Structural Design and Parameter Optimization of In-Row Deep Fertilizer Application Device for Maize
Abstract
1. Introduction
2. Materials and Methods
2.1. Structural Design and Performance Validation of Deep Fertilization Application Unit
2.1.1. Overall Structure and Working Principle
2.1.2. Static Structural Analysis
2.1.3. Specialized Stability Performance Test
- (1)
- Soil firmness measurement
- (2)
- Test protocol
- (3)
- Evaluation criteria
2.2. Structural Configuration and Operational Principle of the MR Damper Fertilizer Application Unit
2.3. Dynamic Analysis
2.3.1. Deep Fertilization Application Unit
2.3.2. MR Damper
2.3.3. MR Damper Fertilizer Application Unit
2.4. Simulation Test Model
2.4.1. Simulation Model Establishment
2.4.2. Simulation Evaluation Metrics
2.5. Parameter Optimization
2.5.1. Test Conditions and Equipment
2.5.2. Comparative Testing of Topdressing Depth
2.5.3. Soil Bin Test
2.5.4. Evaluation Criteria for Soil Bin Tests
- (1)
- Qualified rate of topdressing depth
- (2)
- CV for topdressing depth
2.6. Field Validation
2.6.1. Field Test
2.6.2. Evaluation Criteria for Field Trials
- (1)
- Qualified rate and CV for topdressing depth
- (2)
- STD of force on the ground from gauge wheel
3. Results and Discussion
3.1. Stability Performance Test Results and Analysis
3.1.1. Qualified Rate of Topdressing Depth
3.1.2. Force Analysis of Gauge Wheel and Furrow Opener
3.1.3. Coherence Analysis
3.2. Simulation Test Results and Analysis
3.3. Parameter Optimization Results and Analysis
3.3.1. Comparative Test Results
3.3.2. Soil Bin Test Results and Analysis
3.4. Field Test Results
3.4.1. Topdressing Depth
3.4.2. Force on the Ground
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, S. Current Status and Development Trends of the Corn Industry in Northeast China. China Seed Ind. 2015, 161, 6–8. [Google Scholar] [CrossRef]
- Cui, A.M.; Zhang, J.G.; Zhang, H.; Shan, H.; Chen, W. Preliminary Exploration on Current Situation and Development of Maize Production in China. J. Agric. Sci. Technol. 2020, 22, 10–19. [Google Scholar] [CrossRef]
- Mirzakhaninafchi, H.; Singh, M.; Bector, V.; Gupta, O.P.; Singh, R. Design and Development of a Variable Rate Applicator for Real-Time Application of Fertilizer. Sustainability 2021, 13, 8694. [Google Scholar] [CrossRef]
- Konieczna, A.; Roman, K.; Roman, M.; Sliwinski, D.; Roman, M. Energy Efficiency of Maize Production Technology: Evidence from Polish Farms. Energies 2021, 14, 170. [Google Scholar] [CrossRef]
- Feng, H.M.; Gao, N.N.; Meng, Z.J.; Chen, L.P.; Li, Y.; Guo, Y. Design and experiment of deep fertilizer applicator based on autonomous navigation for precise row-following. Trans. Chin. Soc. Agric. Mach. 2018, 49, 60–67. [Google Scholar] [CrossRef]
- Zheng, Y.; Ji, J.H.; Liu, S.Q. Effect of topdressing time on spring maize yield and nitrogen utilization in black soil of northeast China. Sci. Rep. 2023, 13, 11841. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.Z. Improvement of the Design of Furrow Opener for Deep Fertilization on the Side of Corn Ridge Tillage. Agric. Sci. Technol. Equip. 2024, 1, 65–66. [Google Scholar] [CrossRef]
- Zhao, S.H.; Tan, H.W.; Chen, J.Z.; Chen, J.Q.; Yang, C. Performance experiment of double disk opener used for sowing under deep fertilization. J. Northeast Agric. Univ. 2017, 48, 86–96. [Google Scholar] [CrossRef]
- Liu, W.Z.; He, J.; Li, H.W.; Wei, Z.C.; Zhang, Z.G.; Li, X.Q. Design and experiment of double-side deep fertilizing device for potato micro-seed planter. Trans. Chin. Soc. Agric. Mach. 2020, 51, 56–65. [Google Scholar]
- Hebei Nonghaha Machinery Group Co., Ltd. Wheat Topdressing Machine. 2024. Available online: https://www.nonghaha.com/gzjx (accessed on 5 October 2024).
- Nielsen, S.K.; Norremark, M.; Green, O. Sensor and control for consistent seed drill coulter depth. Comput. Electron. Agric. 2016, 127, 690–698. [Google Scholar] [CrossRef]
- Nielsen, S.K.; Munkholm, L.J.; Lamandé, M.; Norremark, M.; Skou-Nielsen, N.; Edwards, G.T.C.; Green, O. Seed drill instrumentation for spatial coulter depth measurements. Comput. Electron. Agric. 2017, 141, 207–214. [Google Scholar] [CrossRef]
- Pradhan, N.C.; Sahoo, P.K.; Kushwaha, D.K.; Mani, I.; Srivastava, A.; Sagar, A.; Kumari, N.; Sarkar, S.K.; Makwana, Y. A Novel Approach for Development and Evaluation of LiDAR Navigated Electronic Maize Seeding System Using Check Row Quality Index. Sensors 2021, 21, 5934. [Google Scholar] [CrossRef]
- Carlson, J.D.; Catanzarite, D.M.; St. Clair, K.A. Commercial Magneto-Rheological Fluid Devices. Int. J. Mod. Phys. B 1996, 10, 2857–2865. [Google Scholar] [CrossRef]
- RD-1001/RD-1004; Lord Corporation Rheonetic Linear Damper. Product Information Sheet. Lord Corporation Publish: Tokyo, Japan, 1997.
- Kelso, S.P. Development and Investigation of Magneto-Rheological Fluid (MRF) Dampers for Off-Highway, High-Payload Vehicles. Master’s Thesis, University of Nevada, Reno, NV, USA, 1998. [Google Scholar]
- Pradhan, N.C.; Sahoo, P.K.; Kushwaha, D.K.; Makwana, Y.; Mani, I.; Kumar, M.; Aruna, T.N.; Krishnan, V.S. A finite element modeling-based approach to predict vibrations transmitted through different body segments of the operator within the workspace of a small tractor. J. Field Robot. 2023, 40, 1543–1561. [Google Scholar] [CrossRef]
- Sun, S.S.; Ning, D.H.; Yang, J.; Du, H.; Zhang, S.W.; Li, W.H. A seat suspension with a rotary magnetorheological damper for heavy duty vehicles. Smart Mater. Struct. 2016, 25, 105032. [Google Scholar] [CrossRef]
- Zácek, J.; Sebesta, K.; Mohammad, H.; Jenis, F.; Strecker, Z.; Kubík, M. Experimental Evaluation of Modified Groundhook Car Suspension with Fast Magnetorheological Damper. Actuators 2022, 11, 354. [Google Scholar] [CrossRef]
- Szulc, P.; Ambrozy-Deregowska, K.; Waligora, H.; Mejza, I.; Grzes, S.; Zielewicz, W.; Wrobel, B. Dry Matter Yield of Maize (Zea mays L.) as an Indicator of Mineral Fertilizer Efficiency. Plants 2021, 10, 535. [Google Scholar] [CrossRef]
- Zhao, J.H.; Yang, X.J.; Liu, L.J.; Liu, Z.J.; Zhou, J.P.; Jin, C. Mechanical Performance Testing Device for Planter Openers Based on PLC. Trans. Chin. Soc. Agric. Mach. 2014, 45, 29–34. [Google Scholar]
- Yin, X.Q.; Xu, A.M.; Zhou, F. Determination of Rolling Resistance Coefficient under Vehicle Driving Conditions. Automob. Technol. 1999, 2, 23–25. [Google Scholar]
- Marcinkiewicz, J.; Spadlo, M.; Staszak, Z.; Selech, J. Shaping the Design Features of a Dynamometer for Measuring Resistance Biaxial Components of Symmetrical Coulters. Sensors 2022, 22, 272. [Google Scholar] [CrossRef]
- Hu, L.; Du, P.; Luo, X.W.; Zhou, H.; Tang, L.M.; Su, H.Y. Design and experiment on multi-wheel support laser land leveler hanging on tractor. Trans. Chin. Soc. Agric. Mach. 2019, 50, 15–21. [Google Scholar]
- NY/T 1003-2006; Technical Specification for Quality Evaluation of Fertilizer Application Machinery. Standards Press of China: Beijing, China, 2009.
- Zong, L.H. Magnetorheological dampers: Dynamic models and application in vehicle suspensions. Doc 2013, 10, 181. [Google Scholar]
- Zhu, X.Y.; Xie, Z.M.; Yan, X.Q.; Du, X.W. Determination for ground contact length and static radial stiffness of tire. Tire Ind. 1998, 8, 10–13. [Google Scholar]
- Yoo, H.; Oh, J.; Chung, W.J.; Han, H.W.; Kim, J.T.; Park, Y.J.; Park, Y. Measurement of stiffness and damping coefficient of rubber tractor tires using dynamic cleat test based on point contact model. Int. J. Agric. Biol. Eng. 2021, 14, 157–164. [Google Scholar] [CrossRef]
- Graczykowski, C.; Pawlowski, P. Exact physical model of magnetorheological damper. Appl. Math. Model. 2017, 47, 400–424. [Google Scholar] [CrossRef]
- Hui, X.W.; Wang, Z.T.; Long, H.Y.; Li, Y.G. Establishment of hyperbolic tangent model of magnetorheological damper based on MATLAB. Mech. Eng. Autom. 2021, 2, 67–69. [Google Scholar]
- Chen, S.A.; Tong, J.C.; Jiang, X.D.; Wang, Y.X.; Yao, M. Modeling method for non-stationary road irregularity based on modulated white noise and lookup table method. J. Traffic Transp. Eng. 2020, 20, 171–179. [Google Scholar] [CrossRef]
- Wang, L.J.; Yan, J.G.; Hou, Z.F.; Zhang, Y. Design and experiment on agricultural field profiling apparatus. J. Shenyang Agric. Univ. 2018, 49, 425–432. [Google Scholar]
- Jiang, X.H.; Tong, J.; Ma, Y.H.; Li, J.G.; Wu, B.G.; Sun, J.Y. Study of Tillage Depth Detecting Device Based on Kalman Filter and Fusion Algorithm. Trans. Chin. Soc. Agric. Mach. 2020, 51, 53–60. [Google Scholar]
- Suomi, P.; Oksanen, T. Automatic working depth control for seed drill using ISO 11783 remote control messages. Comput. Electron. Agric. 2015, 116, 30–35. [Google Scholar] [CrossRef]
- Ren, L.Q. Experimental Design and Optimization; Science Press: Beijing, China, 2009. [Google Scholar]
- Bai, H.J.; Fang, X.F.; Wang, D.C.; Yuan, Y.W.; Zhou, L.M.; Niu, K. Design and Test of Control System for Seeding Depth and Compaction of Corn Precision Planter. Trans. Chin. Soc. Agric. Mach. 2020, 51, 61–72. [Google Scholar]
Depth (mm) | Test Items | ||
---|---|---|---|
Bulk Density (g/cm3) | Moisture Content (%) | Solidity (MPa) | |
0~100 | 1.06 | 11.25 | 0.28 |
100~200 | 1.21 | 18.66 | 0.41 |
Parameter Name | Abbreviation | Value |
---|---|---|
Deep Fertilization Application Unit mass | m (kg) | 24.12 |
Gauge wheel mass | mw (kg) | 4.30 |
Gauge wheel stiffness coefficient | Kw (N/m) | 20,898.00 |
Gauge wheel damping coefficient | Cw (m/s) | 92.00 |
Hysteresis scale factor | α1/α2/α3 | −106.64/310.37/−17.69 |
Hysteresis slope factor | β | 0.15 |
Post-yield damping coefficient | c1/c2 | 0.11/0.61 |
Post-yield stiffness coefficient | k0 | −0.13 |
Bias force | F0 | 5.61 |
Hysteresis half-width | δ | 8.00 |
Level | Factor | |
---|---|---|
Type | Speed (km/h) | |
1 | Deep fertilization application unit | 5.4 |
2 | MR damper fertilizer application unit | 7.2 |
3 | / | 9.0 |
Depth (mm) | Measured Parameters | ||
---|---|---|---|
Bulk Density (g/cm3) | Moisture Content (%) | Cone Index (MPa) | |
0~100 | 1.02 | 12.03 | 0.39 |
100~200 | 1.28 | 17.40 | 0.45 |
Levels | Factor | ||
---|---|---|---|
A: Current (A) | B: Spring Stiffness (N/mm) | C: Speed (km/h) | |
1 | 0 | 8 | 5.4 |
2 | 0.2 | 10 | 7.2 |
3 | 0.4 | 12 | 9.0 |
4 | 0.6 | / | / |
5 | 0.8 | / | / |
6 | 1.0 | / | / |
Parameter Name | Value |
---|---|
Compaction (MPa) | 0.62 |
Moisture content (%) | 12.5 |
Temperature (°C) | 13.6 |
Bulk density (g/cm3) | 1.21 |
Type | STD (N) | ||
---|---|---|---|
5.4 km/h | 7.2 km/h | 9.0 km/h | |
Deep fertilization application unit | 22.7 | 27.8 | 35.4 |
MR damper fertilizer application unit | 13.7 | 16.4 | 19.6 |
Levels | Factor | Metrics | ||||
---|---|---|---|---|---|---|
A (A) | B (N/mm) | C (km/h) | (%) | (%) | ||
1 | 0 | 8 | 5.4 | 83.3 | 8.4 | |
2 | 0 | 10 | 7.2 | 84.0 | 6.6 | |
3 | 0 | 12 | 9.0 | 76.6 | 10.7 | |
4 | 0.2 | 8 | 5.4 | 89.0 | 5.9 | |
5 | 0.2 | 10 | 7.2 | 83.3 | 7.2 | |
6 | 0.2 | 12 | 9.0 | 78.0 | 11.4 | |
7 | 0.4 | 8 | 7.2 | 94.3 | 5.1 | |
8 | 0.4 | 10 | 9.0 | 78.3 | 8.8 | |
9 | 0.4 | 12 | 5.4 | 87.0 | 7.1 | |
10 | 0.6 | 8 | 7.2 | 96.3 | 3.4 | |
11 | 0.6 | 10 | 9.0 | 90.0 | 6.8 | |
12 | 0.6 | 12 | 5.4 | 90.0 | 5.3 | |
13 | 0.8 | 8 | 9.0 | 85.3 | 5.6 | |
14 | 0.8 | 10 | 5.4 | 87.3 | 7.7 | |
15 | 0.8 | 12 | 7.2 | 84.0 | 7.4 | |
16 | 1.0 | 8 | 9.0 | 81.0 | 8.4 | |
17 | 1.0 | 10 | 5.4 | 87.0 | 7.2 | |
18 | 1.0 | 12 | 7.2 | 79.6 | 8.5 | |
81.30 | 88.20 | 87.27 | Primary and secondary factors: Current > Spring stiffness > Speed | |||
83.43 | 84.98 | 86.92 | ||||
86.53 | 81.53 | 81.53 | ||||
92.10 | / | / | ||||
85.53 | / | / | Optimal combination: A4B1C1 | |||
82.53 | / | / | ||||
10.80 | 6.67 | 5.73 | ||||
8.57 | 6.13 | 6.93 | Primary and secondary factors: Current > Spring stiffness > Speed | |||
8.17 | 7.38 | 6.37 | ||||
7.00 | 8.61 | 8.62 | ||||
5.17 | / | / | ||||
6.90 | / | / | Optimal combination: A4B1C2 | |||
8.03 | / | / | ||||
3.40 | 2.48 | 2.25 |
Metrics | SOV | SS | df | MS | F | p |
---|---|---|---|---|---|---|
y1 | A | 224.80 | 5 | 44.96 | 5.60 | 0.016 |
B | 96.92 | 2 | 48.46 | 6.03 | 0.025 | |
C | 123.95 | 2 | 61.97 | 7.72 | 0.014 | |
Residual | 64.26 | 8 | 8.03 | |||
Total | 509.93 | 17 | ||||
y2 | A | 23.08 | 5 | 4.62 | 3.94 | 0.042 |
B | 15.47 | 2 | 7.73 | 6.61 | 0.02 | |
C | 16.43 | 2 | 8.22 | 7.02 | 0.017 | |
Residual | 9.36 | 8 | 1.71 | |||
Total | 64.34 | 17 |
Unit Type | Test № | Qualified Rate (%) | CV (%) |
---|---|---|---|
Deep application fertilizer unit | 1 | 86.8 | 13.5 |
2 | 85.5 | 11.1 | |
3 | 87.3 | 11.5 | |
Mean value | 86.5 | 12.0 | |
MR damper fertilizer application unit | 1 | 94.3 | 7.3 |
2 | 92.9 | 8.9 | |
3 | 93.1 | 8.5 | |
Mean value | 93.4 | 8.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Dou, Z.; Fei, S.; Shi, F.; Zhang, X.; Liu, Z.; Huang, D. Structural Design and Parameter Optimization of In-Row Deep Fertilizer Application Device for Maize. Agriculture 2025, 15, 1934. https://doi.org/10.3390/agriculture15181934
Wu S, Dou Z, Fei S, Shi F, Zhang X, Liu Z, Huang D. Structural Design and Parameter Optimization of In-Row Deep Fertilizer Application Device for Maize. Agriculture. 2025; 15(18):1934. https://doi.org/10.3390/agriculture15181934
Chicago/Turabian StyleWu, Shengxian, Zihao Dou, Shulong Fei, Feng Shi, Xinbo Zhang, Ze Liu, and Dongyan Huang. 2025. "Structural Design and Parameter Optimization of In-Row Deep Fertilizer Application Device for Maize" Agriculture 15, no. 18: 1934. https://doi.org/10.3390/agriculture15181934
APA StyleWu, S., Dou, Z., Fei, S., Shi, F., Zhang, X., Liu, Z., & Huang, D. (2025). Structural Design and Parameter Optimization of In-Row Deep Fertilizer Application Device for Maize. Agriculture, 15(18), 1934. https://doi.org/10.3390/agriculture15181934