Vidotto, F.; Sacco, D. Influence of wet-dry cycles on the temporal infiltration dynamic in temperate rice paddies. Soil Tillage Res. 2015, 154, 14–21. [Google Scholar] [CrossRef]
- Gilardi, G.L.C.; Mayer, A.; Rienzner, M.; Romani, M.; Facchi, A. Effect of Alternate Wetting and Drying (AWD) and other irrigation management strategies on water resources in rice-producing areas of northern Italy. Water 2023, 15, 2150. [Google Scholar] [CrossRef]
- Cuadrado-Alarcón, B.; Mateos, L.; Guéry, S.; Gomez-Macpherson, H. Circulation and solute mass balance model for the rice growing area on the right bank of the lower Guadalquivir River valley. Agric. Water Manag. 2025, 313, 109453. [Google Scholar] [CrossRef]
- Burt, C.M. Irrigation water balance fundamentals. In Proceedings of the Conference on Benchmarking Irrigation System Performance Using Water Measurement and Water Balances, San Luis Obispo, CA, USA, 10–13 March 1999; Available online: https://digitalcommons.calpoly.edu/bae_fac/53 (accessed on 5 August 2025).
- Guidance document on the Application of Water Balances for Supporting the Implementation of the WFD, Final Version 6.1. In Technical Report; Office for Official Publications of the European Communities: Brussels, Belgium, 2015. [CrossRef]
- Merchán, D.; Causapé, J.; Abrahão, R.; García-Garizábal, I. Assessment of a newly implemented irrigated area (Lerma Basin, Spain) over a 10-year period. II: Salts and nitrate exported. Agric. Water Manag. 2015, 158, 288–296. [Google Scholar] [CrossRef]
- Mateos, L.; Young, C.A.; Wallender, W.W.; Carlson, H.L. Simulating spatially distributed water and salt balances. J. Irrig. Drain. Eng. 2000, 126, 288–295. [Google Scholar] [CrossRef]
- Lana, X.; Serra, C.; Casas-Castillo, M.C.; Rodríguez-Solà, R.; Prohom, M. Two centuries of monthly rainfall in Barcelona (NE Spain): Disparity trends, correlation of autumnal rainfall with the WeMO Index and its contribution to anual amounts. Climate 2024, 12, 166. [Google Scholar] [CrossRef]
- Staff, S.S. Keys to Soil Taxonomy, 13th ed.; Natural Resources Conservation Service—USDA: Washington, USA, 2022. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture. In FAO Irrigation and Drainage, Paper 29; FAO: Rome, Italy, 1985. [Google Scholar]
- Margarit, J.; Boixadera, J.; Muñoz, P.; Usón, A. Mapa de sòls detallat (E 1:25,000) del Marge Esquerre del Baix Ter (Alt i Baix Empordà). Generalitat de Catalunya; Departament d’Agricultura, Alimentació i Acció Rural: Catalonia, Spain, 1995. [Google Scholar]
- Allen, R.G.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. In FAO Irrigation and Drainage, Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Simunek, J.M.; Sejna, M.T.; van Genuchten, M.T. Hydrus 1D for Windows, Version 4.17; U.S. Salinity Laboratory, USDA-ARS: Riverside, CA, USA, 2019; Available online: https://www.pc-progress.com/en/Default.aspx?hydrus-1d. (accessed on 9 May 2025).
- Pereira, L.S.; Paredes, P.; Hunsaker, D.J.; López-Urrea, R.; Mohammadi Shad, Z. Standard single and basal crop coefficients for field crops. Uptadtes and advances to the FAO56 crop water requirements method. Agric. Water Manag. 2021, 243, 106466. [Google Scholar] [CrossRef]
- Patrignani, A.; Ochsner, T.E. Canopeo: A powerful new tool for measuring fractional green canopy cover. Agron. J. 2015, 107, 2312–2320. [Google Scholar] [CrossRef]
- Meteocat. Dades de l’Estació Automàtica la Tallada d’Empordà. Generalitat de Catalunya. 2025. Available online: https://www.meteo.cat/observacions/xema/dades?codi=UB&dia=2024-12-31T00:00Z (accessed on 30 September 2025).
- Van Genuchten, M.T. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef]
- Schaap, M.G.; Leij, F.J.; van Genuchten, M.T. Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 2001, 251, 163–176. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.E. River flow forecasting through conceptual models: Part 1. A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydr. Engin. ASCE 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. J. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Pereira, L.S.; Paredes, P.; Jovanovic, N. Soil water balance models for determining crop water and irrigation requirements and irrigaiton scheduling focusing on the FAO56 method and the dual Kc approach. Agric. Water Manag. 2020, 241, 106357. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef]
- IRRI. How to Manage Water. Rice Knowledge Bank. 2025. Available online: http://www.knowledgebank.irri.org/step-by-step-production/growth/water-management#for-continuous-flooding (accessed on 30 September 2025).
- Playán, E.; Pérez-Coveta, O.; Martínez-Cob, A.; Herrero, J.; García-Navarro, P.; Latorre, B.; Brufau, P.; Garcés, J. Overland water and salt flows in a set of rice paddies. Agric. Water Manag. 2008, 95, 645–658. [Google Scholar] [CrossRef]
- Facchi, A.; Rienzner, M.; Cesari de Maria, S.; Mayer, A.; Chiaradia, E.A.; Masseroni, D.; Silvestri, S.; Romani, M. Exploring scale-effects on water balance components and water use efficiency of toposequence rice fields in Northern Italy. Hydrol. Res. 2018, 49, 1711–1723. [Google Scholar] [CrossRef]
- Walker, S.H.; Rushton, K.R. Verification of lateral percolation losses from irrigated rice fields by a numerical model. J. Hydrol. 1984, 71, 335–351. [Google Scholar] [CrossRef]
- Liang, X.Q.; Li, H.; Chen, Y.X.; He, M.M.; Tian, G.M.; Zhang, Z.J. Nitrogen loss through lateral seepage in near-trench paddy fields. J. Environ. Qual. 2008, 37, 712–717. [Google Scholar] [CrossRef]
- Liang, X.Q.; Li, H.; Chen, Y.X.; Li, H.; He, M.M.; Ye, Y.S.; Tian, G.M.; Lundy, M. Dissolved phosphorus losses by lateral seepage from swine manure amendments for organic rice production. Soil Chem. 2013, 77, 765–773. [Google Scholar] [CrossRef]
- Janssen, M.; Lennartz, B.; Wöhling, T. Percolation losses in paddy fields with a dynamic soil structure: Model development and applications. Hydrol. Proc. 2010, 24, 813–824. [Google Scholar] [CrossRef]
- Carrijo, D.R.; Lundy, M.E.; Linquist, B.A. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crops Res. 2017, 203, 173–180. [Google Scholar] [CrossRef]
- Cesari de Maria, S.; Rienzner, M.; Facchi, A.; Chiaradia, E.A.; Romani, M.; Gandolfi, C. Water balance implications of switching from continuous submergence to flush irrigation in a rice-growing district. Agric. Water Manag. 2016, 171, 108–119. [Google Scholar] [CrossRef]
Hydraulic Property | Field 1 | Field 2 | ||
---|---|---|---|---|
Upper Layer (0–20 cm) | Bottom Layer (20–30 cm) | Upper Layer (0–20 cm) | Bottom Layer (20–30 cm) | |
Residual soil water content, θr | 0.078 | 0.041 | 0.138 | 0.092 |
Saturated soil water content, θs | 0.430 | 0.282 | 0.484 | 0.409 |
Parameter α in the soil water retention function (cm−1) | 0.036 | 0.028 | 0.049 | 0.040 |
Parameter n in the soil water retention function | 1.56 | 1.20 | 1.24 | 1.16 |
Saturated hydraulic conductivity, Ks (cm day−1) | 24.96 | To be calibrated | 16.90 | To be calibrated |
Tortuosity parameter in the conductivity function, l | 0.5 | 0.5 | 0.5 | 0.5 |
Scenario | Seeding Conditions | Punctual Runoff | Early Cut-Off | Irrigation Schedule |
---|---|---|---|---|
A | Wet (WFL) | Yes | No | Continuous |
B | Wet (WFL) | Yes | Yes | Continuous |
C | Wet (WFL) | No | Yes | Continuous |
D | Dry (DFL) | No | Yes | Continuous |
E | Dry (DFL) | No | Yes | Fixed turns |
Parameter | Unit | Value | |
---|---|---|---|
Soil water storage at saturation (VθSAT,j) in soil I | mm | 114.2 | |
Soil water storage at saturation (VθSAT,j) in soil II | mm | 137.7 | |
Maximum hydrant capacity | m3 day−1 | 1380 | |
Valve coefficient (c) | - | 0.05 | |
Crop coefficients (Kc) | Initial in WFL | - | 1.10 |
Initial in DFL | - | 0.85 | |
Midseason | - | 1.20 | |
Final in irrigation until harvest | - | 1.05 | |
Final in anticipated cut-off | - | 0.80 | |
Duration of the crop coefficients | Initial | Accumulated GDD | 350 |
Development | Accumulated GDD | 700 | |
Midseason | Accumulated GDD | 1400 | |
Final | Accumulated GDD | 1600 | |
Area of the HRUs (Aj) | ha | From 1.2 to 14.9 |
Soil | Soil State | Parameter | Parameter Value | R2 | Range of V (mm) |
---|---|---|---|---|---|
I | Unsaturated | Slope (a) | 0.5158 | 0.95 | 96.5–114.1 |
Intercept (b) | −49.78 | ||||
Saturated | Slope (a) | 0.0312 | 0.99 | 114.2–314.2 | |
Intercept (b) | 6.15 | ||||
II | Unsaturated | Slope (a) | 1.1485 | 0.99 | 126.8–137.6 |
Intercept (b) | −145.62 | ||||
Saturated | Slope (a) | 0.0504 | 0.98 | 137.7–337.7 | |
Intercept (b) | 5.15 |
Statistic | Spatial Scale | Calibration | Validation | |||
---|---|---|---|---|---|---|
2020 | 2021 | 2022 | 2023 | 2024 | ||
NSE | Field 1 (soil I) | 0.54 | 0.62 | 0.59 | 0.68 | 0.68 |
Field 2 (soil II) | 0.71 | 0.69 | 0.60 | - | 0.64 | |
Farm | 0.68 | 0.73 | 0.68 | 0.62 | 0.81 | |
PBIAS (%) | Field 1 (soil I) | −1.9 | 8.8 | −5.1 | −3.7 | 9.9 |
Field 2 (soil II) | −0.6 | 9.6 | 7.5 | - | 5.1 | |
Farm | 3.0 | −5.1 | −5.0 | −19.5 | 7.4 | |
R2 | Field 1 (soil I) | 0.54 | 0.63 | 0.60 | 0.68 | 0.69 |
Field 2 (soil II) | 0.73 | 0.69 | 0.62 | - | 0.66 | |
Farm | 0.67 | 0.74 | 0.77 | 0.76 | 0.82 | |
RMSE (mm day−1) | Field 1 (soil I) | 9.9 | 11.6 | 11.3 | 7.0 | 7.8 |
Field 2 (soil II) | 7.4 | 6.6 | 11.7 | - | 10.7 | |
Farm | 4.0 | 3.5 | 3.2 | 3.8 | 2.6 | |
RSR | Field 1 (soil I) | 0.68 | 0.62 | 0.64 | 0.56 | 0.56 |
Field 2 (soil II) | 0.54 | 0.56 | 0.63 | - | 0.60 | |
Farm | 0.57 | 0.52 | 0.56 | 0.60 | 0.43 |
Scenario * | Category | I (mm) | P (mm) | ETc (mm) | R (mm) | DP (mm) |
---|---|---|---|---|---|---|
A | Soil I | 2553 ± 63 | 181 ± 46 | 719 ± 29 | 108 ± 13 | 1784 ± 8 |
Soil II | 3056 ± 50 | 182 ± 39 | 743 ± 29 | 87 ± 9 | 2257 ± 10 | |
Farm | 2743 ± 52 | 181 ± 43 | 730 ± 29 | 101 ± 12 | 1962 ± 26 | |
B | Soil I | 2121 ± 47 | 181 ± 46 | 676 ± 22 | 109 ± 14 | 1521 ± 27 |
Soil II | 2510 ± 57 | 182 ± 39 | 698 ± 22 | 88 ± 10 | 1880 ± 39 | |
Farm | 2269 ± 54 | 181 ± 43 | 685 ± 22 | 101 ± 13 | 1656 ± 43 | |
C | Soil I | 1983 ± 42 | 181 ± 46 | 676 ± 22 | 0 | 1501 ± 27 |
Soil II | 2361 ± 50 | 182 ± 39 | 698 ± 22 | 0 | 1819 ± 41 | |
Farm | 2126 ± 54 | 181 ± 43 | 685 ± 22 | 0 | 1615 ± 46 | |
D | Soil I | 1681 ± 41 | 181 ± 46 | 632 ± 23 | 0 | 1233 ± 32 |
Soil II | 2004 ± 50 | 182 ± 39 | 652 ± 22 | 0 | 1507 ± 41 | |
Farm | 1803 ± 51 | 181 ± 43 | 641 ± 22 | 0 | 1337 ± 44 | |
E | Soil I | 1234 ± 43 | 181 ± 46 | 632 ± 23 | 0 | 785 ± 24 |
Soil II | 1321 ± 49 | 182 ± 39 | 652 ± 22 | 0 | 823 ± 34 | |
Farm | 1268 ± 44 | 181 ± 43 | 641 ± 22 | 0 | 801 ± 28 |
Scenario | RIS | RWS | ICUC | DPF |
---|---|---|---|---|
A (WFL, runoff, late cut-off, continuous irrigation) | 3.76 ± 0.12 | 4.01 ± 0.12 | 0.21 ± 0.02 | 0.67 ± 0.01 |
B (WFL, runoff, early cut-off, continuous irrigation) | 3.31 ± 0.08 | 3.58 ± 0.10 | 0.22 ± 0.02 | 0.68 ± 0.01 |
C (WFL, no-runoff, early cut-off, continuous irrigation) | 3.10 ± 0.09 | 3.37 ± 0.11 | 0.24 ± 0.02 | 0.70 ± 0.00 |
D (DFL, no-runoff, early cut-off, continuous irrigation) | 2.82 ± 0.09 | 3.10 ± 0.11 | 0.26 ± 0.02 | 0.67 ± 0.01 |
E (DFL, no-runoff, early cut-off, fixed-turn irrigation) | 1.98 ± 0.05 | 2.26 ± 0.05 | 0.36 ± 0.03 | 0.55 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cufí, S.; Arbat, G.; Pinsach, J.; Cuadrado-Alarcón, B.; Facchi, A.; Villar, J.M.; Dechmi, F.; Cartagena, F.R.d. A Farm-Scale Water Balance Assessment of Various Rice Irrigation Strategies Using a Bucket-Model Approach in Spain. Agriculture 2025, 15, 2089. https://doi.org/10.3390/agriculture15192089
Cufí S, Arbat G, Pinsach J, Cuadrado-Alarcón B, Facchi A, Villar JM, Dechmi F, Cartagena FRd. A Farm-Scale Water Balance Assessment of Various Rice Irrigation Strategies Using a Bucket-Model Approach in Spain. Agriculture. 2025; 15(19):2089. https://doi.org/10.3390/agriculture15192089
Chicago/Turabian StyleCufí, Sílvia, Gerard Arbat, Jaume Pinsach, Blanca Cuadrado-Alarcón, Arianna Facchi, Josep M. Villar, Farida Dechmi, and Francisco Ramírez de Cartagena. 2025. "A Farm-Scale Water Balance Assessment of Various Rice Irrigation Strategies Using a Bucket-Model Approach in Spain" Agriculture 15, no. 19: 2089. https://doi.org/10.3390/agriculture15192089
APA StyleCufí, S., Arbat, G., Pinsach, J., Cuadrado-Alarcón, B., Facchi, A., Villar, J. M., Dechmi, F., & Cartagena, F. R. d. (2025). A Farm-Scale Water Balance Assessment of Various Rice Irrigation Strategies Using a Bucket-Model Approach in Spain. Agriculture, 15(19), 2089. https://doi.org/10.3390/agriculture15192089