Monitoring of Farmland Abandonment Based on Google Earth Engine and Interpretable Machine Learning
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.1.1. Overview of the Study Area
2.1.2. Data and Preprocessing
2.2. The Framework of the Study
2.2.1. Definition of Farmland Abandonment
2.2.2. Land-Use/Land-Cover Classification Method
2.2.3. Method for Determining Abandoned Farmland
2.3. Research Methodology
2.3.1. XGBoost Model
2.3.2. SHAP
2.3.3. Accuracy Evaluation Method
3. Results
3.1. Annual Land-Use/Land-Cover Classification
3.2. Distribution Characteristics of Abandoned Farmland
3.3. Drivers of Abandoned Farmland and Abandonment Probability
4. Discussion
4.1. Spatiotemporal Distribution of Farmland Abandonment
4.2. Driving Factors of Farmland Abandonment
4.3. Suggestions for the Management of Abandoned Farmland
4.4. Comparative Analysis of Driving Factors for Farmland Abandonment
4.5. Limitations and Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, S.; Lin, L.; Liu, S.; Wei, Y.; Xu, D.; Li, Q.; Su, S. Interactions between sustainable livelihood of rural household and agricultural land transfer in the mountainous and hilly regions of Sichuan, China. Sustain. Dev. 2019, 27, 725–742. [Google Scholar] [CrossRef]
- He, Y.; Xie, H.; Peng, C. Analyzing the behavioural mechanism of farmland abandonment in the hilly mountainous areas in China from the perspective of farming household diversity. Land Use Policy 2020, 99, 104826. [Google Scholar] [CrossRef]
- Xu, D.; Deng, X.; Huang, K.; Liu, Y.; Yong, Z.; Liu, S. Relationships between labor migration and cropland abandonment in rural China from the perspective of village types. Land Use Policy 2019, 88, 104164. [Google Scholar] [CrossRef]
- Chen, L.; Zou, C.; Liu, Y. Study on the impact mechanism of rural labor outflows on cultivated land abandonment based on the conditional process analysis. China Land Sci. 2023, 37, 73–83. [Google Scholar] [CrossRef]
- Dong, S.; Xin, L.; Li, S.; Xie, H.; Zhao, Y.; Wang, X.; Li, X.; Song, H.; Lu, Y. Extent and spatial distribution of terrace abandonment in China. J. Geogr. Sci. 2023, 33, 1361–1376. [Google Scholar] [CrossRef]
- Han, Z.; Song, W. Spatiotemporal variations in cropland abandonment in the Guizhou–Guangxi karst mountain area, China. J. Clean. Prod. 2019, 238, 117888. [Google Scholar] [CrossRef]
- Huang, M.; Li, Y.; Ran, C.; Li, M. Dynamic changes and transitions of agricultural landscape patterns in mountainous areas: A case study from the hinterland of the Three Gorges Reservoir Area. J. Geogr. Sci. 2022, 32, 1039–1058. [Google Scholar] [CrossRef]
- Wang, C.; Su, Y.; He, S.; Xie, Y.; Xia, P.; Cui, Y. Study on spatiotemporal evolution of farmland abandonment and its influencing factors in the developed county of China. Res. Sq. 2022; preprint (Version 1). 2022. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, Z.; Wang, Y.; Zheng, J.; Xiang, S.; Gao, M. Spatial-temporal variation and driving types of non-grain cultivated land in hilly and mountainous areas of Chongqing. J. Agric. Resour. Environ. 2024, 41, 15. [Google Scholar]
- Yi, X.; Dai, Q.; Yan, Y.; Zhang, Y.; He, J.; Wang, Y.; Yao, Y. Research progress on the ecological environment effect of farmland abandonment in karst areas of Southwest China. Acta Ecol. Sin. 2023, 43, 925–936. [Google Scholar] [CrossRef]
- Li, S.; Li, X. The mechanism of farmland marginalization in Chinese mountainous areas: Evidence from cost and return changes. J. Geogr. Sci. 2019, 29, 531–548. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Xin, L.; Tan, M. Farmland marginalization and its drivers in mountainous areas of China. Sci. Total Environ. 2020, 719, 135132. [Google Scholar] [CrossRef]
- Wang, L.; Li, Q.; Wang, Y.; Zeng, K.; Wang, H. An OVR-FWP-RF machine learning algorithm for identification of abandoned farmland in hilly areas using multispectral remote sensing data. Sustainability 2024, 16, 6443. [Google Scholar] [CrossRef]
- Wu, M.; Liu, G.; She, S.; Zhao, L. Factors influencing abandoned farmland in hilly and mountainous areas, and the governance paths: A case study of Xingning City. PLoS ONE 2022, 17, e0271498. [Google Scholar] [CrossRef]
- Liang, Y.; Liang, Y.; Tu, X. Identification and spatial pattern analysis of abandoned farmland in Jiangxi Province of China based on GF-1 satellite image and object-oriented technology. Front. Environ. Sci. 2024, 12, 1423868. [Google Scholar] [CrossRef]
- Deng, J.; Guo, Y.; Chen, X.; Liu, L.; Liu, W. Abandoned farmland extraction and feature analysis based on multi-sensor fused normalized difference vegetation index time series—A case study in Western Mianchi County. Appl. Sci. 2024, 14, 2102. [Google Scholar] [CrossRef]
- Liu, T.; Yu, L.; Liu, X.; Peng, D.; Chen, X.; Du, Z.; Tu, Y.; Wu, H.; Zhao, Q. A Global Review of Monitoring Cropland Abandonment Using Remote Sensing: Temporal–Spatial Patterns, Causes, Ecological Effects, and Future Prospects. J. Remote Sens. 2025, 5, 0584. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Song, W. Determinants of cropland abandonment at the parcel, household and village levels in mountain areas of China: A multi-level analysis. Land Use Policy 2014, 41, 186–192. [Google Scholar] [CrossRef]
- Qianru, C.; Hualin, X.I.E. Research progress and discoveries related to cultivated land abandonment. J. Resour. Ecol. 2021, 12, 165–174. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, C.; Dong, J.; Ge, Q. Spatio-temporal pattern of cropland abandonment in China from 1992 to 2017: A Meta-analysis. Acta Geogr. Sin. 2019, 74, 03001. [Google Scholar]
- Hye-Kyung, Y.; Kim, S. Detecting abandoned farmland using harmonic analysis and machine learning. ISPRS J. Photogramm. Remote Sens. 2020, 166, 201–212. [Google Scholar]
- Morell-Monzó, S.; Estornell, J.; Sebastiá-Frasquet, M.-T. Comparison of Sentinel-2 and high-resolution imagery for mapping land abandonment in fragmented areas. Remote Sens. 2020, 12, 2062. [Google Scholar] [CrossRef]
- He, Y.; Amintas, B.J.; Johanna, B.; David, H.; Benjamin, G.I.; Niwaeli, E.K.; Katarzyna, E.L.; Elena, R.; Afag, R.; Natalia, R. Monitoring cropland abandonment with Landsat time series. Remote Sens. Environ. 2020, 246, 111873. [Google Scholar]
- Hong, C.; Prishchepov, A.V.; Jin, X.; Zhou, Y. Mapping cropland abandonment and distinguishing from intentional afforestation with Landsat time series. Int. J. Appl. Earth Obs. Geoinf. 2024, 127, 103693. [Google Scholar] [CrossRef]
- Wuyun, D.; Duan, M.; Sun, L.; Crusiol, L.G.T.; Wu, N.; Chen, Z. Pixel-wise parameter assignment in LandTrendr algorithm: Enhancing cropland abandonment monitoring using satellite-based NDVI time-series. Comput. Electron. Agric. 2024, 227, 109541. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, T.; Wang, S.; Liu, K.; Yang, J. Detecting spatiotemporal differences in cropland abandonment and reforestation across the three-north region of China based on Landsat time series. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–12. [Google Scholar] [CrossRef]
- Ye, J.; Hu, Y.; Feng, Z.; Zhen, L.; Shi, Y.; Tian, Q.; Zhang, Y. Monitoring of Cropland Abandonment and Land Reclamation in the Farming–Pastoral Zone of Northern China. Remote Sens. 2024, 16, 1089. [Google Scholar] [CrossRef]
- Tu, Y.; Wu, S.; Chen, B.; Weng, Q.; Bai, Y.; Yang, J.; Yu, L.; Xu, B. A 30 m annual cropland dataset of China from 1986 to 2021. Earth Syst. Sci. Data 2024, 16, 2297–2316. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. 30 m annual land cover and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Pointereau, P.; Coulon, F.; Girard, P.; Lambotte, M.; Stuczynski, T.; Sánchez Ortega, V.; Del Rio, A. Analysis of the Driving Forces Behind Farmland Abandonment and the Extent and Location of Agricultural Areas That Are Actually Abandoned or Are in Risk to Be Abandoned; European Communities: Brussels, Belgium, 2008. [Google Scholar]
- Shi, T.; Li, X. Farmland abandonment in Europe and its enlightenment to China. Geogr. Geo-Inf. Sci. 2013, 29, 101–103. [Google Scholar]
- Hou, D.; Meng, F.; Prishchepov, A.V. How is urbanization shaping agricultural land-use? Unraveling the nexus between farmland abandonment and urbanization in China. Landsc. Urban Plan. 2021, 214, 104170. [Google Scholar] [CrossRef]
- Long, Y.; Sun, J.; Wellens, J.; Colinet, G.; Wu, W.; Meersmans, J. Mapping the spatiotemporal dynamics of cropland abandonment and recultivation across the Yangtze River Basin. Remote Sens. 2024, 16, 1052. [Google Scholar] [CrossRef]
- Levers, C.; Schneider, M.; Prishchepov, A.V.; Estel, S.; Kuemmerle, T. Spatial variation in determinants of agricultural land abandonment in Europe. Sci. Total Environ. 2018, 644, 95–111. [Google Scholar] [CrossRef]
- Li, X.; Ma, L.; Liu, X. Identification, Mechanism and Countermeasures of Cropland Abandonment in Northeast Guangdong Province. Land 2025, 14, 246. [Google Scholar] [CrossRef]
- Lu, D.; Su, K.; Wang, Z.; Hou, M.; Li, X.; Lin, A.; Yang, Q. Patterns and drivers of terrace abandonment in China: Monitoring based on multi-source remote sensing data. Land Use Policy 2025, 148, 107388. [Google Scholar] [CrossRef]
- Li, X.; Shi, L.; Shi, Y.; Tang, J.; Zhao, P.; Wang, Y.; Chen, J. Exploring interactive and nonlinear effects of key factors on intercity travel mode choice using XGBoost. Appl. Geogr. 2024, 166, 103264. [Google Scholar] [CrossRef]
- Batunacun; Wieland, R.; Lakes, T.; Nendel, C. Using SHAP to interpret XGBoost predictions of grassland degradation in Xilingol, China. Geosci. Model Dev. 2020, 14, 1493–1510. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Yuan, H.; Zhou, S.; Wang, Y.; Ikram, R.M.A.; Li, J. An XGBoost-SHAP approach to quantifying morphological impact on urban flooding susceptibility. Ecol. Indic. 2023, 156, 111137. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, X.; Zhang, J.; Sun, D.; Zhou, X.; Mi, C.; Wen, H. Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model. J. Environ. Manag. 2023, 332, 117357. [Google Scholar] [CrossRef]
- Li, H.; Song, W. Cropland Abandonment and Influencing Factors in Chongqing, China. Land 2021, 10, 1206. [Google Scholar] [CrossRef]
- Yang, D.; Song, W. Tracking land use trajectory to map abandoned farmland in mountainous area. Ecol. Inform. 2023, 75, 102103. [Google Scholar] [CrossRef]
- Zhu, X.; Xiao, G.; Zhang, D.; Guo, L. Mapping abandoned farmland in China using time series MODIS NDVI. Sci. Total Environ. 2021, 755, 142651. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhang, F.; Huang, J.; Li, C.; Zhang, B. Spatial pattern evolution of abandoned arable land and its influencing factor in industrialized region. Trans. Chin. Soc. Agric. Eng. 2019, 35, 246–255. [Google Scholar]
- Wang, Y.; Yang, A.; Yang, Q. The extent, drivers and production loss of farmland abandonment in China: Evidence from a spatiotemporal analysis of farm households survey. J. Clean. Prod. 2023, 414, 137772. [Google Scholar] [CrossRef]
- Wang, F.; Xie, Y. Characteristics of unbalanced and inadequate intensive use of cultivated land in China and causes. Resour. Sci. 2024, 46, 130–144. [Google Scholar] [CrossRef]
- Guo, B.; Fang, Y.; Zhou, Y. Influencing factors and spatial differentiation of cultivated land abandonment at the household scale. Resour. Sci. 2020, 42, 696–709. [Google Scholar] [CrossRef]
- Li, F.; Xie, H.; Zhou, Z. Factors influencing farmland abandonment at the village scale: Qualitative Comparative Analysis (QCA). J. Resour. Ecol. 2021, 12, 241–253. [Google Scholar] [CrossRef]
- Bavorová, M.; Ullah, A.; Nyendu, D.; Prishchepov, A.V. Determinants of farmland abandonment in the urban–rural fringe of Ghana. Reg. Environ. Change 2023, 23, 122. [Google Scholar] [CrossRef]
- Wang, C.; Su, Y.; He, S.; Xie, Y.; Xia, P.; Cui, Y. Study on the spatio-temporal evolution and influencing factors of farmland abandonment on a county scale. Environ. Sci. Pollut. Res. 2023, 30, 75314–75331. [Google Scholar] [CrossRef]
- Zhang, G.; Li, X.; Zhang, L.; Wei, X. Dynamics and causes of cropland Non-Agriculturalization in typical regions of China: An explanation Based on interpretable Machine learning. Ecol. Indic. 2024, 166, 112348. [Google Scholar] [CrossRef]
- Li, Y.; Ma, W.; Jiang, G.; Li, G.; Zhou, D. The degree of cultivated land abandonment and its influence on grain yield in main grain producing areas of China. J. Nat. Resour. 2021, 36, 1439–1454. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, J. Research progress and trend prospect of China’s cultivated land abandonment in recent 30 years—Based on CNKI and CiteSpace quantification analysis. Jiangsu Agric. Sci. 2024, 52, 9–17. [Google Scholar] [CrossRef]
- Wu, Z.; Li, S.; Li, X.; Song, J.; Du, J.; Huang, K.; Gao, Z.; Xu, C. Spatial differentiation characterization and impact mechanisms of terrace abandonment in mountainous areas of Northern Guangdong of China. Trans. Chin. Soc. Agric. Eng. 2025, 41, 278–287. [Google Scholar]
- Wang, G.; Liao, H.; Wen, T. Causes, differentiation mechanism and regulation of farmland abandonment in villages of Nanchuan district, Chongqing. Acta Geogr. Sin. 2024, 79, 1824–1841. [Google Scholar]
- Wei, Y.; An, P.; Jin, Y.; Chen, X.; Zhang, G.; Pan, Z. Population aging and its farmland effect on abandonment in the northern farming-pastoral ecotone: A case study of Ulanqab. J. Arid. Land Resour. Environ. 2021, 35, 64–70. [Google Scholar]
- Zhou, D.; Wu, J.; Wen, W.; Jiang, G.; Li, Y.; Li, G. Abandonment characteristics and influencing factors of cultivated land abandonment in major crop-producing areas. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2021, 52, 127–137. [Google Scholar] [CrossRef]
- Prishchepov, A.V.; Ponkina, E.V.; Sun, Z.; Bavorova, M.; Yekimovskaja, O.A. Revealing the intentions of farmers to recultivate abandoned farmland: A case study of the Buryat Republic in Russia. Land Use Policy 2021, 107, 105513. [Google Scholar] [CrossRef]
- Guo, W.; Chen, F.; Yang, B.; Jiang, F.; Ma, J.; Zhu, X. Spatial Relationship and Imbalanced Attribution of Cultivated Land Reclamation and Abandonment in China. China Land Sci. 2024, 38, 120–132. [Google Scholar]
- Guan, X.; Wang, X.; Zhao, Y. Morphological characteristics identification and optimization of “non-grain” cultivated land along Yellow River Basin. Trans. Chin. Soc. Agric. Mach. 2021, 10, 233–242. [Google Scholar]
- Lin, Y.; Wang, X.; Quan, M.; Lin, D.; Lu, Y.; Liu, G. Spatiotemporal characteristics of vegetation coverage and its terrain gradient effect in Jiangxi and Fujian provinces in south China. Res. Soil Water Conserv. 2024, 31, 290–300. [Google Scholar] [CrossRef]
- Kama, R.; He, J.; Nabi, F.; Aidara, M.; Faye, B.; Diatta, S.; Ma, C.; Li, H. Crop rotation and green manure type enhance organic carbon fractions and reduce soil arsenic content. Agric. Ecosyst. Environ. 2025, 378, 109287. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, G.; Lu, Z.; Xiao, Y.; Nie, J.; Yang, L.; Zhou, Z.; Chen, L.; Wang, H. A new framework for delineating farmland consolidation priority areas for promoting agricultural mechanization in hilly and mountainous areas. Comput. Electron. Agric. 2024, 218, 108681. [Google Scholar] [CrossRef]
- Choenkwan, S.; Fox, J.M.; Rambo, A.T. Agriculture in the mountains of northeastern Thailand: Current situation and prospects for development. Mt. Res. Dev. 2014, 34, 95–106. [Google Scholar] [CrossRef]
- Chen, H.; Tan, Y.; Xiao, W.; Xu, S.; Meng, F.; He, T.; Li, X.; Wang, K.; Wu, S. Risk assessment and validation of farmland abandonment based on time series change detection. Environ. Sci. Pollut. Res. 2023, 30, 2685–2702. [Google Scholar] [CrossRef]
- Chen, H.; Tan, Y.; Xiao, W.; He, T.; Xu, S.; Meng, F.; Li, X.; Xiong, W. Assessment of continuity and efficiency of complemented cropland use in China for the past 20 years: A perspective of cropland abandonment. J. Clean. Prod. 2023, 388, 135987. [Google Scholar] [CrossRef]
- Li, S.; Li, X. Global understanding of farmland abandonment: A review and prospects. J. Geogr. Sci. 2017, 27, 1123–1150. [Google Scholar] [CrossRef]
- Kiziridis, D.A.; Mastrogianni, A.; Pleniou, M.; Karadimou, E.; Tsiftsis, S.; Xystrakis, F.; Tsiripidis, I. Acceleration and relocation of abandonment in a Mediterranean mountainous landscape: Drivers, consequences, and management implications. Land 2022, 11, 406. [Google Scholar] [CrossRef]
- Zhang, P.; Xiong, T. Can agricultural subsidies reduce cropland abandonment in rural China? Agriculture 2025, 15, 846. [Google Scholar] [CrossRef]
- Chen, Z.; Dong, H. Exploring urban and agricultural land use planning. Results Eng. 2024, 24, 103093. [Google Scholar] [CrossRef]
- Huang, W.; Wang, Z.; Liu, Y.; Shi, J. Evolution characteristics and pattern optimization of land use conflict in inland river Basin from the perspective of production-living-ecological. PLoS ONE 2025, 20, e0321481. [Google Scholar] [CrossRef]
- Wahanisa, R.; Niravita, A.; Mahfud, M.A.; Aminah, S. Public participation by optimizing rural spatial planning to prevent functional conversion of agricultural land to non-agricultural use. Univers. J. Agric. Res. 2021, 9, 149–155. [Google Scholar] [CrossRef]
- Fayet, C.M.; Reilly, K.H.; Van Ham, C.; Verburg, P.H. What is the future of abandoned agricultural lands? A systematic review of alternative trajectories in Europe. Land Use Policy 2022, 112, 105833. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Pham, V.D.; Vu, P.L.; Nguyen, T.H.T.; Nguyen, Q.H.; Nguyen, T.G.; Dang, D.K.; Tran, V.T.; Bui, Q.; Lai, A.T.; et al. Cropland abandonment and flood risks: Spatial analysis of a case in North Central Vietnam. Anthropocene 2022, 38, 100341. [Google Scholar] [CrossRef]
- Sibiya, S.; Clifford-Holmes, J.K.; Gambiza, J. Drivers of degradation of croplands and abandoned lands: A case study of Macubeni Communal Land in the Eastern Cape, South Africa. Land 2023, 12, 606. [Google Scholar] [CrossRef]
Feature Variable | Feature Abbreviation | Spatial Resolution | Data Source |
---|---|---|---|
Cation exchange capacity | CEC | 90 m | https://data.tpdc.ac.cn/ accessed on 12 March 2025. |
Clay | CLAY | 90 m | |
Mean annual precipitation | MAP | 1000 m | |
Mean annual press | MAPS | 1000 m | |
Mean annual temperature | MAT | 1000 m | |
Mean annual wind | MAW | 1000 m | |
Mean annual minimum temperature | LMAT | 1000 m | |
Mean annual maximum temperature | MMAT | 1000 m | |
Nighttime light data | NL | 1000 m | |
Potential evapotranspiration | PET | 1000 m | |
Sand | SAND | 90 m | |
Soil bulk density | BD | 90 m | |
Soil conductivity | CF | 90 m | |
Soil organic carbon | SOC | 90 m | |
Soil pH | pH | 90 m | |
Soil texture classification | TEXCS | 90 m | |
Soil thickness | THICKNISS | 90 m | |
Soil total nitrogen | TN | 90 m | |
Soil total phosphorus | TP | 90 m | |
Soil total potassium | TK | 90 m | |
Aridity index | AI | 1000 m | https://www.geodata.cn/ accessed on 12 March 2025. |
Gross primary productivity | GPP | 1000 m | |
Net ecosystem production | NEP | 1000 m | |
Net primary productivity | NPP | 1000 m | |
Relative humidity | RH | 1000 m | |
Digital elevation model | DEM | 30 m | https://www.gscloud.cn/ accessed on 12 March 2025. |
Distance to nearest road | DNR | - | https://www.openstreetmap.org/ accessed on 12 March 2025. |
Normalized difference vegetation index | NDVI | 30 m | http://www.gis5g.com/ accessed on 12 March 2025. |
GDP | GDP | 1000 m | https://doi.org/10.1038/s41597-022-01322-5 |
Population density | PD | 1000 m | https://landscan.ornl.gov/ accessed on 12 March 2025. |
Potential crop yield | PCY | 1000 m | http://www.resdc.cn/ accessed on 12 March 2025. |
Soil conservation | SC | 1000 m | https://www.scidb.cn/ accessed on 12 March 2025. |
Tree cover | TC | 1000 m | https://zenodo.org/records/ accessed on 12 March 2025. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Jiang, Y.; Guo, X.; Guo, Z.; Ye, Y.; Huang, J.; Liu, J. Monitoring of Farmland Abandonment Based on Google Earth Engine and Interpretable Machine Learning. Agriculture 2025, 15, 2090. https://doi.org/10.3390/agriculture15192090
Jiang Y, Jiang Y, Guo X, Guo Z, Ye Y, Huang J, Liu J. Monitoring of Farmland Abandonment Based on Google Earth Engine and Interpretable Machine Learning. Agriculture. 2025; 15(19):2090. https://doi.org/10.3390/agriculture15192090
Chicago/Turabian StyleJiang, Yameng, Yefeng Jiang, Xi Guo, Zichun Guo, Yingcong Ye, Ji Huang, and Jia Liu. 2025. "Monitoring of Farmland Abandonment Based on Google Earth Engine and Interpretable Machine Learning" Agriculture 15, no. 19: 2090. https://doi.org/10.3390/agriculture15192090
APA StyleJiang, Y., Jiang, Y., Guo, X., Guo, Z., Ye, Y., Huang, J., & Liu, J. (2025). Monitoring of Farmland Abandonment Based on Google Earth Engine and Interpretable Machine Learning. Agriculture, 15(19), 2090. https://doi.org/10.3390/agriculture15192090