Post-Harvest Quality of Cagaita Fruit Using LED Light Wavelengths: A Novel Approach for Cerrado Species
Abstract
1. Introduction
2. Materials and Methods
2.1. Origin and Preparation of Cagaita Fruit
2.2. LED Prototype Specifications
2.3. Experiment Characterization
2.4. Analyses
2.4.1. pH
2.4.2. Color
2.4.3. Vitamin C
2.4.4. Total Antioxidant Activity by DPPH Method
2.4.5. Weight Loss
2.4.6. Firmness
2.5. Statistical Analysis
3. Results and Discussion
3.1. Hydrogen Potential (pH)
3.2. Fruit Color (L* and C*)
3.3. Vitamin C (Ascorbic Acid)
3.4. Antioxidant Activity Using the DPPH Method
3.5. Weight Loss
3.6. Firmness
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zimbres, B.; Shimbo, J.; Bustamante, M.; Levick, S.; Miranda, S.; Roitman, I.; Silvério, D.; Gomes, L.; Fagg, C.; Alencar, A. Savanna vegetation structure in the Brazilian Cerrado allows for the accurate estimation of aboveground biomass using terrestrial laser scanning. For. Ecol. Manag. 2020, 458, 117798. [Google Scholar] [CrossRef]
- Braga-Filho, J.R.; Naves, R.V.; Chaves, L.J.; Souza, E.R.B.; Mazon, L.T.; Silva, L.B. Germinação de sementes e emergência de plântulas de araticum oriundos do cerrado de Goiás. Biosci. J. 2014, 30, 74–81. [Google Scholar]
- Freitas, B.C.B.; Censon, D.; Leal, G.F.; Silva, R.R.; Almeida, A.F.; Santos, C.C.A.A.; Abreu-Lima, T.L.; Morais, R.A.; Martins, G.A.S. Fruits of the Brazilian Cerrado are a potential alternative for food tourism and regional development. Braz. J. Food Technol. 2024, 27, e2023117. [Google Scholar] [CrossRef]
- Mazuti-Silva, S.M.; Gasca-Silva, C.A.; Fonseca-Bazzo, Y.M.; Magalhães, P.O.; Silveira, D. Eugenia dysenterica Mart. Ex DC. (cagaita): Planta brasileira com potencial terapêutico. Infarma Ciências Farmacêuticas 2015, 27, 49–95. [Google Scholar] [CrossRef]
- Arruda, H.S.; Fernandes, R.V.B.; Botrel, D.A.; Almeida, M.E.F. Frutos do Cerrado: Conhecimento e aceitação de Annona crassiflora Mart. (Araticum) e Eugenia dysenterica Mart. (Cagaita) por crianças utilizando o paladar e a visão. J. Health Biol. Sci. 2015, 3, 224–230. [Google Scholar] [CrossRef]
- Santos, P.R.G.; Cardoso, L.M.; Bedetti, S.F.; Hamaceck, F.R.; Moreira, A.V.B.; Martino, H.S.D.; Pinheiro-Sant’anna, H.M. Geleia de cagaita (Eugenia dysenterica DC.): Desenvolvimento, caracterização microbiológica, sensorial, química e estudo da estabilidade. Revista do Instituto Adolfo Lutz 2012, 71, 281–290. [Google Scholar] [CrossRef]
- Braz, A.J.; Nascente Lde, P.; Corrêa, N.C.; Rocha Rde, A.; Barbosa de Souza, E.R.; Siqueira, A.P.S. Influence of coverage based on biopolymers on the maturation of cagaita (Eugenia dysenterica DC.). Revista de Agricultura Neotropical 2020, 7, 62–65. [Google Scholar] [CrossRef]
- Ferreira, L.C.; Pereira, W.R. Aspectos microbiológicos e físico-químicos da conservação de cagaita (Eugenia dysenterica DC.) com aplicação de revestimento comestível. Caderno de Ciências Agrárias 2016, 8, 9–13. [Google Scholar]
- Schudel, S.; Shoji, K.; Shrivastava, C.; Onwude, D.; Defraeye, T. Solution roadmap to reduce food loss along your postharvest supply chain from farm to retail. Food Packag. Shelf Life 2023, 36, 101057. [Google Scholar] [CrossRef]
- Azuma, A.; Yakushiji, H.; Sato, A. Postharvest light irradiation and appropriate temperature treatment increase anthocyanin accumulation in grape berry skin. Postharvest Biol. Technol. 2019, 147, 89–99. [Google Scholar] [CrossRef]
- Poonia, A.; Pandey, S.; Vasundhara. Application of light emitting diodes (LEDs) for food preservation, post-harvest losses and production of bioactive compounds: A review. Food Prod. Process. Nutr. 2022, 4, 8. [Google Scholar] [CrossRef]
- Rajapaksha, L.; Gunathilake, D.M.C.C.; Pathirana SMFernando, S.N. Reducing post-harvest losses in fruits and vegetables for ensuring food security—Case of Sri Lanka. MOJ Food Process Technol. 2021, 9, 7–16. [Google Scholar] [CrossRef]
- Uikey, P.; Sharma, A.; Yadav, A.; Nair, R.; Rehan. Techniques to Reduce the Postharvest Losses of Fruits and Vegetables. In Advanced Technology of Horticulture; Daya Publishing House; Astral International Pvt. Ltd.: New Delhi, India, 2023; pp. 321–342. [Google Scholar]
- Castillejo, N.; Martínez-Zamora, L.; Gómez, P.A.; Pennisi, G.; Crepaldi, A.; Fernández, J.A.; Orsini, F.; Artés-Hernández, F. Postharvest LED lighting: Effect of red, blue and far red on quality of minimally processed broccoli sprouts. J. Sci. Food Agric. 2020, 101, 44–53. [Google Scholar] [CrossRef]
- Nájera, C.; Gallegos-Cedillo, V.M.; Ros, M.; Pascual, J.A. LED lighting in vertical farming systems enhances bioactive compounds and productivity of vegetables crops. Biol. Life Sci. Forum 2022, 16, 24. [Google Scholar] [CrossRef]
- Kim, B.S.; Lee, H.O.; Kim Kwon, K.H.; Cha, H.S.; Kim, J.H. An effect of light emitting diode (LED) irradiation treatment on the amplification of functional components of immature strawberry. Hortic. Environ. Biotechnol. 2011, 52, 35–39. [Google Scholar] [CrossRef]
- Xu, F.; Shi, L.; Chen, W.; Cao, S.; Su, X.; Yang, Z. Effect of blue light treatment on fruit quality antioxidant enzymes and radical scavenging activity in strawberry fruit. Sci. Hortic. 2014, 175, 181–186. [Google Scholar] [CrossRef]
- Huang, J.Y.; Xu, F.; Zhou, W. Effect of LED irradiation on the ripening and nutritional quality of postharvest banana fruit. J. Sci. Food Agric. 2018, 98, 5486–5493. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.M.L.; Martins, B.A.; Deus, T.N. Avaliação do teor de ácido ascórbico em frutos do cerrado durante o amadurecimento e congelamento. Estudos 2009, 36, 1159–1169. [Google Scholar] [CrossRef]
- AOAC. Association of Official Analytical Chemists. In Official Methods of Analysis of AOAC International, 20th ed.; AOAC: Rockville, MD, USA, 2016; 3100p. [Google Scholar]
- Benassi, M.T.; Antunes, A.J. A comparison of metaphosphoric and oxalic acids as extractants solutions for the determination of vitamin C in selected vegetables. Arq. Biol. Tecnol. 1998, 31, 507–513. [Google Scholar]
- Rufino, M.S.M.; Alves, R.E.; Brito, E.S.; Pérez-Jiménez, J.; Saura-Calixto, F.; Mancini-Filho, J. Bioactive compounds and antioxidant capacities of 18 non tradicional tropical fruits from Brazil. Food Chem. 2010, 121, 996–1002. [Google Scholar] [CrossRef]
- Lee, Y.J.; Ha, J.Y.; Oh, J.E.; Cho, M.S. The effect of LED Irradiation on the quality of cabbage stores at low temperature. Food Sci. Biotechnol. 2014, 23, 1087–1093. [Google Scholar] [CrossRef]
- Ferreira, D.C.M.; Molina, G.; Pelissari, F.M. Effect of edible coating from cassava starch and babassu flour (Orbignya phalerata) on Brazilian Cerrado fruits quality. Food Bioproc. Tech. 2020, 13, 172–179. [Google Scholar] [CrossRef]
- Silva, G.M.C.; Biazatti, M.A.; Silva, M.P.S.; Cordeiro, M.H.M.; Mizobutsi, G.P. Preservação dos atributos físicos de frutos de atemoia cv. Gefner com o uso de 1-MCP e atmosfera modificada. Revista Brasileira de Fruticultura 2014, 36, 828–834. [Google Scholar] [CrossRef]
- Peavey, M.; Scalisi, A.; Islam, M.S.; Goodwin, I. Fruit Position, Light Exposure and Fruit Surface Temperature Affect Colour Expression in a Dark-Red Apple Cultivar. Horticulturae 2024, 10, 725. [Google Scholar] [CrossRef]
- Dhakal, R.; Baek, K.H. Metabolic alternation in the accumulation of free amino acids and γ-aminobutyric acid in postharvest mature green tomatoes following irradiation with blue light. Hortic. Environ. Biotechnol. 2014, 55, 36–41. [Google Scholar] [CrossRef]
- Rinaldi, M.M.; Costa, A.M.; Faleiro, F.G.; Junqueira, N.T.V. Conservação pós-colheita de frutos de Passiflora setacea DC. submetidos a diferentes sanitizantes e temperaturas de armazenamento. Braz. J. Food Technol. 2017, 20, e2016046. [Google Scholar] [CrossRef]
- Pola, W.; Sugaya, S.; Photchanachai, S. Color development and phytochemical changes in mature green chili (Capsicum annuum L.) exposed to Red and Blue Light-Emitting Diodes. J. Agric. Food Chem. 2020, 68, 59–66. [Google Scholar] [CrossRef]
- García-Betanzos, C.I.; Hernández-Sánchez, H.; Bernal-Couoh, T.F.; Quintanar-Guerrero, D.; Zambrano-Zaragoza, M.L. Physicochemical, total phenols and pectin methylesterase changes on quality maintenance on guava fruit (Psidium guajava L.) coated with candeuba wax solid lipid nanoparticles-xanthan gum. Food Res. Int. 2017, 101, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Sanches, A.G.; Silva, M.B.; Moreira, E.G.S.; Santos, E.X.; Tripoloni, F.M. Extensão da vida útil de pitangas submetidas ao tratamento com cloreto de cálcio. Acta Iguazu 2017, 6, 45–58. [Google Scholar] [CrossRef]
- Cardoso, L.M.; Martino, H.S.D.; Moreira, A.V.B.; Ribeiro, S.M.R.; Pinheiro-Sant’ana, H.M.P. Cagaita (Eugenia dysenterica DC.) of the Cerrado of Minas Gerais, Brazil: Physical and chemical characterization, carotenoids and vitamins. Food Res. Int. 2011, 44, 2151–2154. [Google Scholar] [CrossRef]
- Basu, P.; Maier, C. In vitro antioxidant activities and polyphenol contents of seven commercially available fruits. Pharmacogn. Res. 2016, 8, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Achkar, M.T.; Novaes, G.M.; Silva, M.J.D.; Vilegas, W. Propriedade antioxidante de compostos fenólicos: Importância na dieta e na conservação de alimentos. Rev. Univ. Val. Rio Verde 2013, 11, 398–406. [Google Scholar] [CrossRef]
- Zhan, L.; Huang, W.; Bai, J.; Xu, J.; Lu, W. Comparison of several light treatments on broccoli (Brassica oleracea L. var. italica) florets during simulated retail shelf life. Postharvest Biol. Technol. 2012, 63, 51–57. [Google Scholar]
- Hasperué, J.H.; Rodoni, L.M.; Guerrero, C.; Wiesenberger, G.; Villalba, M.C.; Vicente, A.R.; Civello, P.M. Continuous white-blue LED light exposition delays postharvest senescence of broccoli. Postharvest Biol. Technol. 2016, 65, 495–502. [Google Scholar] [CrossRef]
- Chitarra, M.I.F.; Chitarra, A.B. Postharvest of Fruits and Vegetables: Physiology and Handling, revised and enlarged, 2nd ed.; UFLA: Lavras, Brazil, 2005; 785p. [Google Scholar]
- Jacomino, A.P.; Gallon, C.Z.; Dias, I.S.; Pereira, W.S.P. Characterization and Occurrence of Early Softening Disorder in ‘Golden’ Papaya Fruits. Rev. Bras. Frutic. 2010, 32, 1261–1266. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, A.P.; Morais, D.d.P.; Oliveira, A.R.; Corrêa, T.d.O.; Morgado, C.M.A.; de Moraes, M.J.; de Campos, A.J. Post-Harvest Quality of Cagaita Fruit Using LED Light Wavelengths: A Novel Approach for Cerrado Species. Agriculture 2025, 15, 2034. https://doi.org/10.3390/agriculture15192034
dos Santos AP, Morais DdP, Oliveira AR, Corrêa TdO, Morgado CMA, de Moraes MJ, de Campos AJ. Post-Harvest Quality of Cagaita Fruit Using LED Light Wavelengths: A Novel Approach for Cerrado Species. Agriculture. 2025; 15(19):2034. https://doi.org/10.3390/agriculture15192034
Chicago/Turabian Styledos Santos, Amanda Prager, Daniela de Paula Morais, Aryane Ribeiro Oliveira, Thais de Oliveira Corrêa, Cristiane Maria Ascari Morgado, Maria Joselma de Moraes, and André José de Campos. 2025. "Post-Harvest Quality of Cagaita Fruit Using LED Light Wavelengths: A Novel Approach for Cerrado Species" Agriculture 15, no. 19: 2034. https://doi.org/10.3390/agriculture15192034
APA Styledos Santos, A. P., Morais, D. d. P., Oliveira, A. R., Corrêa, T. d. O., Morgado, C. M. A., de Moraes, M. J., & de Campos, A. J. (2025). Post-Harvest Quality of Cagaita Fruit Using LED Light Wavelengths: A Novel Approach for Cerrado Species. Agriculture, 15(19), 2034. https://doi.org/10.3390/agriculture15192034