Factors Affecting China’s Tea Exports to Malaysia: An ARDL Analysis
Abstract
1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Data Information
3.2. Estimation Procedure
4. Results
4.1. Unit Root Test Results
4.2. ARDL Estimation Results
4.3. Granger Causality Results
4.4. Diagnostic and Stability Test Results
5. Discussion
6. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Global Market Analysis—Promotion (ISM-17-3). Intersessional Meeting on Tea, Rome, Italy, 2017. Available online: https://www.fao.org/fileadmin/templates/est/COMM_MARKETS_MONITORING/Tea/Intersessional_2017/ISM-17-3-GlobalMktAnalysis_Promotion.docx (accessed on 8 July 2025).
- Tea & Coffee Trade Journal. The Global Tea Report 2024. Available online: https://www.teaandcoffee.net/feature/34254/the-global-tea-report-2024/ (accessed on 9 July 2025).
- FAO. FAOSTAT Statistical Database. Available online: https://www.fao.org/faostat/en/#data (accessed on 17 July 2025).
- Tea Industry Committee (TIC) of China Association for the Promotion of International Agricultural Cooperation (CAPIAC); the Belt and Road International Tea Trade Industry Innovation Institute (BRIT). China Tea Import and Export Trade Analysis Report 2021. Available online: https://www.capiaccti.org.cn/teaTrade (accessed on 18 July 2025).
- Pampus, M. More than Colonial Vestige? Afternoon Tea as Heritage Practice in Penang (Malaysia). Heritage 2023, 6, 2928–2941. [Google Scholar] [CrossRef]
- Xu, S.M.; Guo, Y.L. Thoughts on the Diversification and Development of Tea Drinking in Malaysia. J. Anhui Agric. Sci. 2017, 45, 256–258. [Google Scholar] [CrossRef]
- Tea Industry Committee (TIC) of China Association for the Promotion of International Agricultural Cooperation (CAPIAC); The Belt and Road International Tea Trade Industry Innovation Institute (BRIT). China Tea Import and Export Trade Analysis Report 2022. Available online: https://www.capiaccti.org.cn/teaTrade (accessed on 18 July 2025).
- Statista. Ready-to-Drink (RTD) Tea-Malaysia. Available online: https://www.statista.com/outlook/cmo/non-alcoholic-drinks/ready-to-drink-rtd-coffee-tea/ready-to-drink-rtd-tea/malaysia (accessed on 20 July 2025).
- Mou, S.T. The Impact of Green Trade Barriers on Chinese Tea Exports: A Gravity Model Study. Mod. Econ. 2023, 14, 1849–1864. [Google Scholar] [CrossRef]
- Fan, Z.; Liu, K. The Promotion Effect of the Belt and Road Initiative on China’s Tea Export Trade. J. Sociol. Ethnol. 2022, 4, 94–100. [Google Scholar] [CrossRef]
- Qin, K.; Zhou, L. Analysis of the High-quality Development Path of China’s Tea Export. PLoS ONE 2024, 19, e0311629. [Google Scholar] [CrossRef]
- Zhang, H.L. Analysis of Influencing Factors of China’s Tea Export Trade to Japan. J. Minxi Voc. Technol. Coll. 2012, 14, 43–47. [Google Scholar] [CrossRef]
- Xu, Y.M. An Empirical Analysis of the Factors Affecting China’s Tea Exports to the United States under the Background of Sino-US Trade Friction. Chin. Tea 2020, 11, 21–27. [Google Scholar] [CrossRef]
- Yang, F.; Jiang, R.; Chen, F.Q.; Zhang, F. Analysis of the Current Situation and Prospects of Tea Trade Between China and ASEAN Under the Belt and Road Initiative. Chin. Tea 2019, 3, 23–28. [Google Scholar]
- Zhao, L.; Li, Y.N.; Li, W.; Xie, Y.Q. Strategies for Deepening Tea Trade and Economic Cooperation Between Guizhou and Southeast Asia Under the RCEP Background: A Case Study of Malaysia. J. Tea Sci. 2023, 5, 53–59. [Google Scholar] [CrossRef]
- Ni Mhurchu, C.; Eyles, H.; Schilling, C.; Yang, Q.; Kaye-Blake, W.; Genç, M.; Blakely, T. Food prices and consumer demand: Differences across income levels and ethnic groups. PLoS ONE 2013, 8, e75934. [Google Scholar] [CrossRef] [PubMed]
- Nursodik, H.; Santoso, S.I.; Nurfadillah, S. Competitiveness of Indonesian Tea Export in Southeast Asia Markets. SOCA J. Soc. Econ. Agric. 2022, 16, 1–14. [Google Scholar] [CrossRef]
- Hajra, N.G. The Global Tea Industry Amid COVID-19. Tea Coffee Trade J. 2021, 193, 12–18. [Google Scholar]
- Kadhim, Z.R. An Economic Analysis of the Determinants of Domestic Demand for Tea Imports in Iraq Using the Auto-regressive Distributed Lag Technique (ARDL) for the Period (1990–2020). Iraqi J. Agric. Sci. 2022, 53, 187–197. [Google Scholar] [CrossRef]
- Bernhofen, B.M.; Tian, M. The Trade–GDP Ratio as a Measure of Openness. World Econ. 2023, 46, 1319–1332. [Google Scholar] [CrossRef]
- Vo, T.D.; Yang, L.; Dung Tran, M. Determinants Influencing Vietnam Coffee Exports. Cogent Bus. Manag. 2024, 11, 2337961. [Google Scholar] [CrossRef]
- Sato, M.N. Determinants of Kenyan Tea Exports: The Gravity Model Approach. J. Econ. Sustain. Dev. 2020, 10, 132–143. [Google Scholar] [CrossRef]
- Clements, K.W.; Mariano, M.J.M.; Verikios, G. Foreign-domestic Substitution, Import Penetration and CGE Modelling. Appl. Econ. 2021, 53, 4080–4099. [Google Scholar] [CrossRef]
- Forgenie, D.; Khoiriyah, N. Analyzing Food Import Demand in Indonesia: An ARDL Bounds Testing Approach. Int. J. Food Agric. Econ. 2023, 11, 1–15. [Google Scholar] [CrossRef]
- Sen, S. International Trade Theory and Policy: A Review of the Literature (November 23, 2010). Levy Economics Institute Working Papers Series No. 635. SSRN 2010. [Google Scholar] [CrossRef]
- Zhou, S.; Kang, C. Research on the Influencing Factors of Russian Foreign Trade Based on R Language Regression Analysis. Math. Probl. Eng. 2021, 2021, 5638831. [Google Scholar] [CrossRef]
- Adi, L. Can the Prices of the World Crude Oil as a Proxy for Transportation Cost in Trade among ASEAN-3? J. Econ. Dev. Stud. 2016, 16, 38–47. [Google Scholar]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds Testing Approaches to the Analysis of Level Relationships. J. Appl. Econ. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Ganbaatar, B.; Huang, J.; Shuai, C.; Nawaz, A.; Ali, M. Empirical Analysis of Factors Affecting the Bilateral Trade Between Mongolia and China. Sustainability 2021, 13, 4051. [Google Scholar] [CrossRef]
- Soharwardi, M.A.; Ahmad, M.; Shafique, M.N. Exchange Rate Volatility and Trade Deficit in Pakistan: A Time Series Analysis. Int. J. Econ. Financ. Issues 2020, 10, 215–219. [Google Scholar] [CrossRef]
- Mbiakop, W.D.; Khobai, H.; Fani, D.C.R. The Impact of Public Agricultural Spending on Foreign Direct Investment Inflows in Agriculture in South Africa: An ARDL Analysis. Int. J. Econ. Financ. Issues 2023, 13, 76–87. [Google Scholar] [CrossRef]
- Soyebi, O.J.; Umobong, A.A. Government Expenditure and Economic Growth in Nigeria 1970–2022: ARDL Approach. Int. J. Bus. Manag. 2024, 7, 87–106. [Google Scholar] [CrossRef]
- Narayan, P.K. The Saving and Investment Nexus for China: Evidence from Cointegration Tests. Appl. Econ. 2005, 37, 1979–1990. [Google Scholar] [CrossRef]
- Hadi, S.N.; Chung, R.H. Estimation of Demand for Beef Imports in Indonesia: An Autoregressive Distributed Lag (ARDL) Approach. Agriculture 2022, 12, 1212. [Google Scholar] [CrossRef]
- Azam, A.H.M.; Zainuddin, M.R.K.V.; Abedin, N.F.Z.; Rusli, N.A.M. Impact of Exchange Rate Volatility on Trade Balance in Malaysia. J. Asian Finance Econ. Bus. 2022, 9, 49–59. [Google Scholar] [CrossRef]
- Matashu, M.; Skhephe, M. Human Capital and Economic Growth in Sub Saharan Africa Countries ARDL and ECM Analysis. J. Econ. Educ. Entrepren. 2022, 3, 49–64. [Google Scholar] [CrossRef]
- Lee, C.W.; Fernando, A. Foreign Direct Investment, Export and Economic Growth in Indonesia: ARDL-ECM Analysis. Rev. Integr. Bus. Econ. Res. 2021, 10, 68–82. [Google Scholar]
- Granger, C.W. Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Jacob, R.Z.; Magungu, A.W. Relationship between Foreign Exchange Reserves and Economic Growth in Tanzania: Application of Wald Granger-causality Test. Rural Plan. J. 2023, 25, 102–119. [Google Scholar] [CrossRef]
- Ignanga, C.; Chen, Y.; Zhao, Y.; Liu, H.; Yu, W. Cross-sectional Analysis of Household Food Demand in Estuaire Gabon: A Near-ideal Quadratic Demand System Approach. Agriculture 2025, 15, 268. [Google Scholar] [CrossRef]
- Omar, N.R.N.; Ahmad, A.A.; Nor, N.A.A.M.; Abidin, A.Z.Z.; Sulaiman, N.H.; Ahmad, B. Coffee Industry in Malaysia: An Overview and Potential. Econ. Technol. Manag. Rev. 2022, 19, 103–114. [Google Scholar]
- Hassan, M.; Sultan, F.; Kamal, M.H.; Hassan, S.I.; Sadiq, W. Evaluating Strategies for Cost Reduction in Supply Chain Management Relating to Exports and Imports. Crit. Rev. Soc. Sci. Stud. 2024, 2, 809–817. [Google Scholar] [CrossRef]
- Von Cramon-Taubadel, S.; Goodwin, B.K. Price Transmission in Agricultural Markets. Annu. Rev. Resour. Econ. 2021, 13, 65–84. [Google Scholar] [CrossRef]
- Krishnan, T.S. Forecasting Tea Production in Malaysia. Doctoral Dissertation, University of Malaya, Kuala Lumpur, Malaysia, 2000. [Google Scholar]
- Hämäläinen, E.; Twrdy, E.; Inkinen, T. Cost Aggregation in Export Logistics Chain. J. Open Innov. Technol. Mark. Complex. 2017, 3, 1–14. [Google Scholar] [CrossRef]



| Year | Export Value (100 Million USD) | Growth Rate (%) | Export Volume (Tons) | Growth Rate (%) | Average Price (USD/kg) | Growth Rate (%) |
|---|---|---|---|---|---|---|
| 2005 | 0.03 | 25.82 | 1586.59 | 22.20 | 2.49 | 2.96 |
| 2006 | 0.05 | 51.23 | 1513.62 | −4.60 | 3.94 | 58.52 |
| 2007 | 0.08 | 36.24 | 1734.39 | 14.58 | 4.69 | 18.90 |
| 2008 | 0.08 | −0.71 | 1621.95 | −6.48 | 4.98 | 6.17 |
| 2009 | 0.06 | −31.66 | 1312.63 | −19.07 | 4.20 | −15.55 |
| 2010 | 0.08 | 51.78 | 1550.36 | 18.11 | 5.40 | 28.51 |
| 2011 | 0.09 | 12.57 | 1588.42 | 2.46 | 5.93 | 9.87 |
| 2012 | 0.11 | 14.42 | 1760.06 | 10.81 | 6.13 | 3.27 |
| 2013 | 0.19 | 77.63 | 2140.60 | 21.62 | 8.95 | 46.05 |
| 2014 | 0.30 | 56.18 | 2071.02 | −3.25 | 14.44 | 61.43 |
| 2015 | 0.30 | 1.23 | 2572.37 | 24.21 | 11.77 | −18.50 |
| 2016 | 0.47 | 55.06 | 2377.50 | −7.58 | 19.75 | 67.77 |
| 2017 | 0.62 | 32.75 | 3372.17 | 41.84 | 18.48 | −6.41 |
| 2018 | 0.77 | 23.55 | 3488.20 | 3.44 | 22.08 | 19.44 |
| 2019 | 1.31 | 70.43 | 4910.26 | 40.77 | 26.73 | 21.07 |
| 2020 | 1.71 | 30.53 | 5634.04 | 14.74 | 30.41 | 13.76 |
| 2021 | 2.57 | 49.80 | 7242.63 | 28.55 | 35.43 | 16.53 |
| 2022 | 2.85 | 10.94 | 9265.40 | 27.93 | 30.73 | −13.28 |
| 2023 | 2.09 | −26.66 | 8208.27 | −11.41 | 25.44 | −17.22 |
| 2024 | 1.05 | −49.92 | 4528.77 | −44.83 | 23.09 | −9.23 |
| ADF | |||||
|---|---|---|---|---|---|
| Series | Level | First Difference | Finding | ||
| Intercept | Intercept and Trend | Intercept | Intercept and Trend | ||
| LEV | −0.8838(3) | −2.3549(2) | −9.0415(2) *** | −8.9841(2) *** | I(1) |
| LCTP | −1.4589(1) | −2.4538(1) | −14.8985(0) *** | −14.8037(0) *** | I(1) |
| LCP | −1.6223(0) | −2.3970(0) | −8.1760(0) *** | −8.1264(0) *** | I(1) |
| LGDP | −2.0992(0) | −2.7094(0) | −8.0914(0) *** | −8.1403(0) *** | I(1) |
| LMTP | −2.3373(5) | −2.2513(5) | −3.5309(4) *** | −3.5934(4) ** | I(1) |
| LOP | −3.1645(1) ** | −3.1497(1) | −7.2542(0) *** | −7.2301(0) *** | I(0) |
| KPSS | |||||
| Series | Level | First Difference | Finding | ||
| Intercept | Intercept and Trend | Intercept | Intercept and Trend | ||
| LEV | 1.4650(4) *** | 0.2379(4) *** | 0.0578(4) | 0.0571(4) | I(1) |
| LCTP | 0.9085(6) *** | 0.1582(6) ** | 0.0793(16) | 0.0811(16) | I(1) |
| LCP | 0.8900(6) *** | 0.1298(6) * | 0.1464(2) | 0.1426(2) * | I(1) |
| LGDP | 1.0905(6) *** | 0.2283(6) *** | 0.2342(7) | 0.1046(9) | I(1) |
| LMTP | 0.3915(6) * | 0.1808(6) ** | 0.1005(1) | 0.0874(0) | I(1) |
| LOP | 0.1214(6) | 0.1086(6) | 0.0790(4) | 0.0597(4) | I(0) |
| Model | Sample Size | F-Statistic | ARDL Order | |||
|---|---|---|---|---|---|---|
| LEV, LCTP, LCP, LGDP, LMTP, and LOP | 80 | 4.062 ** | (8, 2, 7, 4, 9, 7) | |||
| Critical value bounds of F-statistic: restricted intercept and no trend (k = 5, n = 80) | ||||||
| Significance | 10% | 5% | 1% | |||
| Sample | I(0) | I(1) | I(0) | I(1) | I(0) | I(1) |
| 80 | 2.303 | 3.154 | 2.550 | 3.606 | 3.351 | 4.587 |
| Asymptotic | 2.080 | 3.000 | 2.390 | 3.380 | 3.060 | 4.150 |
| Regressor | Coefficient | SE | t-Statistic | p-Value |
|---|---|---|---|---|
| LCTPt−1 | −0.6722 ** | 0.2931 | −2.2934 | 0.0247 |
| LCPt−1 | −2.5698 ** | 1.0774 | −2.3851 | 0.0196 |
| LGDPt−1 | 6.3409 *** | 1.2224 | 5.1870 | 0.0000 |
| LMTPt−1 | −0.9011 *** | 0.3092 | −2.9138 | 0.0047 |
| LOPt−1 | −1.0995 *** | 0.3772 | −2.9151 | 0.0047 |
| Constant | −124.0755 *** | 29.2713 | −4.2388 | 0.0001 |
| Regressor | Coefficient | SE | t-Statistic | p-Value |
|---|---|---|---|---|
| ∆LCPt−1 | 0.7857 *** | 0.288855 | 2.719927 | 0.0094 |
| ∆LCPt−2 | 0.1447 | 0.261434 | 0.553520 | 0.5828 |
| ∆LCPt−3 | 0.7598 *** | 0.274233 | 2.770549 | 0.0082 |
| ∆LCPt−4 | 0.6423 ** | 0.264519 | 2.428236 | 0.0194 |
| ∆LCPt−5 | −0.0721 | 0.265112 | −0.272128 | 0.7868 |
| ∆LCPt−6 | 0.8995 *** | 0.271187 | 3.316941 | 0.0019 |
| ∆LGDPt | 2.8473 *** | 0.638228 | 4.461254 | 0.0001 |
| ∆LGDPt−1 | −1.4041 ** | 0.669896 | −2.096037 | 0.0420 |
| ∆LGDPt−2 | 0.6827 | 0.696635 | 0.980035 | 0.3326 |
| ∆LGDPt−3 | −1.2413 * | 0.669157 | −1.854955 | 0.0705 |
| ∆LMTPt | 0.3308 | 0.276879 | 1.194641 | 0.2388 |
| ∆LMTPt−1 | 0.2789 | 0.331218 | 0.842046 | 0.4044 |
| ∆LMTPt−2 | 0.0737 | 0.324006 | 0.227504 | 0.8211 |
| ∆LMTPt−3 | 0.5867 * | 0.328204 | 1.787745 | 0.0809 |
| ∆LMTPt−4 | 0.0237 | 0.383752 | 0.061851 | 0.9510 |
| ∆LMTPt−5 | 0.1152 | 0.306795 | 0.375586 | 0.7091 |
| ∆LMTPt−6 | −0.0095 | 0.315887 | −0.030050 | 0.9762 |
| ∆LMTPt−7 | 0.5665 * | 0.318038 | 1.781101 | 0.0820 |
| ∆LMTPt−8 | −0.5744 ** | 0.279093 | −2.058141 | 0.0457 |
| ∆LOPt | −0.7199 *** | 0.204951 | −3.512366 | 0.0011 |
| ∆LOPt−1 | 0.0658 | 0.216729 | 0.303661 | 0.7629 |
| ∆LOPt−2 | 0.1380 | 0.213614 | 0.645897 | 0.5218 |
| ∆LOPt−3 | 0.2455 | 0.212791 | 1.153537 | 0.2551 |
| ∆LOPt−4 | 0.4775 *** | 0.162465 | 2.939092 | 0.0053 |
| ∆LOPt−5 | 0.1105 | 0.182598 | 0.605142 | 0.5483 |
| ∆LOPt−6 | 0.3444 * | 0.180792 | 1.904723 | 0.0635 |
| ECTt−1 | −0.4450 *** | 0.0774 | −5.7484 | 0.0000 |
| Null Hypothesis | Chi-Square | p-Value | Conclusion |
|---|---|---|---|
| LCTP does not Granger-cause LEV | 12.2438 | 0.0066 *** | Rejected |
| LCP does not Granger-cause LEV | 24.1058 | 0.0022 *** | Rejected |
| LGDP does not Granger-cause LEV | 32.5043 | 0.0000 *** | Rejected |
| LMTP does not Granger-cause LEV | 15.7677 | 0.1065 | Not rejected |
| LOP does not Granger-cause LEV | 13.2824 | 0.1025 | Not rejected |
| Test | Null Hypothesis | p-Value | Conclusion |
|---|---|---|---|
| JB | There is a normal distribution. | 0.8056 | Not rejected |
| Breusch–Godfrey LM | There is no autocorrelation. | 0.7089 | Not rejected |
| ARCH | There is no heteroskedasticity. | 0.1151 | Not rejected |
| Ramsey RESET | The model is correctly specified. | 0.0663 | Not rejected |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Puah, C.-H. Factors Affecting China’s Tea Exports to Malaysia: An ARDL Analysis. Agriculture 2025, 15, 1897. https://doi.org/10.3390/agriculture15171897
Hu Y, Puah C-H. Factors Affecting China’s Tea Exports to Malaysia: An ARDL Analysis. Agriculture. 2025; 15(17):1897. https://doi.org/10.3390/agriculture15171897
Chicago/Turabian StyleHu, Yanqi, and Chin-Hong Puah. 2025. "Factors Affecting China’s Tea Exports to Malaysia: An ARDL Analysis" Agriculture 15, no. 17: 1897. https://doi.org/10.3390/agriculture15171897
APA StyleHu, Y., & Puah, C.-H. (2025). Factors Affecting China’s Tea Exports to Malaysia: An ARDL Analysis. Agriculture, 15(17), 1897. https://doi.org/10.3390/agriculture15171897

